Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions

Total Page:16

File Type:pdf, Size:1020Kb

Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions ; : ? . v ' A111D2 145T53 NAT'iUNST of STANDARDS & TECH R.I.C. All .. „ 102145953 Potentials, appearance Doten PCI 00 US73 V26; 1969 C.2 NBS-PUB-C 1 969 s t tm ? * m ? * / .4 ? * * ? * hi ? v* v> $ >.> > ?* s * nnni %i 1 > in * *? t> t* twumn » m*wawHt$w&nn ?* ^mnmsrmnpiu^w^nm^m m. KS IS ‘ISk Yih ' --;f f ! _1 NBS PUBLICATIONS li lylii {ft '1‘gj fill {$$4} | dul l(]li f) m. -> E."U !.’ I T f; fj •- •> :• • ’ ' „• > : •; «3 v ii : i : ., i \£ .; «! 5 \ ? •, > > V I -.) ! /•: .. *. >»>•. >* ;• \ *i v x : t> t / . s >j v $ -v ? 5? vf.ss «•* fc®33ww»a«k3Snmnu^^naiojaGS *s»* >t « «*«» .»: 33**3'$ 33 S3 33s*waomnumaksnaam!*saa& :••-• :- ?i > v v >s 3>ji * if.’J? i>.-K3L3Jar. » / -.-•>3 i» > » >.• 7 =i"r:V£.ya¥?P **.?(:# >sn.»: s i sr »r'«x.»A »<-.sjc«jrTt •>- .v-s •« V?v y j. as ...m is> - ; :»> r. t >.» t- 7. Y$&rwy»i- « >t >..•*/»» >j.»j »: * 2 ara«.««« Mw«j(si ?•? '.< * » ‘ a ? «> ;' si v: ; s i ni:, M i i v.*53.Vy-i v I7.v» .>**«; s » &.sry.v7&*sei >.»s.»-s.*i*T:arz «?.«rM**4nr »•» *•* s *«S»S c>* :o>!j{ j.ara ; >;•..£• v&S£4* .Vis> i- r>*i as .•*.»>•< ;j>.’ .vv v> vm >.? v3«-^>: j?u*.-**as-jtA-»a si aTji'jjMWijrij.vaiiijwscsjs! 9 ;ss.«ajn«?.V]r sst ;• >.'•• ;• » < > :> .» .< ••? ,> i. * . *r * 1 >; ?i i?» 1 s s 1 %y 3 V.* 5 i W5V9 t >i i r.V&2,-3.**& e i ****38 3**9?* #* rv»* ? i > }'}X3U UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary 5 , NATIONAL BUREAU OF STANDARDS A. V. Astin, Director \J , % o t Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions J. L. Franklin and J. G. Dillard Rice University, Houston, Texas 77001 H. M. Rosenstock, J. T. Herron, and K. Draxl Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 and F. H. Field Esso Research and Engineering Company Linden, New Jersey 07036 NSRDS NSRDS-NBS 26 i Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 26, 289 pages (June 1969) CODEN: NSRDA Issued June 1969 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $4 NATIONAL BUREAU OF STANDARDS m *3 XUU443 iQCf^O 73 . U f . \\o.Z-b / 9&? Library of Congress Catalog Card Number: 68-62689 Foreword The National Standard Reference Data System is a Government-wide effort to provide for the technical community of the United States effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President’s Office of Science and Technology and the Federal Council for Science and Technology. The responsibility to administer the System was assigned to the National Bureau of Standards and an Office of Standard Reference Data was set up at the Bureau for this purpose. Since 1963, this Office has developed systematic plans for meeting high-priority needs for reliable reference data. It has undertaken to coordinate and integrate existing data evaluation and compilation activities (primarily those under sponsorship of Federal agencies) into a comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemina- tion of the output as required. The System now comprises a complex of data centers and other activities, carried on in Gov- ernment agencies, academic institutions, and nongovernmental laboratories. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed modifications or extensions of experimental techniques. Data publications of the NSRDS take a variety of physical forms, including books, pamphlets, loose-leaf sheets and computer tapes. While most of the compilations have been issued by the Government Printing Office, several have appeared in scientific journals. Under some circum- stances, private publishing houses are regarded as appropriate primary dissemination mechanisms. The technical scope of the NSRDS is indicated by the principal categories of data compila- tion projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface properties, and mechanical properties. An important aspect of the NSRDS is the advice and planning assistance which the National Research Council of the National Academy of Sciences-National Academy of Engineering provides. These services are organized under an overall Review Committee which considers the program as a whole and makes recommendations on policy, long-term planning, and international collabora- tion. