<<

Studia UBB Geologia, 2011, 56 (1), 33 – 42

State of the art and challenges in studies

Bogdan P. ONAC1,2* & Paolo FORTI3

1Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa, USA 2Department of Geology, “Babeş-Bolyai” University, Kogălniceanu 1, 400084, Cluj / “Emil Racoviţă” Institute of , Clinicilor 5, 400006 Cluj-Napoca, Romania 3Italian Institute of Speleology, University of Bologna, Via Zamboni 67, 40126, Bologna,

Received January 2011; accepted March 2011 Available online 23 April 2011 DOI: 10.5038/1937-8602.56.1.4

Abstract. The present note is an updated inventory of all known cave minerals as March 2011. After including the new minerals described since the last edition of the Cave Minerals of the World book (1997) and made the necessary corrections to incorporate all discreditations, redefinitions, or revalidation proposed by the Commission on New Minerals, Nomenclatures and Classification (CNMNC) of the International Mineralogical Association (IMA), we summed up 319 cave minerals, many of these only known from . Some of the minerals building up speleothems are powerful tracers of changes in Quaternary climate, other minerals are useful for reconstructing landscape evolution, or allow discriminating between various speleogenetic pathways. Thus, it is expected that the search for new cave minerals will continue and even more attention will be given to those species that carries information that allow for addressing different problems in various earth sciences fields. In view of the exponential increase of cave minerals over the past 50 years, cave mineralogy conceivably has the potential to grow in the future, especially considering the new advances in analytical facilities. Key words: Cave minerals, nomenclature, classification, database.

INTRODUCTION Below are some milestones in cave studies since 1750 to present. Although short, non-scientific descriptions Likewise other fields across earth sciences, mineralogy on mainly calcite and from caves are scattered has witnessed over the last decade a rapid growth as a result throughout various publications prior to 1750, the beginning of fast-paced and revolutionary advances of analytical of cave mineralogy as a novel field of research dates back to facilities. For cave mineralogy this translates into an the second part of the 18th century, when the first detailed exponential increased of the number of minerals identified presentation of calcite from Dâmbovicioara Cave (Romania) (Fig. 1) and described from a variety of cave environments appeared in Mineralogia Magni Principatus Tranylvaniae (Onac, 2005, 2011). treatise (Fridvaldszky, 1767). By the beginning of 1800, a total of ten cave minerals were described from Dâmbovicioara, Stufe di San Calogero, , and Pulo di Molfetta caves in Romania and Italy (Forti, 2002; Onac and Forti, 2011). Detailed studies carried out at the end of the 19th century on some cave deposits from Mona Island, USA, and Australia, increased the number of cave minerals and related publications on this topic to about 50 and 250, respectively. Moore (1970), published a checklist of 68 cave minerals from around the world. The exponential trend seen in Fig. 1 has its origin, however, in the publication of Cave Minerals book (Hill, 1976). Although it includes only 80 minerals, primarily described from United States caves, the number of publications cited nearly topped 2000. Subsequently, Hill and Forti (1986, 1997) published two editions of the Cave Minerals of the World pushing the number of cave minerals to 173 and 255, respectively. About half of these minerals (i.e., 86 and 125) were either Fig. 1. The evolution of cave mineral studies since 1800; number ore-related or were precipitated in some very particular cave of minerals vs number of cave minerals-related publications. settings (sulfuric-acid caves, lava tubes, caves hosting large quantities of guano, gypsum caves, etc.). It was not only the

*Correspondence: B.P. Onac ([email protected]) 34 Onac and Forti number of cave minerals that increased, but also the number Mills et al., 2009; Nickel and Nichols, 2009; Pasero et al., of publications dedicated to them, which exceeded 4000 2010) and new cave minerals were reported since 1997 titles in the 2nd edition of their book. At the threshold of the (Rodgers et al., 2000; De Waele and Forti, 2005; Forti, third millennium, almost 275 minerals had been described in 2005; Forti et al., 2003, 2006, 2007, 2009; Onac & White, over 5000 publications (Forti, 2002; Hill and Forti, 2007), 2003; Onac and Effenberger, 2007; Onac et al., 2002, and these numbers are going up every year (e.g., Onac, 2005, 2006, 2009a, b), a compilation of all cave minerals 2005, 2011; Forti et al., 2006; Onac et al., 2007a, 2009a, became essential for the cave science community, but not 2011). only. The present list incorporates all grandfathered species and species that have been redefined, renamed, or revalidated as proposed by the IMA-CNMNC (Nickel and CHALLENGES IN CAVE MINERAL STUDIES Nichols, 2009). Also included, but written in italics are names used to designate a group of species (series) and Although it is a major factor in cave mineral species that were discredited or not approved by the investigations, the nature of each sample and the available CNMNC. Names of mineral species reported since the last analytical resources aspect has not been often discussed edition of the book Cave Minerals of the World (CMW2; within the cave science community. Yet the success of a Hill and Forti, 1997) are in bold face. detailed and accurate mineral description depends precisely The format of mineral presentation follows the class on which investigation method is used and how the scheme presented in the book Dana’s New Mineralogy sample was preserved since the time of collection, until it is (Gaines et al., 1997), in which each mineral is in alphabetic ready to be analyzed. As a consequence of the analytical order, followed but its chemical formula, and the cave type challenges posed, details of various cave mineralizations locality of the mineral. The was included (e.g., earthy crusts and powders) remain unknown. Even in only for polymorphs (e.g., calcite, aragonite, vaterite, etc.) the case of the growth of calcite or aragonite helictites and and abbreviations are as follow: monoclinic (mon.), triclinic eccentrics, with studies spanning several decades focused on (tric.), orthorhombic (orth.), tetragonal (tetr.), trigonal these issues — formation mechanisms remain ambiguous. (trig.), hexagonal (hex.), and cubic (cub.). To understand the The main analytical challenges associated to cave stoichiometry of mineral formulae the charge for altervalent mineral investigations are related to (i) the complexity of elements is also shown. A vacancy in a structural position is heterogeneous natural samples, which often contain multiple denoted by the  symbol. With very few exceptions, all mineral phases, (ii) extreme sample environments, and (iii) mineral formulas included in our compiled list are identical the size and nature of some of the compounds. However, to those reported by Nickel and Nichols (2009). These recent developments in a suite of techniques (e.g., X-ray exceptions were dictated by changes that occurred after the powder or single-crystal diffraction, X-ray fluorescence, IMA-CNMNC was released (e.g., Pasero et inductively coupled plasma-mass spectrometry, electron al., 2010). microprobe, scanning electron microscopy, stable isotopes, Of the more than 5500 references describing these etc.) give mineralogists unprecedented opportunities to minerals, over 4000 are listed in Hill and Forti (1997). To advance the understanding of caves as minoregenic keep the length of this note within reasonable limits, we environments. The results of cave minerals studies, when choose to include a selective reference list that contains the integrating stable isotope analyses with other micro- major contributions in which the new 63 minerals were analytical techniques, can be reassembled to test and reported since 1997. A Commission of Cave Minerals was improve conceptual ideas in mineral precipitation and to established in 1997 within the International Union of quantify the geochemical processes associated with it. Speleology with the main purpose of keeping track of all

minerals described from caves, including lava tubes and

caves intersected by mines. ABOUT THIS NEW CAVE MINERALS LIST The official cave mineral database of this commission it Because mineral nomenclature has suffered a number is assembled now (work is in progress) and can be accessed of revisions (Nickel and Grice, 1998; Burke, 2006, 2008; at https://www.lib.usf.edu/caveminerals/ca/.

