Monitoring and Early Warning in Tajikistan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Republic of Tajikistan Ministry of Energy and Industry
The Republic of Tajikistan Ministry of Energy and Industry DATA COLLECTION SURVEY ON THE INSTALLMENT OF SMALL HYDROPOWER STATIONS FOR THE COMMUNITIES OF KHATLON OBLAST IN THE REPUBLIC OF TAJIKISTAN FINAL REPORT September 2012 Japan International Cooperation Agency NEWJEC Inc. E C C CR (1) 12-005 Final Report Contents, List of Figures, Abbreviations Data Collection Survey on the Installment of Small Hydropower Stations for the Communities of Khatlon Oblast in the Republic of Tajikistan FINAL REPORT Table of Contents Summary Chapter 1 Preface 1.1 Objectives and Scope of the Study .................................................................................. 1 - 1 1.2 Arrangement of Small Hydropower Potential Sites ......................................................... 1 - 2 1.3 Flowchart of the Study Implementation ........................................................................... 1 - 7 Chapter 2 Overview of Energy Situation in Tajikistan 2.1 Economic Activities and Electricity ................................................................................ 2 - 1 2.1.1 Social and Economic situation in Tajikistan ....................................................... 2 - 1 2.1.2 Energy and Electricity ......................................................................................... 2 - 2 2.1.3 Current Situation and Planning for Power Development .................................... 2 - 9 2.2 Natural Condition ............................................................................................................ -
The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan the Handbook of Environmental Chemistry
The Handbook of Environmental Chemistry 28 Series Editors: Damià Barceló · Andrey G. Kostianoy Igor S. Zonn Andrey G. Kostianoy Editors The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan The Handbook of Environmental Chemistry Founded by Otto Hutzinger Editors-in-Chief: Damia` Barcelo´ l Andrey G. Kostianoy Volume 28 Advisory Board: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks The Handbook of Environmental Chemistry Recently Published and Forthcoming Volumes The Turkmen Lake Altyn Asyr and Emerging and Priority Pollutants in Water Resources in Turkmenistan Rivers: Bringing Science into River Volume Editors: I.S. Zonn Management Plans and A.G. Kostianoy Volume Editors: H. Guasch, A. Ginebreda, Vol. 28, 2014 and A. Geiszinger Vol. 19, 2012 Oil Pollution in the Baltic Sea Global Risk-Based Management of Volume Editors: A.G. Kostianoy Chemical Additives I: Production, and O.Yu. Lavrova Usage and Environmental Occurrence Vol. 27, 2014 Volume Editors: B. Bilitewski, R.M. Darbra, and D. Barcelo´ Urban Air Quality in Europe Vol. 18, 2012 Volume Editor: M. Viana Vol. 26, 2013 Polyfluorinated Chemicals and Transformation Products Climate Change and Water Resources Volume Editors: T.P. Knepper Volume Editors: T. Younos and C.A. Grady and F.T. Lange Vol. 25, 2013 Vol. 17, 2012 Emerging Organic Contaminants in Brominated Flame Retardants Sludges: Analysis, Fate and Biological Volume Editors: E. Eljarrat and D. Barcelo´ Treatment Vol. 16, 2011 Volume Editors: T. Vicent, G. Caminal, E. Eljarrat, and D. Barcelo´ Effect-Directed Analysis of Complex Vol. 24, 2013 Environmental Contamination Volume Editor: W. -
Reservoirs, Tajikistan
Reservoirs of Tajikistan 3 Beginning and Volume, mln.m Regulation Name Location Water source Use type end of type Total useful Total useful construction Farkhad Sogd province Syrdarya River 330 daily I, E, R, S 1942-1948 Kairakkum Sogd province Syrdarya River 4160 2600 seasonal I, E, R, S, F 1952-1956 Kattasay Sogd province Kattasay River 55 36,6 seasonal I, M, R, S 1958-1966 Nurek Khatlon province Vakhsh River 10500 4500 seasonal E, I, S, R 1961-1983 Golovnoye Khatlon province Vakhsh River 94,5 20,0 daily E, I, S, R 1956-1962 Muminabad Khatlon province Obi-Surkh River 31 30 seasonal I, S, R 1958-1959 Selbur Khatlon province Kyzylsu River 20,7 17 seasonal I, S, W, M 1961-1966 Baypaza Khatlon province Vakhsh River 125 87 seasonal E, I, S, R 1962-1989 Daganasay Sogd province Daganasay River 28 14 seasonal I, S, M 1977-1983 1980 under Rogun RRS Vakhsh