Depletion of the RNA Helicase SKIV2L2 Impedes Mitotic Progression and Histone Mrna Turnover in Murine Cell Lines Alexis Marie Onderak Marquette University

Total Page:16

File Type:pdf, Size:1020Kb

Depletion of the RNA Helicase SKIV2L2 Impedes Mitotic Progression and Histone Mrna Turnover in Murine Cell Lines Alexis Marie Onderak Marquette University Marquette University e-Publications@Marquette Dissertations (2009 -) Dissertations, Theses, and Professional Projects Depletion of the RNA Helicase SKIV2L2 Impedes Mitotic Progression and Histone mRNA Turnover in Murine Cell Lines Alexis Marie Onderak Marquette University Recommended Citation Onderak, Alexis Marie, "Depletion of the RNA Helicase SKIV2L2 Impedes Mitotic Progression and Histone mRNA Turnover in Murine Cell Lines" (2016). Dissertations (2009 -). 679. https://epublications.marquette.edu/dissertations_mu/679 DEPLETION OF THE RNA HELICASE SKIV2L2 IMPEDES MITOTIC PROGRESSION AND HISTONE MRNA TURNOVER IN MURINE CELL LINES By Alexis M. Onderak B.S. 2012, Marquette University A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin December 2016 ABSTRACT DEPLETION OF THE RNA HELICASE SKIV2L2 IMPEDES MITOTIC PROGRESSION AND HISTONE MRNA TURNOVER IN MURINE CELL LINES Alexis M. Onderak Marquette University, 2016 RNA surveillance via the nuclear exosome requires cofactors such as the helicase SKIV2L2 to process and degrade certain noncoding RNAs. This dissertation aimed to characterize the phenotype associated with RNAi knockdown of SKIV2L2 in two murine cancer cell lines: Neuro2A and P19. Skiv2l2 knockdown in Neuro2A and P19 cells induced changes in gene expression indicative of cell differentiation and reduced cellular proliferation. Analysis of the cell cycle revealed defective progression through mitosis following SKIV2L2 depletion. These results indicate that SKIV2L2 enhances mitotic progression, thereby maintaining cancer cell proliferation and preventing differentiation. Indeed, SKIV2L2 levels were found to be downregulated during chemically induced differentiation, further implicating SKIV2L2 in maintaining proliferation and multipotency in cancer cell lines. Because SKIV2L2 targets RNAs for processing and degradation via the nuclear exosome, it was hypothesized that with SKIV2L2 depletion, the accumulation of some RNA target triggers mitotic arrest. In search of such a target, RNA-seq was utilized to identify RNAs that were elevated in Skiv2l2 knockdown cells. SKIV2L2 depletion resulted in the accumulation of non-coding RNAs, intergenic RNAs, ribosomal protein mRNAs, and replication-dependent histone mRNAs. Given that the regulation of histone mRNAs is tightly linked to the cell cycle, further experiments were conducted to confirm SKIV2L2 targets histone mRNAs for degradation. RNA immunoprecipitation demonstrated direct binding between SKIV2L2 and histone mRNAs, and RNA degradation assays showed that the half-life of histone mRNAs doubles with SKIV2L2 depletion. The resulting histone imbalance following loss of SKIV2L2-directed RNA surveillance could impede mitotic progression, resulting in mitotic defects and indirectly triggering differentiation i ACKNOWLEDGMENTS Alexis M. Onderak I would like to first and foremost thank my advisor, Dr. Anderson, for his guidance and support throughout my dissertation research. He played such an important role in helping me develop as a scientist. I appreciated all his help and patience along the way. During my time in the Anderson laboratory, I lost both my grandfather and godfather, and I am grateful for Dr. Anderson’s compassion during those tough times. I would also like to thank my committee members: Dr. Abbott, Dr. Maki, Dr. Petrella, and Dr. Schlappi. I thoroughly enjoyed learning from each one in the classroom, and I appreciated their criticisms and suggestions for my research. Each committee member pushed me to see things in a different light and more importantly instilled in me a great enthusiasm for biology, for which I am very grateful. My research would not have been possible without the support of my fellow members