Native elements Bismuth – Bi; Oilloki Mine Cave, France (Audra, 2007) – S; Turia Cave, Romania Gold – Au; Valea Rea Cave, Romania (Ghergari et al., 1997)

Sulfides

Chalcocite – Cu2S; Tyuya-Muyun, Kyrgyzstan Chalcopyrite – CuFeS2; Magian & Marguzor caves, Tajikistan Cinnabar – HgS (trig.); Magian & Marguzor caves, Tajikistan Galena – PbS; Dalnegorskaya Cave, Russia – FeS2 (orth.) – Dachstein-Mammuthöhle, Austria Metacinnabar – HgS (cub.); Fata Morgana caves, Turkmenistan Orpiment – As2S3; Aghia Paraskevi caves, Greece (Lazarides et al., 2011) – FeS2 (cub.); Lauback Cave, TX, USA Pyrrhotite – Fe1-xS (x < 0.17) (mon.); Dalnegorskaya Cave, Russia

Studia UBB Geologia, 2011, 56 (1), 33 – 42 Cave minerals list 35

Realgar – AsS; Chauvai, Kyrgyzstan Sphalerite – ZnS (cub.); Trzebionka mine caves, Poland Stibnite – Sb2S3; Alay Ridge caves, Kyrgyzstan

Oxides & Hydroxides 3+ 2+ Akaganeite – (Fe ,Ni )8(OH,O)16Cl1.25·nH2O; Ruatapu Cave, New Zealand (Rodgers et al., 2000) Arsenolite – As2O3 (cub.); Corkscrew Cave, AZ, USA (Onac et al., 2007b) 4+ Asbolane – Mn (O,OH)2(Co,Ni,Mg,Ca)x(OH)2x·nH2O; Tyuya-Muyun, Kyrgyzstan 4+ 3+ – (Na,Ca,K)0.6(Mn ,Mn )2O4·1.5H2O; Weber Cave, IA, USA Böhmite – AlO(OH) (orth.); Dachstein-Mammuthöhle, Austria 2+ 3+ – Mn (Mn )6SiO12; Vântului Cave, Romania 4+ Cesàrolite – Pb(Mn )3O6(OH)2; in Santa Barbara Cave, Sardinia, Italy (De Waele and Forti, 2005) 4+ Chalcophanite – Zn(Mn )3O7·3H2O; Bisbee mine cave, AZ, USA Claudetite – As2O3 (mon.); Corkscrew Cave, AZ, USA (Onac et al., 2007b) 4+ 2+ Coronadite – Pb(Mn )2(Mn )6O16; in Santa Barbara Cave, Sardinia, Italy (?) (De Waele and Forti, 2005) Cristobalite – SiO2 (tetr.); Medicine Lake lava tubes, California, USA 4+ 2+ Cryptomelane – K(Mn ,Mn )8O16; cavities in Nikopol’skoye ore, Russia Cuprite – Cu2O; Bisbee mine cave, AZ, USA – Al(OH)3 (mon.); Harlansburg & Hineman caves, PA, USA – FeO(OH) (orth.); Tintic district, UT, USA 2+ 3+ – Mn (Mn )2O4; Vântului Cave, Romania Hematite – Fe2O3; cavities in the Tintic district, UT, USA 3+ Hetaerolite – Zn(Mn )2O4; in Santa Barbara Cave, Sardinia, Italy (De Waele and Forti, 2005) 4+ 3+ 3+ Hollandite – (Ba,K,Ca,Sr)(Mn ,Mn ,Ti,Fe )8O16; Vântului Cave, Romania (Onac et al., 1997) 3+ Hydrohetaerolite – HZn(Mn )1.7O4; in Santa Barbara Cave, Sardinia, Italy (De Waele and Forti, 2005) Ice – H2O; Kungur Cave, Russia Lepidocrocite – Fe3+O(OH) (orth.); Dachstein-Mammuthöhle, Austria Limonite – NOT a mineral but generic term used for undifferentiated hydrated iron oxides; NOT approved by IMA-CNMNC 4+ Lithiophorite – (Al,Li)Mn O2(OH)2; Martel Cave, Venezuela Maghemite – (Fe,~)3O4; Cueva la Milagrosa, Venezuela 2+ 3+ Magnetite – Fe (Fe )2O4; Dachstein-Mammuthöhle, Austria – Mn3+O(OH) (mon.); Najdema Cave, Slovenia Monteponite – CdO; cave in Monteponi mine, Sardinia Nordstrandite – Al(OH)3 (tric.); , USA (Polyak and Provencio, 2001) Opal – SiO2·nH2O; Doombera granite cave, Ceylon Periclase – MgO; Valea Rea Cave, Romania Plattnerite – PbO2; Bisbee mine cave, AZ, USA Portlandite – Ca(OH)2; on Mt. Etna, Italy – MnO2; Blue John Cavern, UK Quartz – SiO2 (trig.); granite cave near Rio de Janiero, Brazil Ralstonite – Na0.5(Al,Mg)2(F,OH)6·H2O; volcanic caves on Surtsey Island, Iceland 2+ 4+ 3+ Ranciéite – (Ca,Mn )0.2(Mn ,Mn )O2·0.6H2O; cave type locality unknown 4+ 3+ Romanèchite – (Ba,H2O)2(Mn ,Mn )5O10; Zbrasov Cave, Czech Republic Silhydrite – Si3O6·H2O; Gaping Hole/Arch Sink, Mammoth, and Table Mountain, lava tubes in California, USA Tenorite – CuO; Bisbee mine cave, AZ, USA – (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12·3-4H2O; caves in KY, TN, GA (USA) Tridymite – SiO2 (tric.); Cango Cave, South Africa Vernadite – (Mn,Fe,Ca,Na)(O,OH)2·nH2O; Shopov’s cave system, Bulgaria (?) Wad – NOT a mineral but a generic term used for poorly crystalline, undifferentiated hydrated oxides and hydroxides; NOT approved by IMA-CNMNC 4+ Woodruffite – Zn2(Mn )5O12·4H2O; Cueva de las Velas, Naica, Mexico (Forti et al., 2007)

Halogenides

Atacamite – Cu2Cl(OH)3 (orth.); Jingemia Cave, Australia Bromargyrite – AgBr; Bisbee mine cave, AZ, USA Carnallite – KMgCl3·6H2O; Verhnekamsk caves, Russia Chlormagnesite – MgCl2; Pelagalli Cave, Italy Fluorite – CaF2; Blue John Cavern, UK – NaCl; cave type locality unknown Salammoniac – NH4Cl; volcanic cave on Vulcano Island, Italy; Renamed with approval from IMA-CNMNC Sylvite – KCl; Cutrona Cave Mt. Etna, Italy

