Frederiksenia Canicola Gen. Nov., Sp. Nov. Isolated from Dogs and Human Dog-Bite Wounds

Total Page:16

File Type:pdf, Size:1020Kb

Frederiksenia Canicola Gen. Nov., Sp. Nov. Isolated from Dogs and Human Dog-Bite Wounds View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Antonie van Leeuwenhoek (2014) 105:731–741 DOI 10.1007/s10482-014-0129-0 ORIGINAL PAPER Frederiksenia canicola gen. nov., sp. nov. isolated from dogs and human dog-bite wounds Bozena_ M. Korczak • Magne Bisgaard • Henrik Christensen • Peter Kuhnert Received: 19 November 2013 / Accepted: 28 January 2014 / Published online: 8 February 2014 Ó Springer International Publishing Switzerland 2014 Abstract Polyphasic analysis was done on 24 strains branch with intraspecies sequence similarity of at least of Bisgaard taxon 16 from five European countries and 99.1, 90.8, 96.8 and 97.2 %, respectively. Taxon 16 mainly isolated from dogs and human dog-bite showed closest genetic relationship with Bibersteinia wounds. The isolates represented a phenotypically trehalosi as to the 16S rRNA gene (95.9 %), the rpoB and genetically homogenous group within the family (89.8 %) and the recN (74.4 %), and with Actinoba- Pasteurellaceae. Their phenotypic profile was similar cillus lignieresii for infB (84.9 %). Predicted genome to members of the genus Pasteurella. Matrix-assisted similarity values based on the recN gene sequences laser desorption/ionization time-of-flight mass spec- between taxon 16 isolates and the type strains of trometry clearly identified taxon 16 and separated it known genera of Pasteurellaceae were below the from all other genera of Pasteurellaceae showing a genus level. Major whole cell fatty acids for the strain T characteristic peak combination. Taxon 16 can be HPA 21 are C14:0,C16:0,C18:0 and C16:1 x7c/C15:0 iso further separated and identified by a RecN protein 2OH. Major respiratory quinones are menaquinone-8, signature sequence detectable by a specific PCR. In all ubiquinone-8 and demethylmenaquinone-8. We pro- phylogenetic analyses based on 16S rRNA, rpoB, infB pose to classify these organisms as a novel genus and and recN genes, taxon 16 formed a monophyletic species within the family of Pasteurellaceae named Frederiksenia canicola gen. nov., sp. nov. The type strain is HPA 21T (= CCUG 62410T = DSM 25797T). Electronic supplementary material The online version of this article (doi:10.1007/s10482-014-0129-0) contains supple- Keywords Bisgaard taxon 16 Á mentary material, which is available to authorized users. Pasteurellaceae Á Taxonomy Á Phylogeny Á Zoonosis B. M. Korczak Á P. Kuhnert (&) Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Laenggass-Strasse 122, 3001 Bern, Switzerland Introduction e-mail: [email protected] M. Bisgaard Presently, the family Pasteurellaceae is one of the Horsevaenget 40, 4130 Viby Sjælland, Denmark largest bacterial families, with many taxa still awaiting proper classification (Christensen and Bisgaard 2008; H. Christensen Gregersen et al. 2009; Kuhnert et al. 2010; Foster et al. Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 2011; Christensen et al. 2011; Hansen et al. 2012). 4 Stigbøjlen, 1870 Frederiksberg C, Denmark Some members of the Pasteurellaceae are frequently 123 732 Antonie van Leeuwenhoek (2014) 105:731–741 found in the oral cavity and upper respiratory tract of 25797T also deposited under the number CCUG companion animals such as dogs and cats (Christensen 36444T = Him932-7T). and Bisgaard 2008). They are mainly considered commensals, however, under certain circumstances they may also act as opportunistic pathogens. Species Materials and methods obtained from dogs and cats include Pasteurella multocida, Pasteurella dagmatis, Pasteurella stomatis Bacterial strains and phenotypic characterization and Pasteurella oralis. Two additional species are more restricted in their host-specificity, Pasteurella Most of the 24 strains investigated were obtained from canis with dogs and [Haemophilus] felis with cats dog, mainly from the upper respiratory tract or vagina (Mutters et al. 1985; Inzana et al. 1992; Christensen (Table 1). Clinical cases included rhinitis, tracheitis, et al. 2012). In humans the aforementioned species chronic tracheobronchitis, facial swelling and genital may cause wound infections inflicted by dog- or cat tract infection. Four strains were isolated from humans, bites/scratches (Abrahamian and Goldstein 2011). three of them from dog-bite wounds while single Correct classification of these taxa has major impact isolates were obtained from cat, lion, hedgehog and on an unambiguous identification and is essential for banded mongoose (domesticated or zoo animals). proper medical treatment of patients, the development Primary phenotypic characterization identified them as of preventive measures and the performance of epide- taxon 16 or atypical P. canis, P. stomatis, P. dagmatis or miological studies. Identification of these taxa, how- Pasteurella sp. All strains had been kept frozen at ever, can be problematic as additional Pasteurella-like -80 °C for further investigation. The bacteria were organisms have been reported from the same niche subcultivated from frozen stocks on tryptone soya agar (Saphir and Carter 1976; Bisgaard and Mutters 1986; plates with sheep blood (TSA; Oxoid, Pratteln, Swit- Ganiere et al. 1993; Muhairwa et al. 2001; Forsblom zerland) for 24 h at 37 °C in an aerobic atmosphere. A et al. 2002). A group of bacteria, tentatively named number of different biochemical tests recommended for Bisgaard taxon 16, shows a phenotype, mol% G?Cin characterization of the phenotype of members of the DNA, genome size and cellular fatty acid composition Pasteurellaceae family were applied to all isolates as similar to the genus Pasteurella and might be misi- proposed in the ‘‘minimal standards’’ for the family dentified as P. canis, P. stomatis or P. dagmatis (Christensen et al. 2007). (Bisgaard and Mutters 1986; Forsblom et al. 2002). On the other hand, analysis of data provided by the DNA– Chemotaxonomy, MALDI-TOF MS and amino DNA and DNA-rRNA hybridization (De Ley et al. acid signature specific PCR 1990; Bisgaard and Mutters 1986), 16S rRNA sequencing (Olsen et al. 2005) and matrix-assisted Analysis of fatty acids and respiratory quinones of the laser desorption/ionization time-of-flight mass spec- strain HPA 21T were carried out by the Identification trometry (MALDI-TOF MS) technology (Kuhnert Service of the DSMZ (Deutsche Sammlung von et al. 2012) showed that this taxon differed consider- Mikroorganismen und Zellkulturen), Braunschweig, ably from the other known genera within the family and Germany. The analysis of whole cell fatty acid content should be classified as a new genus. was done using the Sherlock Microbial Identification Using a polyphasic approach we investigated 24 System (MIS) (MIDI, Microbial ID, Newark, DE isolates of taxon 16 that were diverse in geographical 19711, USA) according to the previously published location and host/tissue source. Based on phenotypic, protocols (Miller 1982; Kuykendall et al. 1988; genetic, as well as phylogenetic characteristics, includ- Kampfer and Kroppenstedt 1996). Analysis of respi- ing biochemistry, chemotaxonomy, MALDI-TOF MS, ratory quinones for the strain HPA 21T were performed amino-acid signature specific PCR, multilocus according to published protocols (Tindall 1990a, b). sequence analysis (MLSA), and recN-derived genome MALDI-TOF MS was performed according to similarity data, we propose classification of Bisgaard Kuhnert et al. (2012). Frederiksenia canicola (taxon taxon 16 as Frederiksenia canicola gen. nov., sp. nov., 16) specific peaks were determined in Biotyper 3.0 a new genus within the family of Pasteurellaceae. The software (Bruker Daltonik GmbH, Bremen, Ger- type strain is HPA 21T (= CCUG 62410T = DSM many). For diagnostic identification the direct plating 123 Antonie van Leeuwenhoek (2014) 105:731–741 Table 1 Frederiksenia canicola (Bisgaard taxon 16) strains investigated Strain No. Country Initial Isolated from Clinical signs GenBank accession no. phenotypic identification 16S infB recN rpoB rRNA 1 HPA 21T = CCUG 62410T = DSM 25797T also Denmark Pasteurella