of the Anderson laboratory: Dr. Jane Dorweiler, Yan Li, and Fengchao Wang. They helped me navigate and learn about both benchwork and genomic data analysis. Also, much gratitude is extended to the undergraduates Ryan O’Toole and Oleg Nagorny. I would also like to thank the Hristova laboratory members for technical support and use of their qPCR machine, the Schlappi laboratory for use of the UVP imaging system, the Yang laboratory for instruction on use of their GFP microscope, and the Petrella laboratory for help with the inverted microscope. I am also appreciative of all the faculty, students, and staff that not only help the Marquette Biological Sciences Department run smoothly but also make it an enjoyable workplace. Finally, I would like to thank my family and friends for their never-ending love and support. My family served as my rock throughout graduate school, always willing to listen and offer reassurance, and I am thankful to be surrounded by such kind and loving individuals. ii TABLE OF CONTENTS LIST OF TABLES…………………………………………………………………….....vii LIST OF FIGURES………………..……………………………………………………viii LIST OF ABBREVIATIONS………………………………………………………...…xii CHAPTER I: INTRODUCTION 1.1 RNA surveillance…………………………..………………………………….1 1.2 The nuclear TRAMP complex………………………………………………...3 1.3 SKIV2L2 functions as a helicase in RNA decay pathways…………………...7 1.4 Stem cells are maintained through a variety of mechanisms …………………9 1.5 The potential role of SKIV2L2 in development……………………………..12 1.6 Aims and Hypotheses………………………………………………………..14 1.7 Summary of Findings…………………………..…………………………….15 1.8 Significance of Findings……………………………………………………..16 CHAPTER II: DIFFERENTIATION OF MURINE CELL LINES IS ASSOCIATED WITH DOWNREGULATION OF SKIV2L2 EXPRESSION 2.1 Introduction………………………………………………………………......18 2.2 Approach and Results…...…………………………………………………...21 2.2.1 N2a and P19 cells differentiate into cholinergic neurons and cardiomyocytes following chemical treatment…………………………..25 2.2.2 Skiv2l2 is downregulated during chemically induced differentiation of N2a and P19 cells……………………………………………………..30 2.2.3 Serum starvation is sufficient to downregulate Skiv2l2 in N2a cells.…………………………………..………………………………….34 2.2.4 Skiv2l2 downregulation during N2a cell differentiation does not occur due to post-transcriptional regulation via Skiv2l2’s 3'UTR……….36 iii 2.2.5 Multiple signaling cascades could indirectly or directly regulate Skiv2l2 expression.…………………………………………………….…40 2.3 Discussion…………………………………………………………...……….45 CHAPTER III: KNOCKDOWN OF SKIV2L2 VIA RNAI ENHANCES P19 CELL AND N2A CELL DIFFERENTIATION 3.1 Introduction…………………………………………………………………..48 3.2 Approach and Results………………………………………………………..50 3.2.1 RNAi knockdown reduces SKIV2L2 levels to negligible amounts in N2a and P19 cells………………………………………………………..50 3.2.2 SKIV2L2 depletion enhances morphological changes consistent with differentiation ……………………………………………………………53 3.2.3 Gene expression changes in Skiv2l2 knockdown cells reflect increased differentiation………………………………………………….56 3.2.4 SKIV2L2 depletion does not restrict differentiation to one cell type………………………………………………………………………61 3.2.5 Differentiation cannot be directly attributed to the loss of the TRAMP or NEXT complexes……………………………………………65 3.3 Discussion……………………………………………………………………72 CHAPTER IV: SKIV2L2 DEPLETION INDUCES A SLIGHT BUT SIGNIFICANT MITOTIC ARREST IN MURINE CELL LINES 4.1 Introduction…………………………………………………………………..76 4.2 Approach and Results………………………………………………………..79 4.2.1 SKIV2L2 depletion reduces the total number of proliferating cells by approximately 30%………………………………………………………79 4.2.2 Skiv2l2 knockdown does not induce cell death in cancer cell lines………………………………………………………………………83 4.2.3 SKIV2L2 depletion triggers a modest but statistically significant increase in G2/M phase cells…………………………………………….87 4.2.4 Skiv2l2 knockdown results in mitotic arrest as demonstrated through increased H3 phospho-S10 levels………………………………………..90 iv 4.2.5 Binuclear cells were detected following SKIV2L2 depletion……..94 4.2.6 Cell cycle genes were dysregulated following Skiv2l2 knockdown……………………………………………………………….97 4.3 Discussion……………………………………………………………………98 CHAPTER V: SKIV2L2 TARGETS SPECIFIC NON-CODING RNAS FOR PROCESSING AND DEGRADATION 5.1 Introduction…………………………………………………………………103 5.2 Approach and Results………………………………………………………109 5.2.1 TRAMP complex RNA targets possess short 3' tails consisting of three to six adenosines………...