Studia UBB Geologia, 2011, 56 (1), 33 – 42 36 Onac and Forti

Carbonates

Aragonite – CaCO3 (orth.); cave type locality unknown 2+ – CaFe (CO3)2; cave in Russia Artinite – Mg2CO3(OH)2·3H2O; Shopov’s cave system, Bulgaria Aurichalcite – Zn5(CO3)2(OH)6; Blanchard mine caves, NM, USA Azurite – Cu3(CO3)2(OH)2; Bisbee mine cave, AZ, USA Baylissite – K2Mg(CO3)2·4H2O; Shopov’s cave system, Bulgaria Brianyoungite – Zn3CO3(OH)4; cave in Su Zurfuru mine, Sardinia, Italy (De Waele and Forti, 2005) Burbankite – (Na,Ca)3(Sr,Ba,Ce)3(CO3)5; Cioclovina Cave, Romania (Onac et al., 2009a) Calcite – CaCO3 (trig.); cave in the Julian Alps, Italy Cerussite – PbCO3; Blue John Cavern, UK (?) – CaMg(CO3)2; cave in France Gaspéite – NiCO3; cave in San Benedetto mine, Sardinia, Italy (De Waele and Forti, 2005) Glaukosphaerite – (Cu,Ni)2CO3(OH)2; Cave from Codreanu mine, Romania (Onac, 2002) Huntite – CaMg3(CO3)4; Dorog, Hungary Hydromagnesite – Mg5(CO3)4(OH)2·4H2O; Carlsbad Caverns, NM, USA – Zn5(CO3)2(OH)6; Island Ford Cave, VA, USA Ikaite – CaCO3·6H2O; Scărişoara Cave, Romania (Onac, 2008) 2+ – CaMn (CO3)2; Caverna Pocala, Italy Lansfordite – MgCO3·5H2O; Valea Rea Cave, Romania (Onac, 2003) Magnesite – MgCO3; Moulis Cave, France (?) Malachite – Cu2CO3(OH)2; Bisbee mine cave, AZ, USA Monohydrocalcite – CaCO3·H2O; Eibengrotte, Germany Natron – Na2CO3·10H2O; Pisgah lava tubes, CA, USA Nesquehonite – MgCO3·3H2O; Wolkberg Cave, South Africa Norsethite – BaMg(CO3)2; Crystal’s Cave, Codreanu mine, Romania (Onac, 2002) Paralstonite – BaCa(CO3)2; Cova des Pas de Vallgornera, Mallorca, Spain (Merino et al., 2009) Phosgenite – Pb2CO3Cl2; cave in Monteponi mine, Sardinia, Italy (De Waele and Forti, 2005) – MnCO3; cavities in Andalgala district, Argentina Rosasite – (Cu,Zn)2CO3(OH)2; Bisbee mine cave, AZ, USA Siderite – FeCO3; Jewel Cave, SD, USA – ZnCO3; cave in Iowa, USA Strontianite – SrCO3; cave in Terrace Mountain, NY, USA Thermonatrite – Na2CO3·H2O; Salzburgerschacht, Austria Trona – Na3(HCO3)(CO3)·2H2O; Pisgah lava tubes, CA, USA Vaterite – CaCO3 (hex.); Closani Cave, Romania Witherite – BaCO3; Lilburn Cave, CA, USA

Nitrates

Darapskite – Na3(SO4)(NO3)·H2O; Flower Cave, TX, USA Gwihabaite – (NH4)NO3; Gwihaiba Cave, Botswana Hydrombobomkulite – (Ni,Cu)Al4(NO3)2(SO4)(OH)12·14H2O; Mbobo Mkulu Cave, South Africa Mbobomkulite – (Ni,Cu)Al4(NO3,SO4)2(OH)12·3H2O; Mbobo Mkulu Cave, South Africa “Nickelalumite” – not approved by IMA-CNMNC (use mbobomkulite) Niter – KNO3; Pulo din Molfetta caves, Italy Nitrammite – NH4NO3; discredited by IMA-CNMNC (use gwihabaite) Soda niter – NaNO3; cave type locality unknown Nitrocalcite – Ca(NO3)2·4H2O; Pulo di Molfetta caves, Italy Nitromagnesite – Mg(NO3)2·6H2O; Great Cave, KY, USA (?) Sveite – KAl7(NO3)4(OH)16Cl2·8H2O; Autana Cave, Venezuela

Borates

Tincalconite – Na2B4O5(OH)4·3H2O; Tincalconite Cave, CA, USA

Sulfates 2+ Alpersite – (Mg,Cu )SO4·7H2O; Cave at -150 m in Naica Mine, Mexico (originally described as Cu-pentahydrite; Forti, 2010) Alum-(K) – KAl(SO4)2·12H2O; Doombera granite cave, Ceylon; Renamed with approval from IMA-CNMNC Alum-(Na) – NaAl(SO4)2·12H2O; Alum Cave, Italy; Renamed with approval from IMA-CNMNC Aluminite – Al2SO4(OH)4·7H2O; Mbobo Mkulu Cave, South Africa 3+ Aluminocopiapite – (Al,Mg)(Fe )4(SO4)6(OH,O)2·20H2O; Alum Cave, Italy Alunite – KAl3(SO4)2(OH)6; Fourgassié Cave, French Guiana Alunogen – Al2(SO4)3(H2O)12·5H2O; Grotta dello Zolfo, Italy 3+ Ammoniojarosite – NH4(Fe )3(SO4)2(OH)6; Cueva Alfredo Jahn, Venezuela Studia UBB Geologia, 2011, 56 (1), 33 – 42 Cave minerals list 37