sp. Dog, pharynx Healthy dog JQ356598 JQ356622 JQ356650 JQ356678 known as CCUG 36444T and Him932-7T 2 Smith392 = P919 = CCUG 17204 UK Pasteurella sp. Dog Facial swelling JQ356599 JQ356623 JQ356651 JQ356679 3 M2500/96/3 UK N.a. Dog, eye N.a. JQ356600 JQ356624 JQ356652 JQ356680 4 D1949_98 = JF2157 Switzerland P. canis Dog, trachea Trachitis JQ356601 JQ356625 JQ356653 JQ356681 5 D2018_98 Switzerland P. canis Dog, nose Rhinitis JQ356602 JQ356626 JQ356654 JQ356682 6 D2941_98_JF2198 Switzerland Pasteurella sp. Dog, nose Rhinitis JQ356603 JQ356627 JQ356655 JQ356683 7 D227_99 = JF2221 France P. canis Dog, tracheo Chronical JQ356604 JQ356628 JQ356656 JQ356684 bronchial tracheobronchitis ichor 8 D262_99 = JF2223 Switzerland P. canis Dog, nose Rhinitis JQ356605 JQ356629 JQ356657 JQ356685 9 D452-3_99 = JF2240 Switzerland P. canis Dog, nose N.a. JQ356606 JQ356630 JQ356658 JQ356686 10 D536-2_99 = JF2247 Switzerland P. canis Dog, tonsil Chronical cough JQ356607 JQ356631 JQ356659 JQ356687 and tonsillitis 11 D597-2_99 = JF2247 Switzerland P. canis Dog, vagina Brown discharge JQ356608 JQ356632 JQ356660 JQ356688 12 D1071_99 Switzerland P. canis Dog, vagina N.a. JQ356609 JQ356633 JQ356661 JQ356689 13 KM1266_04 = JF4823 Switzerland Pasteurella sp. Dog, vagina N.a. JQ356610 JQ356634 JQ356662 JQ356690 14 KM1549_04 Switzerland P. stomatis Dog N.a. JQ356611 JQ356635 JQ356663 JQ356691 15 KM1721_06 Switzerland Pasteurella sp. Dog, nose Rhinitis JQ356612 JQ356636
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Identification of Pasteurella Species and Morphologically Similar Organisms
    UK Standards for Microbiology Investigations Identification of Pasteurella species and Morphologically Similar Organisms Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 1 of 28 © Crown copyright 2015 Identification of Pasteurella species and Morphologically Similar Organisms Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 2 of 28 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Pasteurella species and Morphologically Similar Organisms Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Charakterisierung Haemophiler Bakterienisolate Der Gattungen Histophilus Und Haemophilus Aus Wiederkäuern
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Charakterisierung haemophiler Bakterienisolate der Gattungen Histophilus und Haemophilus aus Wiederkäuern Sutter, Gabriella Abstract: Haemophile Bakterien der Gattungen Haemophilus und Histophilus sind bei Nutztieren weit verbreitet. Beim Wiederkäuer gilt Histophilus somni (syn. Haemophilus somnus) unter anderem als Verursacher der ISTME/TEME. Gleichzeitig werden diese Bakterien oft als asymptomatische Besiedler von Schleimhäuten des Genital- und Respirationstrakts gefunden. In der vorliegenden Arbeit wurden 194 Histophilus/Haemophilus-Isolate aus der Stammsammlung der Vetsuisse-Fakultät Zürich (1974 bis 1998) untersucht. Als Methoden wurden Kultur, 16S rDNA Amplifizierung und Sequenzierung sowie Ribotypisierung verwendet. Kulturell typisiert werden konnten 13 Isolate, die alle nicht hämolysierend, Oxidase-positiv, Katalase-negativ und V- und X-Faktor unabhängig waren. Aufgrund ihrer Koloniemor- phologie wurden die Isolate der M-, S- und R-Form zugeordnet. Die Analyse der 16S rDNA aus 28 haemophilen Isolaten mit Datenbankeinträgen ergab für alle Isolate eine höchste Übereinstimmung mit 16S rDNA-Sequenzen von Histophilus somni-Isolaten. Aufgrund der unterschiedlichen Übereinstim- mungsraten wurde eine Unterteilung in drei 16S rDNA-Gruppen vorgenommen. Interessanterweise wiesen 13 der 28 untersuchten Isolate (46,4%) eine Übereinstimmung von <95% mit bekannten Histophilus somni-Isolaten auf. Ob somit eine neue Spezies-Bestimmung zu erfolgen hat, wird Thema künftiger Untersuchungen sein. Alle untersuchten Isolate wiesen eine grosse genetische Vielfalt auf, wie sie auch in der Literatur beschrieben ist. Haemophilic bacteria of the genera Haemophilus and Histophilus are found worldwide in a wide range of animals. In ruminants, Histophilus somni (syn. Haemophilus som- nus) is for example known as causative agent of ISTME/TEME.