…………………………………..........109 5.2.2 The 5' leader of mir-322 is a definitive TRAMP target…………..114 5.2.3 SKIV2L2 is necessary for processing snoRNA Z18 from the long non-coding RNA Gas5………………………………………………….115 5.2.4 Forty seven non-coding RNAs accumulate in P19 cells following SKIV2L2 depletion……………………………………………………..119 5.2.5 SKIV2L2 depletion results in the accumulation of transcripts expressed from intergenic regions……………………………………...131 5.2.6 SKIV2L2 depletion impacts the steady state levels of certain mRNAs…………………………………………………………………137 5.3 Discussion…………………………………………………………………..141 CHAPTER VI: SKIV2L2 TARGETS HISTONE MRNAS FOR DEGRADATION IN THE NUCLEUS 6.1 Introduction…………………………………………………………………146 6.2 Approach and Results………………………………………………………150 6.2.1 Histone mRNAs H1, H2A, H3, and H4 accumulate in P19 and N2a cells following SKIV2L2 depletion…………………………………….150 6.2.2 Histone mRNAs accumulate slightly in Papd5 knockdown cells but not in Zcchc8 knockdown cells……………………………………..…..158 v 6.2.3 Histone mRNA accumulation with SKIV2L2 depletion correlates to an increase in at least one histone protein………………………………160 6.2.4 Histone accumulation with SKIV2L2 depletion may impact chromatin compaction…………………………………………………..162 6.2.5 Histone mRNAs are detected among RNAs bound to the
Recommended publications
  • Comprehensive Analysis of Differentially Expressed Lncrnas Mirnas and Mrna and Their Cerna Network of Patients with Rare-Earth Pneumoconiosis
    fgene-12-700398 July 13, 2021 Time: 17:18 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fgene.2021.700398 Comprehensive Analysis of Differentially Expressed lncRNAs miRNAs and mRNA and Their ceRNA Network of Patients With Rare-Earth Pneumoconiosis Xue-min Shi, Yu-chao Bai, Yan-rong Gao, Ning Bu, Hai-yan Song, Li-hua Huang, Yu-hang Zhao* and Su-hua Wang* School of Public Health, Baotou Medical College, Baotou, China Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and Edited by: Duc-Hau Le, mRNA and investigate their regulatory networks. Our results identified a total of 125 Vingroup Big Data Institute, Vietnam lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of Reviewed by: patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Eman Toraih, Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding Tulane University, United States Isha Monga, RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to Columbia University Irving Medical the response of cells to stimulation, Hedgehog signaling pathway and so on. We Center, United States also constructed lncRNA-miRNA-mRNA networks to further explore their underlying *Correspondence: Yu-hang Zhao mechanism and possible relationships in REP. We found that in the competitive [email protected] endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the Su-hua Wang target gene.
    [Show full text]
  • ZCCHC8, the Nuclear Exosome Targeting Component, Is Mutated in Familial Pulmonary Fibrosis and Is Required for Telomerase RNA Maturation
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation Dustin L. Gable,1,2,3 Valeriya Gaysinskaya,2,3 Christine C. Atik,2,3 C. Conover Talbot Jr.,4 Byunghak Kang,5 Susan E. Stanley,1,2,3 Elizabeth W. Pugh,6 Nuria Amat-Codina,2,3 Kara M. Schenk,7 Murat O. Arcasoy,8 Cory Brayton,5 Liliana Florea,6 and Mary Armanios2,3,6,9,10 1Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 3Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 4Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 5Department of Comparative and Molecular Pathobiology, 6Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 7Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 8Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA; 9Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function.