Anglesite – PbSO4; Ahumada mine cave, Mexico Anhydrite – CaSO4; Diana Cave, Romania 2+ Antlerite – (Cu )3SO4(OH)4; Cave at -150 m in Naica Mine, Mexico (Forti, 2010) Aphthitalite – K3Na(SO4)2; Murra-el-elevyn Cave, Australia Arcanite – K2SO4; Murra-el-elevyn Cave, Australia (originally described as taylorite, name that is now discredited by IMA-CNMNC) 2+ Aubertite – Cu Al(SO4)2Cl·14H2O; Alum Cave, Italy Barite – BaSO4; paleokarst cavities in Derbyshire, UK Basaluminite – Discredited by IMA-CNMNC (use felsőbányaite) Bassanite – CaSO4·0.5H2O; Tăuşoare Cave, Romania Bechererite – Zn7Cu(OH)13[SiO(OH)3SO4]; cave in Su Zurfuru mine, Sardinia, Italy (De Waele and Forti, 2005) Bianchite – ZnSO4·6H2O; cave in Campo Pisano mine, Sardinia, Italy (De Waele and Forti, 2005) Blödite – Na2Mg(SO4)2·4H2O; Lee Cave (Mammoth cave system), USA Boussingaultite – (NH4)2Mg(SO4)2·6H2O; Gwihaiba Cave, Botswana Brochantite – Cu4SO4(OH)6; Bingham mine caves, USA Burkeite – Na4(SO4)(CO3); El Malpais lava tubes, USA – SrSO4; Crystal Cave, Ohio, USA Cesanite – Na7Ca3(SO4)6(OH)·H2O; Lighthouse Cave, San Salvador, Bahamas (Onac et al., 2001a) Chalcanthite – CuSO4·5H2O; Bisbee mine caves, USA Chalcoalumite – CuAl4SO4(OH)12·3H2O; Mbobo Mkulu Cave, South Africa 3+ Clairite – (NH4)2(Fe )3(SO4)4(OH)3·3H2O; Lone Creek Fall Cave, South Africa 2+ 3+ Copiapite – Fe (Fe )4(SO4)6(OH)2·20H2O; Alum Cave, Italy 3+ Coquimbite – (Fe )2(SO4)3·9H2O; Alum Cave, Italy Cyanotrichite – Cu4Al2SO4(OH)12·2H2O; Bingham mine caves, USA 4+ Despujolsite – Ca3Mn (SO4)2(OH)6·3H2O; Shopov’s cave system, Bulgaria Devilline – CaCu4(SO4)2(OH)6·3H2O; Monte Rosso Cave, Italy – MgSO4·7H2O; gypusm cave near Bologna, Italy Felsőbányaite – Al4(SO4)(OH)10·4H2O; Tateishi-Shônyû-dô Cave, Japan 2+ Ferrohexahydrite – Fe SO4·6H2O; Cupp-Coutunn Cave, Turkmenistan 3+ Fibroferrite – Fe SO4(OH)·5H2O; Ferrata Cave, Umbria, Italy Galeite – Na15(SO4)5ClF4; volcanic caves on Surtsey Island, Iceland Glauberite – Na2Ca(SO4)2; Grillid volcanic cave, Surtsey Island, Iceland Gypsum – CaSO4·2H2O; Mammoth cave system, USA 2+ Halotrichite – Fe Al2(SO4)4·22H2O; Alum Cave, Italy Hexahydrite – MgSO4·6H2O; Wyandotte Cave, Indiana, USA Hydrobasaluminite – Al4SO4(OH)10·15H2O; Alum Cave, Italy Hydroglauberite – Na10Ca3(SO4)8·6H2O; Grillid volcanic cave, Surtsey Island, Iceland 3+ Hydroniumjarosite – (H3O)(Fe )3(SO4)2(OH)6; Iza Cave, Romania (?) (Tămaş and Ghergari, 2003) 3+ Jarosite – K(Fe )3(SO4)2(OH)6; Turia Cave, Romania Jurbanite – AlSO4(OH)·5H2O; Serpents Cave, France (Audra and Hobléa, 2007) Kainite – KMg(SO4)Cl·3H2O; Grillid volcanic cave, Surtsey Island, Iceland (Forti, 2005) Kalinite – KAl(SO4)2·11H2O; Alum Cave, Italy Kieserite – MgSO4·H2O; Tana di Val Serrata Cave, Italy Kogarkoite – Na3SO4F; Cave #13 (lava tube), Mt. Suswa, Kenya (Forti et al., 2003) Koktaite – (NH4)2Ca(SO4)2·H2O; Cueva Alfredo Jahn, Venezuela Konyaite – Na2Mg(SO4)2·5H2O; Tăuşoare Cave, Romania (Onac et al., 2001b) Kröhnkite – Na2Cu(SO4)2·2H2O; Cioclovina Cave, Romania (Onac et al., 2011) Lecontite – (NH4)Na(SO4)·2H2O; cave near Las Piedras, Honduras Leonite – K2Mg(SO4)2·4H2O; Tăuşoare Cave, Romania (Onac et al., 2001b) 3+ Lonecreekite – NH4(Fe )(SO4)2·12H2O; Lone Creek Fall Cave, South Africa Löweite – Na12Mg7(SO4)13·15H2O; Grillid volcanic cave, Surtsey Island, Iceland Mascagnite – (NH4)2SO4; Ruatapu Cave, New Zealand (Rodgers et al., 2000) Melanterite – FeSO4·7H2O; Wilson Cave (?), Nevada, USA Mendozite – NaAl(SO4)2·11H2O; Kitum Cave, Kenya (Forti et al., 2003) Meta-aluminite – Al2SO4(OH)4·5H2O; Valea Rea Cave, Romania (Feier, 2003) 2+ 3+ Metavoltine – K2Na6Fe (Fe )6O2(SO4)12·18H2O; Alum Cave, Italy – Al2(SO4)3; Alum Cave, Italy Mirabilite – Na2SO4·10H2O; cave type locality unknown Misenite – K8(SO4)(SO3OH)6; Grotta dello Zolfo, Italy Natroalunite – NaAl3(SO4)2(OH)6; Lechuguilla Cave, USA 3+ Natrojarosite – Na(Fe )3(SO4)2(OH)6; Jungle Pot Cave, South Africa Pickeringite – MgAl2(SO4)4·22H2O; Grotta dello Zolfo, Italy Picromerite –K2Mg(SO4)2·6H2O; Cutrona lava tube, Mt. Etna, Italy 3+ Plumbojarosite – Pb0.5(Fe )3(SO4)2(OH)6; +50 Cave Naica, Mexico (Forti, 2010) Polyhalite – K2Ca2Mg(SO4)4·2H2O; Cutrona lava tube, Mt. Etna, Italy Studia UBB Geologia, 2011, 56 (1), 33 – 42 38 Onac and Forti

Rapidcreekite – Ca2(SO4)(CO3)·4H2O; Diana Cave, Romania (Onac et al., 2009b) 2+ 3+ Römerite – Fe (Fe )2(SO4)4·14H2O; Carlsbad Caverns, USA 2+ Rozenite – Fe SO4·4H2O; Faggeto Tondo, Italy 3+ Sabieite – NH4Fe (SO4)2; Lone Creek Fall Cave, South Africa Serpierite – Ca(Cu,Zn)4(SO4)2(OH)6·3H2O; Cave #4, Runcului Hill, Romania (Zaharia et al., 2003) Siderotil – (Fe,Cu)(SO4)·5H2O; Ruatapu Cave, New Zealand (Rodgers et al., 2000) Spangolite – Cu6AlSO4(OH)12Cl·3H2O; Bingham mine caves, USA Starkeyite – MgSO4· 4H2O; Cueva de las Velas, Naica, Mexico (Forti et al., 2007) – K2Ca(SO4)2·H2O; Murra-el-elevyn Cave, Australia Szmikite – MnSO4·H2O; Cueva de las Velas, Naica, Mexico (Forti et al., 2007) Szmolnokite – FeSO4·H2O; Cueva de las Velas, Naica, Mexico (Forti et al., 2007) Tamarugite – NaAl(SO4)2·6H2O; Grotta dello Zolfo, Italy Thenardite – Na2SO4; Grotta delle Argille, Modena, Italy Tschermigite – NH4Al(SO4)2·12H2O; Ruatapu Cave, New Zealand 2+ 3+ Voltaite – K2(Fe )5(Fe )3Al(SO4)12·18H2O; Grotta dello Zolfo, Italy Zaherite – Al12(SO4)5(OH)26·20H2O; Alum Cave, Italy (Forti et al., 1996)