River 13300 8600 multyear E, I, S, R construction Djar Sogd province Aksu River 51,7 27 seasonal I, S, M perspective Baljuvan Khatlon province Kyzylsu River 202 140 seasonal I, S perspective Khovaling Khatlon province Obi-Mazor River 7,5 6,6 seasonal I, S perspective Nizhny Khatlon province Kafirnigan River 905 583 seasonal I, S, F perspective Kafirnigan Гиссарский Khanakin Khanaka River 40 38 seasonal I, E, S, M perspective район Нурабадский Shurob Obikhingou River 50 20 daily E perspective район Варзобский Ziddy Varzob River 240 227 seasonal I, E, S, M perspective район Дангаринский under Sangtuda 1 Vakhsh River 250 120 seasonal I, E, S, F район construction Дангаринский under Sangtuda 2 -
Proposal for Tajikistan
AFB/PPRC.24/20 25 February, 2019 Adaptation Fund Board Project and Programme Review Committee Twenty-Fourth Meeting Bonn, Germany, 12-13 March, 2019 Agenda Item 9 m) PROPOSAL FOR TAJIKISTAN AFB/PPRC.24/20 Background 1. The Operational Policies and Guidelines (OPG) for Parties to Access Resources from the Adaptation Fund (the Fund), adopted by the Adaptation Fund Board (the Board), state in paragraph 45 that regular adaptation project and programme proposals, i.e. those that request funding exceeding US$ 1 million, would undergo either a one-step, or a two-step approval process. In case of the one-step process, the proponent would directly submit a fully-developed project proposal. In the two-step process, the proponent would first submit a brief project concept, which would be reviewed by the Project and Programme Review Committee (PPRC) and would have to receive the endorsement of the Board. In the second step, the fully- developed project/programme document would be reviewed by the PPRC, and would ultimately require the Board’s approval. 2. The Templates approved by the Board (Annex 5 of the OPG, as amended in March 2016) do not include a separate template for project and programme concepts but provide that these are to be submitted using the project and programme proposal template. The section on Adaptation Fund Project Review Criteria states: For regular projects using the two-step approval process, only the first four criteria will be applied when reviewing the 1st step for regular project concept. In addition, the information provided in the 1st step approval process with respect to the review criteria for the regular project concept could be less detailed than the information in the request for approval template submitted at the 2nd step approval process. -
Systematics of the Arctioid Group: Disentangling Arctiumand Cousinia
Vol. 60 • April 2011 TAXON 60 (2) • April 2011: Electronic Supplement, 1 pp. López-Vinyallonga & al. • Disentangling Arctium and Cousinia International Journal of Taxonomy, Phylogeny and Evolution Electronic Supplement to Systematics of the Arctioid group: Disentangling Arctium and Cousinia (Cardueae, Carduinae) Sara López-Vinyallonga, Kostyantyn Romaschenko, Alfonso Susanna & Núria Garcia-Jacas Taxon : pp–pp 1 TAXON • 10 März 2011: Electronic Supplement, 4 pp. López-Vinyallonga & al. • Disentangling Arctium and Cousinia Appendix . Species examined. Taxon, origin and voucher information. Arctium abolinii (Kult. ex Tscherneva) S. López, Romashchenko, Susanna & N. Garcia, #1: Kyrgyzstan, Jalal-Abad Province Toktogul District, slopes of Kok-Bell mountains, B.A. Sultanova & M. Shamova s.n. (LE); #2: Kyrgyzstan, Osh Province, Ot-Oinock range, Kurp-Sai, Aidarova & Sudnizina 1 (LE); #3: Kyrgyzstan, Right bank of the river Naryn, 15 km up the river from the mountain Tashkumyr, V. Botchantzev 104 (LE); #4: Kyrgyzstan, SW Jalal Abad Oblast, Kara Saj Tal, Aksy Rayan, Lazkov s.n. (JE); Arctium albertii (Regel & Schmalh.) S. López, Romashchenko, Susanna & N. Garcia, #1: Kazakhstan, Karatau, A. Regel 44 (LE); #2: Kazakhstan, Mashet-Tay mountain range, on ascent from Keltemashat, Kamelin 8-M (LE); #3: Kazakhstan, Shimkientskaya oblast, Mashat canyon, Susanna 2206 & al. (BC); #4: Kazakhstan, Syrdarinsky Karatau, Canyon Berkara, Kamelin 700 (LE); #5: Kazakhstan, Syr Darja Province, Zhambyl Province, Aulie-ata district, Canyon Berk-Kara, Karatau mountain range, Z.A. Minkwitz 290 (LE); #6: Kazakhstan, Syr Darja region, Zhambyl Province, Aulie-ata dist., Canyon Bell-Kara, near the spring, Knorring 288 (LE); #7: Turkerstan, Beklyar-Beck, O. Fedtschenko 110 (LE); #8: Turkestan, Karatau mountains, Majew s.n. -