    [Show full text]
  • High-Quality Draft Genome Sequence and Description of Haemophilus Massiliensis Sp
    Lo et al. Standards in Genomic Sciences (2016) 11:31 DOI 10.1186/s40793-016-0150-1 EXTENDED GENOME REPORT Open Access High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Cheikh Ibrahima Lo1,2, Senthil Alias Sankar1, Bécaye Fall3, Bissoume Sambe-Ba3, Silman Diawara3, Mamadou Wague Gueye3, Oleg Mediannikov1,2, Caroline Blanc-Tailleur1, Boubacar Wade3, Didier Raoult1,2,4, Pierre-Edouard Fournier1 and Florence Fenollar1,2* Abstract Strain FF7T was isolated from the peritoneal fluid of a 44-year-old woman who suffered from pelvic peritonitis. This strain exhibited a 16S rRNA sequence similarity of 94.8 % 16S rRNA sequence identity with Haemophilus parasuis,the phylogenetically closest species with a name with standing in nomenclature and a poor MALDI-TOF MS score (1.32 to 1.56) that does not allow any reliable identification. Using a polyphasic study made of phenotypic and genomic analyses, strain FF7T was a Gram-negative, facultatively anaerobic rod and member of the family Pasteurellaceae. It exhibited a genome of 2,442,548 bp long genome (one chromosome but no plasmid) contains 2,319 protein-coding and 67 RNA genes, including 6 rRNA operons. On the basis of these data, we propose the creation of Haemophilus massiliensis sp.nov.withstrainFF7T (= CSUR P859 = DSM 28247) as the type strain. Keywords: Haemophilus massiliensis, Genome, Taxono-genomics, Culturomics Introduction systematically compared to the phylogenetically-closest The genus Haemophilus (Winslow et al. 1917) was de- species with a name with standing in nomenclature [8, 9]. scribed in 1917 [1] and currently meningitis, bacteremia, The strain FF7T was isolated from the peritoneal fluid sinusitis, and/or pneumonia [2].
    [Show full text]
  • Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus,Andpasteurella
    Hindawi Publishing Corporation International Journal of Genomics Volume 2015, Article ID 198560, 15 pages http://dx.doi.org/10.1155/2015/198560 Research Article Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus,andPasteurella Sohail Naushad, Mobolaji Adeolu, Nisha Goel, Bijendra Khadka, Aqeel Al-Dahwi, and Radhey S. Gupta Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5 Correspondence should be addressed to Radhey S. Gupta; [email protected] Received 5 November 2014; Revised 19 January 2015; Accepted 26 January 2015 Academic Editor: John Parkinson Copyright © 2015 Sohail Naushad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures.
    [Show full text]
  • Identification of Previously Unknown Bacterial Species by MALDI-TOF MS
    Identification of previously unknown bacterial species by MALDI-TOF MS 1 Isala, Zwolle, NL 2 Meander MC, Amersfoort, NL ECCMID 2017 - EV0223 3 Rijnstate, Velp, NL 1 2 3 1 [email protected] Marjan J. Bruins , Eric (H) S. Doppenberg , Niels Peterse , Maurice J.H.M. Wolfhagen Introduction Results Discussion In clinical microbiology, MALDI-TOF MS Many new bacteria were identified by MALDI-TOF MS (Table 1). Using MALDI-TOF MS results in: has become an important means of - Far easier and faster identification. bacterial identification, enabling faster Table 1. Examples of previously unknown species identified by MALDI-TOF. - Identification of more and previously reporting of culture results. unknown pathogens. Species Family Isolated from Reference - Identification of relevant micro- The database entries used in MALDI-TOF Gramnegative Achromobacter spanius organisms previously considered MS are based on 16S rRNA gene Alcaligenaceae blood, tissue, wound Int. J. Syst. Evol. Microbiol. 53:1823 Acidovorax temperans Comamonadaceae urine, oral cavity Int. J. Syst. Bacteriol. 40:396 commensal. sequencing, which makes this technique Bifidobacterium scardovii Bifidobacteriaceae blood, urine Int. J. Syst. Evol. Microbiol. 52:998 - A need for standardized antimicrobial more discriminatory than biochemical Campylobacter lanienae Campylobacteraceae stool Int. J. Syst. Evol. Microbiol. 50:870 Fusobacterium naviforme Fusobacteriaceae blood, abscess, oral cavity Int. J. Syst. Bacteriol. 30:302 susceptibility testing methods including methods. As a result, more pathogenic Haemophilus pittmaniae Pasteurellaceae sputum Int. J. Syst. Evol. Microbiol. 