Cromates

Crocoite – PbCrO4; Scărişoara , Romania (?) (Onac, 2001)

Phosphates, Arsenates, Vanadates

Archerite – H2KPO4; Petrogale Cave, Australia Ardealite – Ca2(PO3OH)(SO4)·4H2O; Cioclovina Cave, Romania “Arnhemite” – K4Mg2(P2O7)·5H2O; Arnhem Cave, Namibia; Not approved by IMA-CNMNC – AlPO4; Cioclovina Cave; Romania (Onac et al., 2002) Biphosphammite – H2(NH4)PO4; Murra-el-elevyn Cave, Australia Bobierrite – Mg3(PO4)3·8H2O; Imperial Canyon lava tubes, Kenya – Ca(PO3OH)·2H2O; Skipton lava tubes, Australia Carbonate-fluorapatite – Discredited by IMA-CNMNC Carbonate-hydroxylapatite – Discredited by IMA-CNMNC Chlorapatite – Ca5(PO4)3Cl; Lyon Cave, Philippines Churchite-(Y) – YPO4·2H2O; Cioclovina Cave, Romania (Onac et al., 2005) Collinsite – Ca2Mg(PO4)2·2H2O; Blue Lagoon Cave, South Africa Crandallite – CaAl3(PO4)2(PO3OH)(OH)6; caves on Isla Mona, Puerto Rico 3+ Diadochite – (Fe )2(PO4)(SO4)(OH)·6H2O; Feengrotten, Germany Dittmarite – (NH4)MgPO4·H2O; Skipton lava tubes, Australia Evansite – Al3PO4(OH)6·6H2O; sandstone cave in Columbia, SouthAmerica Fluorapatite – Ca5(PO4)3F; Slaughter Canyon Cave, New Mexico, SUA Foggite – CaAlPO4(OH)2·H2O; Cioclovina Cave, Romania (Onac et al., 2005) Francoanellite – K3Al5(PO3OH)(PO4)2·12H2O; Castellana caves, Italy Gordonite – MgAl2(PO4)2(OH)2·8H2O; Parwan Cave, Victoria, Asutralia Hannayite – (NH4)2Mg3(PO3OH)4·8H2O; Skipton lava tubes, Australia Hopeite – Zn3(PO4)2·4H2O (orth.); Broken Hills mine caves, Zambia Hydroxylapatite – Ca5(PO4)3(OH); caves on Isla Mona, Puerto Rico 2+ Kingsmountite – Ca4Fe Al4(PO4)6(OH)4·12H2O; Rossillo Cave, Quatro Cienegas Desert, Mexico (Forti et al., 2006) 3+ Koninckite – Fe PO4·3H2O; Oni-Ana Cave, Japan 3+ Leucophosphite – K(Fe )2(PO4)2(OH)·2H2O; Bomi Hill caves, Liberia 2+ 3+ Lipscombite – Fe (Fe )2(PO4)2(OH)2; Perak Tong Cave, Malaysia Minyulite – KAl2(PO4)2F·4H2O; Boon Cave, Transvaal, South Africa 3+ Mitridatite – Ca2(Fe )3O2(PO4)3·3H2O; Boon Cave, Transvaal, South Africa Monetite – Ca(PO3OH); caves on Isla Mona, Puerto Rico Montgomeryite – Ca4MgAl4(PO4)6(OH)4·12H2O; et-Tabun Cave, Israel Mundrabillaite – (NH4)2Ca(PO3OH)2·H2O; Petrogale Cave, W. Australia Newberyite – Mg(PO3OH)·3H2O; Skipton lava tubes, Australia 2+ Niahite – (NH4)Mn PO4·H2O; Niah Great Cave, Sarawak, Malaysia Parahopeite – Zn3(PO4)2·4H2O (tric.); Hudson Bay mine caves, British Columbia, Canada Phosphammite – (NH4)2(PO3OH); Toppin Hill caves, Australia 3+ Phosphosiderite – Fe (PO4)·2H2O; Bomi Hill caves, Liberia 3+ 3+ Purpurite – (Mn ,Fe )PO4; Gunong Keriang, Malaysia “Pyrocoproite” – (K,Na)2Mg(P2O7); Arnhem Cave, Namibia; Not approved by IMA-CNMNC (Martini, 1997) Pyromorphite – Pb5(PO4)3Cl; cave in Friedricksgessen mine, Germany “Pyrophosphite” – K2CaP2O7; Arnhem Cave, Namibia; Not approved by IMA-CNMNC Studia UBB Geologia, 2011, 56 (1), 33 – 42 Cave minerals list 39

Sampleite – NaCaCu5(PO4)4Cl·5H2O; Mbobo Mkulu Cave, Transvaal, South Africa Sasaite – Al6(PO4)5(OH)3·36H2O; West Driefontein Cave, South Africa Schertelite – (NH4)2Mg(PO3OH)2·4H2O; Skipton lava tubes, Australia Scholzite – CaZn2(PO4)2·2H2O; cave in Virginia, USA Spencerite – Zn4(PO4)2(OH)2·3H2O; Hudson Bay mine caves, British Columbia, Canada Stercorite – (NH4)Na(PO3OH)·4H2O; Petrogale Cave, W. Australia 3+ – Fe PO4·2H2O; Bomi Hill caves, Liberia Struvite – (NH4)MgPO4·6H2O; Skipton lava tubes, Australia Swaknoite – (NH4)2Ca(PO3OH)2·H2O; Arnhem Cave, Namibia – K3Al5(PO3OH)6(PO4)2·18H2O; Minerva Cave, France Tarbuttite – Zn2PO4(OH); Broken Hills mine caves, Zambia Tinsleyite – KAl2(PO4)2(OH)·2H2O; Cioclovina Cave, Romania (Marincea et al., 2002) 3+ Tinticite – (Fe )5.3(PO4)4(OH)6·6.7H2O; cavity in the Tintic district, UT, USA Variscite – AlPO4·2H2O; Drachenhöhle Cave, Austria Vashegyite – Al11(PO4)9(OH)6·38H2O; Oni-Ana; Tateishi-Shônyû-dô caves, Japan 2+ Vivianite – (Fe )3 (PO4)2·8H2O; Niah Great Cave, Sarawak, Malaysia Wavellite – Al3(PO4)2(OH)3·5H2O; Valea Rea Cave, Romania Whitlockite – Ca9Mg(PO3OH)(PO4)6; El Chapote Cave, Mexico Woodhouseite – CaAl3(SO4)(PO4)(OH)6; Jade Lotus Cave, Yangshuo, China