Conserving Ecosystems of Inland Water Bodies in Central Asia and the South Caucasus
Implementing the UN Millenium Development Goals in Central Asia and the South Caucasus: Goal 7: Ensure Environmental Sustainability Conserving Ecosystems of Inland Water Bodies in Central Asia and the South Caucasus This report was prepared with financial and technical support from GWP CACENA, the Government of Finland, EC, and IUCN Almaty - Tashkent, 2006 1 Conserving Ecosystems of Inland Water Bodies in Central Asia and the South Caucasus (Part 1 – English) Editorial panel: B.K. Yessekin, M.J. Burlibaev, V.P. Bogachev, E.A. Kreuzberg, and V.V. Sadomsky, V.I. Sokolov Authors of the National Reports: Azerbaijan: M. Asadov and M. Adigezalova Armenia: E. Pirumyan Georgia: T. Cholokava, M. Makarova, and G. Dzamukashvili Kazakhstan: K. Duskaev Kyrgyzstan: A. Jaloobaev Tajikistan: Ya. Pulatov. Turkmenistan: P. Esenov and U. Saparov Uzbekistan: N. Gorelkin, E. Kurbanbaev, and A. Kreuzberg. Translation into English: N.I. Goroshkov © The Central Asian Regional Ecological Center. Almaty, 2006 © Global Water Partnership for Central Asia and Coucasus. Tashkent, 2006 2 TABLE OF CONTENTS (English Part) INTRODUCTION .........................................................................................................................8 PART I. THE REGIONAL ANALYSIS ....................................................................................8 1.1. General Information on Sub-Region............................................................................8 1.2. The Current Status of Aquatic and Water-Related Ecosystems in the Subregion.......................................................................................................................................9 -
Climate Change in Turkmenistan
Climate Change in Turkmenistan Elena Lioubimtseva, Jahan Kariyeva, and Geoffrey M. Henebry Abstract More than 80% of Turkmenistan is desert; thus, key environmental issues are associated with redistribution and supply of limited water resources. Turkmenistan is projected to become warmer and probably drier during the coming decades. Aridity is expected to increase in all republics of Central Asia, but especially in the western part of Turkmenistan. The temperature increases are predicted to be particularly high in summer and fall but lower in winter. Especially significant decrease in precipitation is predicted in summer and fall, while a modest increase or no change in precipitation is expected in winter months. These seasonal climatic shifts are likely to have profound implications for agriculture, particularly in western Turkmenistan and Uzbekistan, where frequent droughts are likely to negatively affect cotton, cereals, and forage production, increase already extremely high water demands for irrigation, exacerbate the already existing water crisis, and accelerate human-induced desertification. The Amudarya is the most water-bearing river in Central Asia; its endorheic drainage basin includes the territories of Afghanistan, Tajikistan, Uzbekistan, and Turkmenistan. Fed by seasonal snowmelt of snowpacks and glaciers, the flow of the Amudarya may increase due to intensified melting of the glaciers and snowpacks under a warming climate, which could further contribute to expansion of agricultural land use at the expense of converted natural areas. During the last few decades, Turkmenistan has experi- enced widespread changes in land cover and land use following the socioeconomic E. Lioubimtseva (*) Geography and Planning Department and Environmental Studies Program, Grand Valley State University, B-4-202 MAK, 1 Campus Drive, Allendale, MI 49401-9403, USA e-mail: [email protected] J. -
Morphology and Taxonomy of Polygonum Cognatum Meisn., P
© Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 19 (2012): 141–180 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Morphology and taxonomy of Polygonum cognatum Meisn., P. alpestre C. A. Mey. and allied taxa from Central Asia and the Caucasus (Polygonaceae) Olga V. Yurtseva, Maria S. Levina, Elena E. Severova & Alexey V. Troitsky Summary: A taxonomic review of Polygonum ser. Cognata Kom. distributed in Southwest Asia, Central Asia and South Siberia is presented. A phylogenetic reconstruction of the genus Polygonum based on ITS 1-5.8S-ITS 2 rDNA sequences demonstrates the division of Polygonum into several clades, corresponding to: 1) section Duravia combined with Polygonella, 2) section Polygonum comprising the species from temperate climate regions of the Northern Hemisphere, 3) a vast group of Middle and Central Asiatic species, including two members of section Pseudomollia, i.e. P. molliiforme and P. bornmuelleri, nested among other species. Therefore a taxonomic revision of this group is required. Heterogeneity of ser. Cognata was evident by placing P. cognatum, P. myrtillifolium and P. serpyllaceum in one subclade and P. alpestre and P. fibrilliferum in another subclade. The morphological analysis of ser. Cognata using analysis of growth forms, leaves, ochreas, flowers, achenes and pollen grains revealed clear diagnostic differences which are extensively illustrated. Ser. Cognata Kom. is artificial comprising three taxonomically distant species: 1) P. alpestre C. A. Mey. including P. ammanioides Jaub. et Spach, 2) P. fibrilliferum Kom., 3) P. cognatum Meisn. (= P. rupestre Kar. et Kir.) including two varieties in addition to the typical one: P. cognatum var. -
Predicting Central Asian River Flows from Regional Precipitation and Wind Patterns During the Preceding Cold Season
Regional Hydrological Impacts of Climatic Change—Hydroclimatic Variability (Proceedings of symposium S6 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, 221 April 2005). IAHS Publ. 296, 2005. Predicting Central Asian river flows from regional precipitation and wind patterns during the preceding cold season MATHEW BARLOW1 & MICHAEL TIPPETT2 1 AER Inc., 131 Hartwell Avenue, Lexington, Massachusetts 02421-3126, USA [email protected] 2 IRI of Columbia University, Lamont-Doherty Earth Observatory, PO Box 1000, Palisades, New York 10964-8000, USA Abstract Snowmelt is an important driver of regional river flow, and warm season (April–August) river flows are linked to the previous cold season’s (November–March) precipitation. Canonical correlation analysis (CCA) is applied between the cold season regional climate (November–March zonal winds and precipitation) and the subsequent warm season river discharge (April–August station river flows) for 1950–1985. The NCEP/NCAR re- analysis is used for precipitation and winds, and 24 stations in the mountains of eastern Uzbekistan and Tajikistan are used for river flow data. The extracted cold season precipitation and wind patterns have regional scales and are adequately captured by the NCEP/NCAR reanalysis. Average cross-validated skill correlation is 0.43 for the river flows, with 10 stations correlated greater than 0.5. As the re-analysis data are updated in real time, this scheme can make operational forecasts. The regional variability is also related to tropical Pacific sea-surface temperatures, which may enable forecasts at longer leads. Key words Central Asia; river flow; seasonal forecasting; snowmelt; streamflow INTRODUCTION Central Asia is a semiarid region, with precipitation primarily occurring during the cold season (November–April), and falling as snow in the high mountains of the region. -
Program of Land Reclamation and Irrigation Sector Development in the Republic of Tajikistan for 2016-2025
PROGRAM OF LAND RECLAMATION AND IRRIGATION SECTOR DEVELOPMENT IN THE REPUBLIC OF TAJIKISTAN FOR 2016-2025 Dushanbe - 2016 This program was prepared within the framework of the National Policy Dialogue (NPD) on integrated water resources management in Tajikistan in the framework of the EU water initiative. The basis for the work was the decision of the NPD Steering Committee to prepare a strategy for irrigation after the establishment of the Agency of Land Reclamation and Irrigation under the Government of the Republic of Tajikistan at the end of 2013. The European Union (EU) through the UN Economic Commission for Europe (UNECE) funded the preparation of the program. A group of local experts developed the program, it included Gafarov B., Kamoliddinov A., Eshmirzoev I., Sodatsairova Sh., Nozimov S., Jalolzoda J., Bedoriev S., Rasulov G., Nazifov Sh., Kholmatov A. Yaakov Lev, UNECE consultant, provided his comments at the initial phase of the program development. Peep Mardiste, NPD regional coordinator, provided general management of behalf of the UNECE. Table of contents ABBREVIATIONS AND ACRONYMS ........................................... 3 INTRODUCTION…………………………………………………………………………………… 4 1. ROLE OF LAND RECLAMATION AND IRRIGATION IN TAJIKISTAN’S NATIONAL ECONOMY .......................................................................................................................... 7 2. CURRENT STATE AND PROBLEMS OF LAND RECLAMATION AND IRRIGATION ....... 8 3. LAND RECLAMATION AND IRRIGATION SYSTEM REFORM .......................................... -