    [Show full text]
  • Cyclin K Interacts with Β-Catenin to Induce Cyclin D1 Expression And
    Theranostics 2020, Vol. 10, Issue 24 11144 Ivyspring International Publisher Theranostics 2020; 10(24): 11144-11158. doi: 10.7150/thno.42578 Research Paper Cyclin K interacts with β-catenin to induce Cyclin D1 expression and facilitates tumorigenesis and radioresistance in lung cancer Guojun Yao*, Jing Tang*, Xijie Yang, Ye Zhao, Rui Zhou, Rui Meng, Sheng Zhang, Xiaorong Dong, Tao Zhang, Kunyu Yang, Gang Wu and Shuangbing Xu Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. *These authors contributed equally to this work. Corresponding author: Shuangbing Xu or Gang Wu, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. E-mail: [email protected] or [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.11.29; Accepted: 2020.08.24; Published: 2020.09.11 Abstract Rationale: Radioresistance remains the major cause of local relapse and distant metastasis in lung cancer. However, the underlying molecular mechanisms remain poorly defined. This study aimed to investigate the role and regulatory mechanism of Cyclin K in lung cancer radioresistance. Methods: Expression levels of Cyclin K were measured by immunohistochemistry in human lung cancer tissues and adjacent normal lung tissues. Cell growth and proliferation, neutral comet and foci formation assays, G2/M checkpoint and a xenograft mouse model were used for functional analyses. Gene expression was examined by RNA sequencing and quantitative real-time PCR.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • 1 Early Patterning and Specification of Cardiac Progenitors In
    Early Patterning and Specification of Cardiac Progenitors in Gastrulating Mesoderm W. Patrick Devine1,2,3,4, Joshua D. Wythe1,2, Matthew George1,2,5 , Kazuko Koshiba- Takeuchi1,2, Benoit G. Bruneau1,2,4,5 1. Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158 USA 2. Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA 3. Department of Pathology, University of California, San Francisco, CA 94143 USA 4. Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA 5. Developmental and Stem Cell Biology Program, University of San Francisco, CA 94143, USA 6. Department of Pediatrics, University of California, San Francisco, CA 94143 USA Competing interests statement: The authors declare no competing interests. 1 Abstract Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor "fields" has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • Co-Occupancy by Multiple Cardiac Transcription Factors Identifies
    Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart Aibin Hea,b,1, Sek Won Konga,b,c,1, Qing Maa,b, and William T. Pua,b,2 aDepartment of Cardiology and cChildren’s Hospital Informatics Program, Children’s Hospital Boston, Boston, MA 02115; and bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved February 23, 2011 (received for review November 12, 2010) Identification of genomic regions that control tissue-specific gene study of a handful of model genes (e.g., refs. 7–10), it has not been expression is currently problematic. ChIP and high-throughput se- evaluated using unbiased, genome-wide approaches. quencing (ChIP-seq) of enhancer-associated proteins such as p300 In this study, we used a modified ChIP-seq approach to define identifies some but not all enhancers active in a tissue. Here we genome wide the binding sites of these cardiac TFs (1). We show that co-occupancy of a chromatin region by multiple tran- provide unbiased support for collaborative TF interactions in scription factors (TFs) identifies a distinct set of enhancers. GATA- driving cardiac gene expression and use this principle to show that chromatin co-occupancy by multiple TFs identifies enhancers binding protein 4 (GATA4), NK2 transcription factor-related, lo- with cardiac activity in vivo. The majority of these multiple TF- cus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and “ binding loci (MTL) enhancers were distinct from p300-bound myocyte-enhancer factor 2A (MEF2A), here referred to as cardiac enhancers in location and functional properties.
    [Show full text]
  • Supraphysiological Levels of Oxygen Exposure During the Neonatal
    www.nature.com/scientificreports OPEN Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Received: 15 January 2018 Accepted: 4 June 2018 Pathways Required for Learning Published: xx xx xxxx and Memory Manimaran Ramani1, Ranjit Kumar2, Brian Halloran1, Charitharth Vivek Lal1, Namasivayam Ambalavanan 1,3 & Lori L. McMahon3,4 Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory defcits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of diferentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABAA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory defcits seen in preterm survivors following prolonged oxygen supplementation. Children born preterm with a relatively uncomplicated neonatal intensive care unit course ofen have defcits in executive function and learning and memory1–3.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]