Arsenates 3+ Arseniosiderite – Ca2(Fe )3O2(AsO4)3·3H2O; Tyuya-Muyun Cave, Kyrgyzstan 3+ Beudantite – Pb(Fe )3(AsO4)(SO4)(OH)6; Island Ford Cave, USA Conichalcite – CaCuAsO4(OH); Corkscrew Cave, Grand Canyon, USA Hedyphane – Ca2Pb3(AsO4)3Cl; cave in Santa Barbara mine, Sardinia, Italy (De Waele and Forti, 2005) Hörnesite – Mg3(AsO4)2·8H2O; Corkscrew Cave, Grand Canyon, USA (not cited in CMW2) (Wenrich and Sutphin, 1994) 2+ Manganberzeliite – NaCa2(Mn )2(AsO4)3; Cueva Alfredo Jahn, Venezuela Mimetite – Pb5(AsO4)3Cl; Bisbee mine cave, AZ, USA Olivenite – Cu2AsO4(OH); cavities in the Tintic district, UT, USA Pharmacolite – Ca(AsO3OH)·2H2O; Corkscrew Cave, Grand Canyon, USA (Onac et al., 2007b) Strashimirite – Cu4(AsO4)2(OH)2·2.5H2O; Dupkata na Mara Cave, Bulgaria Talmessite – Ca2Mg(AsO4)2·2H2O; Corkscrew Cave, Grand Canyon, USA 3+ Yukonite – Ca7(Fe )15(AsO4)9O16·25H2O (?); Grotta della Monaca, Italy (Garavelli et al., 2009)

Vanadates Calciovolborthite – Discredited by IMA-CNMNC (use tangeite) Carnotite – K2(UO2)2(VO4)2·3H2O; Tyuya-Muyun Cave, Kyrgyzstan Descloizite – PbZnVO4(OH); Tyuya-Muyun Cave, Kyrgyzstan Metatyuyamunite – Ca(UO2)2(VO4)2·3H2O; Spider Cave, New Mexico, USA Tangeite – CaCuVO4(OH); Zelania Cave, Tyuya-Muyun, Kyrgyzstan Tyuyamunite – Ca(UO2)2(VO4)2·3H2O; Tyuya-Muyun Cave, Kyrgyzstan Vanadinite – Pb5(VO4)3Cl; Broken Hills mine caves, Zambia

Molybdates

Powellite – CaMoO4; Corkscrew Cave, Grand Canyon, USA (not cited in CMW2) (Wenrich and Sutphin, 1994)

Organic compounds

Acetamide – CH3CONH2; Prilepnata Cave, Bulgaria Glushinskite – MgC2O4·2H2O; Temple of Dome Cave, Namibia Guanine – C5H3(NH2)N4O; Murra-el-elevyn Cave, Australia Mellite – Al2C6(COO)6·16H2O; Romanelli Cave, , Italy Oxammite – (NH4)2C2O4·H2O; Petrogale Cave, W. Australia Urea – CO(NH2)2; Wilgie Mia Cave, W. Australia Uricite – C5H4N4O3; Dingo Donga Cave, W. Australia Weddellite – CaC2O4·2H2O; Toppin Hill Cave, W. Australia Whewellite – CaC2O4·H2O; Parakietgat Cave, Namibia

Silicates

Allophane – Al2O3(SiO2)1.3-2.0·2.5-3H2O; Tyuya-Muyun Cave, Kyrgyzstan Apophyllite-(KOH) – KCa4Si8O20(OH,F)·8H2O; Kitum Cave, Kenya (Forti et al., 2003) Benitoite – BaTiSi3O9; Iza Cave, Romania Boltwoodite – KUO2(SiO3OH)·H2O; cave in northern Chihuahua, Mexico Chrysocolla – (Cu,Al)2H2Si2O5(OH)4·nH2O; Tyuya-Muyun Cave, Kyrgyzstan Studia UBB Geologia, 2011, 56 (1), 33 – 42 40 Onac and Forti

Clinochlore – Mg6Si4O10(OH)8; Monte Rosso Cave, Reggio Emilia, Italy Clinoptilolite-Na – Na6(Si30Al6)O72·20H2O; Cave in the Culachao mine, Chile (De Waele et al., 2009) Dickite – Al2Si2O5(OH)4; Iza Cave, Romania Endellite – Discredited by IMA-CNMNC (use Halloysite-10Å) 3+ Epidote – Ca2Fe Al2(Si2O7)(SiO4)O(OH); Santo Cave, Mt. Etna, Italy Fraipontite – (Zn,Al)3(Si,Al)2O5(OH)4; Cupp-Coutunn Cave, Turkmenistan Halloysite-7Å – Al2Si2O5(OH)4 (mon.); Faggeto Tondo Cave, Italy Halloysite-10Å – Al2Si2O5(OH)4·2H2O; caves in the Guadalupe Mountains, USA Hectorite – Na0.3(Mg,Li)3Si4O10(F,OH)2·nH2O; Cueva de las Espadas, Naica, Mexico (Forti et al., 2009) Hemimorphite – Zn4Si2O7(OH)2·H2O; Hudson Bay mine caves, Canada Howlite – Ca2SiB5O9(OH)5; Ordinskaya Cave, Kungur, Russia (Potapov and Parshima, 2010) Hydroxyapophyllite – Discredited by IMA-CNMNC [use Apophyllite-(KOH)] Hydroxylellestadite – Ca10(SiO4)3(SO4)3(OH)2; Cioclovina Cave, Romania (Onac et al., 2006) Illite – NOT a mineral; Name used to designate a group of species 3+ 2+ Ilvaite – CaFe (Fe )2O(Si2O7)(OH); hydrothermal skarn caves at Primarsky Kray, Russia Kaolinite – Al2Si2O5(OH)4 (tric.); Cupp-Coutunn Cave, Turkmenistan Montmorillonite – (Na,Ca)0.3(Al,Mg)2)Si4O10)(OH)2·nH2O; Carlsbad Caverns, USA Nacrite – Al2Si2O5(OH)4 (mon.); Valea Rea Cave, Romania (Ghergari and Tămaş, 1996) Natrolite – Na2(Si3Al2)O10·2H2O; Big Cave from Bolfu mine III, Romania 3+ Nontronite – Na0.3(Fe )2(Si,Al)4O10(OH)2·nH2O; Kartchner Caverns, USA 3+ Orientite – Ca8(Mn )10(SiO4)3(Si3O10)3(OH)10·4H2O; Cueva de las Velas, Naica, Mexico (Forti et al., 2007) Palygorskite – (Mg,Al)2Si4O10(OH)·4H2O; Broken Hill caves, New Zealand Phillipsite-K – K6(Si10Al6)O32·12H2O; Kitum Cave, Kenya (Forti et al., 2003) Rectorite – (Na,Ca)Al4(Si,Al)8O20(OH)4·2H2O; Kartchner Caverns, USA Saponite – (Ca,Na)0.3(Mg,Fe)3(Si,Al)4O10(OH)2·4H2O; Vântului Cave, Romania Sauconite – Na0.3Zn3(Si,Al)4O10(OH)2·4H2O; Cupp-Coutunn Cave, Turkmenistan Sepiolite – Mg4Si6O15(OH)2·6H2O; Zbrasov Cave, Czech Republic Shattuckite – Cu5(SiO3)4(OH)2; Bisbee mine caves, USA