Platyceps Rhodorachis (Jan, 1863) – a Study of the Racer Genus Platyceps Blyth, 1860 East of the Tigris (Reptilia: Squamata: Colubridae)
64 (3): 297 – 405 © Senckenberg Gesellschaft für Naturforschung, 2014. 19.12.2014 Platyceps rhodorachis (Jan, 1863) – a study of the racer genus Platyceps Blyth, 1860 east of the Tigris (Reptilia: Squamata: Colubridae) Beat Schätti 1, Frank Tillack 2 & Christoph Kucharzewski 2 1 Apartado postal 9, San Pedro Pochutla, Oaxaca 70900, República Mexicana; beatschaetti(at)hotmail.com — 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115 Berlin, Germany; Frank.Tillack(at)mfn-berlin.de; C.Kucharzewski(at)mfn-berlin.de Accepted 6.x.2014. Published online at www.senckenberg.de/vertebrate-zoology on 5.xii.2014. Abstract Platyceps rhodorachis (JAN, 1863) is a euryoecious polytypic racer distributed from NE Iraq to Central Asia (Kyrgyzstan) and the Himalayas (probably westernmost Nepal). The nominotypical subspecies, occupying most of the species’ range, is polymorphic. The typical (striped) phe- notype is absent from certain peripheral areas. Notable geographic variation is observed in the number of ventrals, subcaudals, dorsal scales, or maxillary teeth and in the colour pattern. P. r. ladacensis (ANDERSON, 1871) is only found from the eastern Hindu Kush into northern Himachal Pradesh (India). Its presence south of the Zanskar Range requires confirmation and the status of the Ladakh Cliff Racer is debatable. The identity and systematic position of racers from the vicinity of Ahvaz (Khuzestan) as well as Arabian and southern Red Sea populations commonly assigned to P. rhodorachis pend further investigation. Platyceps semifasciatus BLYTH, 1860 is a senior subjective synonym of P. rhodorachis (nomen protectum, valid type species of Platyceps BLYTH). P. ventromaculatus (GRAY, 1834) from the Makran coast to low-lying NW India and Nepal, for a long time confused with Jan’s Cliff Racer (P. -
K. Tojibaev, N. Beshko, O. Turginov & D. Mirzalieva New Records For
Fl. Medit. 24: 25-35 doi: 10.7320/FlMedit24.025 Version of Record published online on 14 July 2014 K. Tojibaev, N. Beshko, O. Turginov & D. Mirzalieva New records for Fabaceae in the flora of Uzbekistan Abstract Tojibaev, K., Beshko, N., Turginov, O. & Mirzalieva, D.: New records for Fabaceae in the flora of Uzbekistan. — Fl. Medit. 24: 25-35. 2014. — ISSN: 1120-4052 printed, 2240-4538 online. The Republic of Uzbekistan is a Central Asian country with rich native flora. The territory belongs to the Irano-Turanian region in the Ancient Mediterranean (Tethyan) floristic subking- dom of Holarctic. The flora of Uzbekistan accounts more than 4250 species of vascular plants including large numbers of endemic species, but the check-list is still incomplete. 17 new records for Fabaceae family in the flora of Uzbekistan were found in 2012-2013 during the field studies and examination of herbarium collections of TASH. Key words: biogeography, new localities, Central Asia, vascular plants. Introduction The Republic of Uzbekistan is a Central Asian country with rich native flora. The total land area is about 447,000 km2. Uzbekistan occupies a position of great bio-geographi- cal importance. This territory belongs to the Turanian (or Aralo-Caspian) and Turkestan (or Central Asian mountain) Provinces of the Irano-Turanian region in the Tethyan (Ancient Mediterranean) floristic subkingdom of Holarctic (Takhtajan 1986). The region is one of the world’s major centers of plant diversity. Almost 85% of the country is occu- pied by deserts; about 15% covered by mountains and foothills. The flora of Uzbekistan accounts more than 4250 species of vascular plants including large numbers of endem- ic, endangered and globally important species.