55:455 critical breakpoints for all relevant microorganisms are identified correctly than Kerstersia gyiorum Alcaligenaceae leg wounds, ear Int. J. Syst. Evol. Microbiol. 53:1830 Massilia timonae species.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of competence and DNA uptake specificity in the Pasteurellaceae Rosemary J Redfield*1, Wendy A Findlay2, Janine Bossé3, J Simon Kroll3, Andrew DS Cameron4 and John HE Nash2 Address: 1Dept. of Zoology, University of British Columbia, Vancouver BC Canada, 2Institute for Biological Sciences, National Research Council of Canada, Ottawa ON Canada, 3Dept. of Paediatrics, Faculty of Medicine, Imperial College London, London W2 1PG UK and 4Dept. of Microbiology and Immunology, University of British Columbia, Vancouver BC Canada Email: Rosemary J Redfield* - [email protected]; Wendy A Findlay - [email protected]; Janine Bossé - [email protected]; J Simon Kroll - [email protected]; Andrew DS Cameron - [email protected]; John HE Nash - [email protected] * Corresponding author Published: 12 October 2006 Received: 12 June 2006 Accepted: 12 October 2006 BMC Evolutionary Biology 2006, 6:82 doi:10.1186/1471-2148-6-82 This article is available from: http://www.biomedcentral.com/1471-2148/6/82 © 2006 Redfield et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Many bacteria can take up DNA, but the evolutionary history and function of natural competence and transformation remain obscure. The sporadic distribution of competence suggests it is frequently lost and/or gained, but this has not been examined in an explicitly phylogenetic context.
    [Show full text]
  • Discrimination of Members of the Family Pasteurezlaceae Based On
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1997, p. 698-708 Vol. 47, No. 3 0020-7713/97/$04.00+ 0 Copyright 0 1997, International Union of Microbiological Societies Discrimination of Members of the Family PasteureZlaceae Based on Polyamine Patterns HANS-JURGEN BUSSE,'" SEBASTIAN BUN=,* ANDREAS HENSEL,l AND WERNER LUBITZ' Institut fur Mikrobiologie und Genetik, Universitat Wien, A-1030 Vienna,' and Institut fur Medizinische Chemie, Veterinannedizinische Universitat Wien,A-121 0 Vienna, Austria In a study of the classification of members of the family Pasteurelluceae, the polyamine patterns of 101 strains were analyzed. These strains included the type strains of species belonging to the genera Actinobacillus, Haemophilus, and Pasteurellu and additional strains of selected species, as well as numerous unnamed strains. Members of the genus Actinobacillus sensu stricto were characterized by the presence of 1,3-diaminopropane as the predominant compound. In the majority of the species of the genus Haemophilus sensu stricto 1,3- diaminopropane was also the major compound in the polyamine pattern. In contrast, Haemophilus intermedius subsp. gazogenes and Haemophilus parainjluenzae were characterized by high levels of 1,3-diaminopropane, cadaverine, and putrescine. These results confirmed the findings of Dewhirst et al. (F. E. Dewhirst, B. J. Paster, I. Olsen, and G. J. Fraser, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1Orig. 279:35-44, 1993), who demonstrated that H. parainjluenzae is phylogenetically only distantly related to the type species of the genus Haemophilus, Haemophilus injluenzae. The phylogenetic diversity of the genus Pasteurellu sensu stricto determined by Dewhirst et al. was also reflected to some extent by different polyamine patterns.
    [Show full text]
  • WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: Krzysztof; Simmeringer Hauptstrasse 45/8, A-1 110 Vi C12N 15/11 (2006.01) enna (AT). FONFARA, Ines; Helmstedter Strasse 144, 38102 Braunschweig (DE). (21) International Application Number: PCT/EP2014/074813 (74) Agent: PILKINGTON, Stephanie Joan; Potter Clarkson LLP, The Belgrave Centre, Talbot Street, Nottingham NG1 (22) International Filing Date: 5GG (GB). 17 November 2014 (17.1 1.2014) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 61/905,835 18 November 2013 (18. 11.2013) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicant: CRISPR THERAPEUTICS AG [CH/CH]; KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, Aeschenvorstadt 36, CH-4051 Basel (CH). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (72) Inventors: CHARPENTIER, Emmanuelle; Boeckler- SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, strasse 18, 38102 Braunschweig (DE).
    [Show full text]