Acknowledgements. We are grateful to all members of the in Cordillera de la Sal (Atacama, Chile). In: Rossi P.L. Cave Minerals Commission of the International Union of (Ed.), Geological Constrains on the Onset and Speleology who provided us with news and suggestions. Evolution of an Extreme Environment: the Atacama This note is part of the Cave Mineral Database (CAMIDA) area. Geoacta, Special Publication 2: 113-117. project, a collaborative effort of the University of South Feier, N. 2003, New data on the mineralogy of Valea Rea Florida Libraries Information Portal, UIS’s Cave Cave, Bihor Mountains. Ecocarst, 4: 22-24 (in Minerals Commission, the “Emil Racoviţă“ Institute of Romanian). Speleology (Romania), and the Karst Research Group at Forti, P. 2002, Speleology in the third millenium: the University of South Florida (USA). achievments and challenges. Theoretical and Applied Karstology, 15: 7-26. Forti, P. 2005, Genetic processes of cave minerals in R E F E R E N C E S volcanic environment: an overview. Journal of Cave and Karst Studies, 67 (1): 3-13. Audra, P. 2007, A mineralized hypogenic cave in Pierre Forti, P. 2010, Genesis and evolution of the caves in the Saint-Martin massif: the Oilloki Cave (Sainte-Engrâce, Naica Mine (Chihuahua, Mexico). Zeitschrift für Pyrénées-Atlantiques). Preliminary investigations. Geomorphologie, 54 (2): 115-135; DOI: http://dx.doi.org/ Karstologia Memoire, 17: 176-182. 10.1127/0372-8854/2010/0054S2-0007 Audra, P., Hobléa, F. 2007, The first cave occurrence of Forti, P., Galli, E. & Rossi, A. 2003, Minerogenesis in jurbanite [Al(OH SO4)·5H2O], associated with some volcanic caves of Kenya. International Journal alunogen [Al(SO4)3·17H2O] and tschermigite of Speleology, 32 (1/4): 1-16. [NH4Al(SO4)2·12H2O]: thermal-sulfidic Serpents Cave, Forti, P., Galli, E. & Rossi, A. 2006, Peculiar France. Journal of Cave and Karst Studies, 69 (2): minerogenetic cave environments of Mexico: the 243- 249. Cuatro Ciénegas area. Acta Carsologica, 35 (2): 79-98. Burke, E.A.J. 2006, A mass discreditation of GQN Forti, P., Galli, E. & Rossi, A. 2007, The mineralogical minerals. Canadian Minerologist, 44: 1557-1560; DOI: study on the Cueva de las Velas (Naica, Mexico). Acta http://dx.doi.org/10.2113/gscanmin.44.6.1557 Carsologica, 36 (3): 379-388. Burke, E.A.J. 2008, Tidying up mineral names: an IMA- Forti, P., Galli, E. & Rossi, A. 2009, Minerogenesis in the CNMNC scheme for suffixies, hyphens and diacritical Naica caves (Chihuahua, México). Proceedings of the marks. The Mineralogical Record 39: 131-135. 15th International Congress of Speleology, Kerrville, 1: De Waele, J., Forti, P. 2005, Mineralogy of mine caves in 300-305. Sardinia. Proceedings of the 14th International Forti, P., Panzica La Manna, M. & Rossi, A. 1996, The Congress of Speleology, Kalamos, Greece, 306-311. peculiar mineralogical site of the Alum cave (Vulcano, De Waele, J., Forti, P., Picotti, V., Galli, E., Rossi, A., Sicily). Proceedings of the 7th International Symposium Brook, G., Zini, L. & Cucchi, F. 2009, Cave deposits on Vulcanospeleology, Canarie, 35-44. Studia UBB Geologia, 2011, 56 (1), 33 – 42 Cave minerals list 41

Fridvaldszky, J. 1767, Mineralogia Magni Principatus and Petrology, 64 (1-4): 237-263; DOI: Transylvaniae. Claudiopoli, Typis Academicis http://dx.doi.org/10.1007/BF01226571 Societatis Jesu, 206 p (in Latin). Nickel, E.H., Nichols, M.C. 2009, IMA/CNMNC list of Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. & mineral names (http://pubsites.uws.edu.au/ima-cnmnc/ Rosenzweig, A. 1997, Dana’s New Mineralogy. Wiley, imalist.htm) New York, 1819 p. Onac, B.P. 2001, Mineralogical studies and Uranium- Garavelli, A., Pinto, D., Vurro, F., Mellini, M., Viti, C., series dating of speleothems from Scărişoara Glacier Balic-Zunic, T. & Della Ventura, G. 2009, Yukonite Cave (Bihor Mountains, Romania). Theoretical and from the Grotta della Monaca Cave, Sant’Agata di Applied Karstology, 13-14: 33-38. Esaro, Italy: characterization and comparison with Onac, B.P. 2002, Caves formed within Upper Cretaceous cotype material from the Daulton Nine, Yukon, skarns at Băiţa, Bihor County, Romania: mineral Canada. Canadian Mineralogist, 47: 39-51; DOI: deposition and speleogenesis. Canadian Mineralogist, http://dx.doi.org/10.3749/canmin.47.1.39 40 (6): 1693-1703. Ghergari, L., Tămaş, T. 1996, Mineralogy of cave deposits Onac, B.P. 2003, Minerals of the Carpathians: first update. from Bihor Mountains (Romania). In: Contribucíon del Acta Mineralogica-Petrographica, 44: 31-34. studio cientifica de las cavidades kársticas al Onac, B.P. 2005, Minerals. In: Encyclopedia of caves conocimiento geológico (Andreo, B., Carrasco, F. & (Culver D.C., White W.B., Eds.), Academic Press, Duran J.J., Eds.), Patronato de la Cueva de Nerja, New York, 371-378. Nerja, p. 243-255. Onac B.P. 2008, Ikaite in the Scărişoara ice deposit: Ghergari, L., Tămaş, T., Damm, P. & Forray, F. 1997, precipitation and significance. In: Proceedings 3rd Hydrothermal paleokarst in Pestera din Valea Rea International Workshop on Ice Caves (Turri, S., Ed.), (Bihor Mountains, Romania). Theoretical and Applied Perm State University, Perm, p. 28. Karstology, 10: 115-125. Onac, B.P. 2011, Minerals. In: Encyclopedia of caves (2nd Hill, C.A. 1976, Cave minerals. National Speleological ed.) (Culver D.C., White W.B., Eds.), accepted. Society, Huntsville, 167 p. Onac, B.P., Effenberger, H.S. 2007, Re-examination of Hill, C.A., Forti, P. 1986, Cave minerals of the world berlinite (AlPO4) from the Cioclovina Cave, Romania. (1st ed.). National Speleological Society, American Mineralogist, 92: 1998-2001; DOI: Huntsville, 238 p. http://dx.doi.org/10.2138/am.2007.2581 Hill, C.A., Forti, P. 1997, Cave minerals of the world (2nd Onac, B.P., Forti, P. 2011, Minerogenetic mechanisms ed.). National Speleological Society, Huntsville, 464 p. occurring in the cave environment: an overview. Hill, C.A., Forti, P. 2007, Cave mineralogy and the NSS: International Journal of Speleology, 40 (2): 1-20. Past, present, and future. Journal of Cave and Karst Onac, B.P., White, W.B. 2003, First reported sedimentary Studies, 69 (1): 35-45. occurrence of berlinite (AlPO4) in the - Lazarides, G., Melfos, V. & Papadopoulou, L. 2011, The bearing sediments from Cioclovina Cave, Romania. first cave occurrence of orpiment (As2S3) from the American Mineralogist, 88: 1395-1397. sulfuric acid caves of Aghia Paraskevi (Kassandra Onac, B.P., Bernhardt, H.-J. & Effenberger, H.S. 2009a, Peninsula, N. Greece). International Journal of Authigenic burbankite in the Cioclovina Cave sediments Speleology, 40 (2): in press (Romania). European Journal of Mineralogy, 21: 507- Marincea, Ş., Dumitraş, D. & Gibert, R. 2002, Tinsleyite 514; DOI: http://dx.doi.org/10.1127/0935-1221/2009/ in the "dry" Cioclovina Cave (Şureanu Mountains, 0021-1916 Romania): the second occurrence. European Journal of Onac, B.P., Effenberger, H.S. & Breban, R.C. 2007a, Mineralogy 14: 157-164; DOI: http://dx.doi.org/10.1127/ High-temperature and "exotic" minerals from the 0935-1221/2002/0014-0157 Cioclovina Cave, Romania: a review. Studia UBB Martini, J.E.J. 1997, Pyrocoproite (Mg(K,Na)2(P2O7), Geologia, 52 (2): 3-10; DOI: http://dx.doi.org/10.5038/ monoclinic) a new mineral from Arnhem Cave 1937-8602.52.2.1 (Namibia), derived from bat guano combustion. Onac, B.P., Hess, J.W. & White, W.B. 2007b, The Proceedings of the 12th International Congress of relationship between the mineral composition of Speleology, Le Chaux-de-Fonds, 1: 223-225. speleothems and mineralization of breccia pipes: Merino, A., Fornós, J.J. & Onac, B.P. 2009, Preliminary evidence from Corkscrew Cave, Arizona, USA. data on mineralogical aspects of cave rims and vents in Canadian Mineralogist, 45: 1177-1188; DOI: Cova des Pas de Vallgornera, Mallorca. Proceedings of http://dx.doi.org/10.2113/gscanmin.45.5.1177 the 15th International Congress of Speleology, Onac, B.P., Mylroie, J.E. & White, W.B. 2001a, Kerrville, 1: 307-311. Mineralogy of cave deposits on San Salvador Island, Mills, S.J., Hatert, F., Nickel, E.H. & Ferraris, G. 2009, Bahamas. Carbonates and Evaporites, 16 (1): 8-16. The standardisation of mineral group hierarchies: Onac, B.P., Pedersen, R.B. & Tysseland, M. 1997, application to recent nomenclature proposals. Presence of rare-earth elements in black European Journal of Mineralogy, 21: 1073-1080; DOI: ferromanganese coatings from Vântului Cave http://dx.doi.org/10.1127/0935-1221/2009/0021-1994 (Romania). Journal of Caves and Karst Studies, 59 (3): Moore, G.W. 1970, Checklist of cave minerals. National 128-131. Speleological Society News, 28: 9-10. Onac, B.P., White, W.B. & Viehmann, I. 2001b, Leonite Nickel, E.H., Grice, J.D. 1998, The IMA Commission on K2Mg[SO4]2 4H2O, konyaite Na2Mg[SO4]2 5H2O and New Minerals and Mineral Names: procedures and syngenite K2Ca[SO4]2 H2O from Tăuşoare Cave guidelines on mineral nomenclature, 1998. Mineralogy (Rodnei Mts., Romania). Mineralogical Magazine, 65 (1): 1-7. Studia UBB Geologia, 2011, 56 (1), 33 – 42 42 Onac and Forti

Onac, B.P., Breban, R., Kearns, J. & Tămaş, T. 2002, Potapov, S.S., Parshina, N.V. 2010, Howlite Unusual minerals related to phosphate deposits in Ca2B5SiO9(OH)5 from Ordinskaya cave in Perm region Cioclovina Cave, Sureanu Mts. (Romania). Theoretical – the first find on the Ural. In: Proceedings of and Applied Karstology, 15: 27-34. Scientific Readings in Memory of P.N. Chirvinsky on Onac, B.P., Effenberger, H., Ettinger, K. & Cînta-Pînzaru, Problems of Mineralogy, Petrography and S. 2006, Hydroxylellestadite from Cioclovina Cave Metallogeny. Perm State University, 13: 83-91 (in (Romania): Microanalytical, structural, and vibrational Russian). spectroscopy data. American Mineralogist, 91: 1927- Rodgers, K.A., Hamlin, K.A., Browne, P.R.L., Campbell, 1931; DOI: http://dx.doi.org/10.2138/am.2006.2143 K.A. & Martin, R. 2000, The steam condensate Onac, B.P., Ettinger, K., Kearns, J. & Balasz, I.I. 2005, A alteration mineralogy of Ruatapu cave, Orakei Korako modern, guano-related occurrence of foggite, geothermal field, Taupo Volcanic Zone, New Zealand. CaAl(PO4)(OH)2·H2O and churchite-(Y), YPO4·2H2O Mineralogical Magazine, 64 (1): 125-142. in Cioclovina Cave, Romania. Mineralogy and Tămaş, T., Ghergari, L. 2003, Hydronium jarosite from Iza Petrology, 85: 291-302; DOI: http://dx.doi.org/ Cave (Rodnei Mts., Romania). Acta Mineralogica- 10.1007/s00710-005-0106-4 Petrographica Abstract Series, 1: 102. Onac, B.P., Effenberger, H.S., Collins, N.C., Kearns, J.B. Zaharia, L., Tămaş, T. & Suciu-Krausz, E. 2003, & Breban, R.C. 2011, Revisiting three minerals from Mineralogy og the Cave no. 4 from Runcului Hill Cioclovina Cave (Romania). International Journal of (Metaliferi Mts., Romania). Theoretical and Applied Speleology, 40 (2): 21-30. Karstology, 16: 41-46. Onac, B.P., Sumrall, J.B., Tămaş, T., Povară, I., Kearns, J., Wenrich, K.J., Sutphin, H.B. 1994, Grand Canyon caves, Dârmiceanu, V., Vereş, D. & Lascu, C. 2009b, The breccia pipes and mineral eposits. Geology Today, 10: relationship between cave minerals and H2S-rich 97-104. thermal along the Cerna Valley (SW Romania). Acta Carsologica, 38: 67-79. Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. & White, T.J. 2010, Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22: 163-179; DOI: http://dx.doi.org/ 10.1127/0935-1221/2010/0022-2022 Polyak, V.J., Provencio, P. 2001, By-product materials related to H2S – H2SO4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies, 63: 23–32.

Studia UBB Geologia, 2011, 56 (1), 33 – 42