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users’ needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities. The NSRDS—NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community. A. V. Astin, Director. hi Contents Page Foreword iii 1. Introduction 1 1.1. General 1 1.2. Literature coverage 1 1.3. Order of presentation 2 1.4. Reliability of data and criteria for evaluation 2 1.5. Thermochemical considerations 3 1.6. Selection of “best” values 4 1.7. Units 4 1.8. Concluding remarks 4 1.9. References 4 2. Order of ion presentation 5 3. Table 1. Ionization potentials, appearance potentials and heats of formation of gaseous positive ions 14 4. Table 2. Heats of formation of gaseous neutral species derived from the data of table 1 238 5. Bibliography for tables 1 and 2 245 6. Author index for tables 1 and 2 256 7. Appendix 1. Heats of formation used in tables 1 and 2 260 8. Bibliography for appendix 1 282 9. Appendix 2. Table of group equivalent values 285 IV Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions J. L. Franklin and J. G. Dillard Rice University, Houston, Texas 77001 H. M. Rosenstock, J. T. Herron, and K. Draxl Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234 and F. H. Field Esso Research and Engineering Company, Linden, New Jersey 07036 This is a compilation of ionization and appearance potentials of positive ions published from 1955 through June 1966. The compilation lists the ion formed, the parent species from which it was formed, the other products of the process, the threshold energy for the formation of this ion, and the method by which this data was obtained. Where feasible, the heat of formation at 298 K of the positive ion has been computed for each entry using auxiliary thermochemical data. From these computed values “best” values have been chosen. Key Words: Appearance potential; compilation; data; heat of formation; ionization potential; ions; positive ions. 1. Introduction 1.1. General As there is considerable variation in the quality of the data in this field it would have been simpler Since the publication of “Electron Impact to include only the well-determined numbers. Phenomena and the Properties of Gaseous Ions” However, in some cases the only values available by F. H. Field and J. L. Franklin [l], 1 which con- were obtained by imprecise methods, and in the tained a compilation of ionization and appearance belief that an approximate value is better than none potentials reported through 1955, the study of we decided to include all available data in the gaseous ionization phenomena has undergone an compilation. explosive growth in the number and variety of pertinent research studies. This field now includes aspects of vacuum ultraviolet spectroscopy, inelas- 1.2. Literature Coverage tic electron scattering, photoionization, photoelec- tron spectroscopy, mass spectrometry, charge Literature references were obtained initially exchange, and theoretical chemistry. from unpublished annual bibliographies compiled 14 The present volume is intended to cover the by volunteers for ASTM Committee E— on Mass compilations of Kiser bib- literature published since 1955. It is our hope Spectrometry, the [2], liographies published in “Advances in Mass that it will serve several purposes. First, it will given in various present essentially all of the values of appearance Spectrometry” [3], references potentials of positive ions obtained since 1955; review articles, and since 1964, by scanning Physical Sciences” and “Physics second it will provide a set of “best” values of “Current Content, cutoff data was June 1966. heats of formation of gaseous ions; third, it will Abstracts.” The 30, serve as a guide to the literature. We feel that coverage is reasonably thorough for experimental papers but rather spotty for theoretical 1 Figures in brackets indicate the literature references on page 4. and semiempirical treatments. 1 1.3. Order of Presentation Table A. Experimental techniques The heart of this work is table 1, which gives Estimated ionization potentials, appearance potentials, prob- pre- cision in meas- able mechanisms, the method by which the data Abbre- Method Reference urement of— was obtained, and computed heats of formation of viation the various positive ions.
Recommended publications
  • Monoamine Oxydases Et Athérosclérose : Signalisation Mitogène Et Études in Vivo
    UNIVERSITE TOULOUSE III - PAUL SABATIER Sciences THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE TOULOUSE III Discipline : Innovation Pharmacologique Présentée et soutenue par : Christelle Coatrieux le 08 octobre 2007 Monoamine oxydases et athérosclérose : signalisation mitogène et études in vivo Jury Monsieur Luc Rochette Rapporteur Professeur, Université de Bourgogne, Dijon Monsieur Ramaroson Andriantsitohaina Rapporteur Directeur de Recherche, INSERM, Angers Monsieur Philippe Valet Président Professeur, Université Paul Sabatier, Toulouse III Madame Nathalie Augé Examinateur Chargé de Recherche, INSERM Monsieur Angelo Parini Directeur de Thèse Professeur, Université Paul Sabatier, Toulouse III INSERM, U858, équipes 6/10, Institut Louis Bugnard, CHU Rangueil, Toulouse Résumé Les espèces réactives de l’oxygène (EROs) sont impliquées dans l’activation de nombreuses voies de signalisation cellulaires, conduisant à différentes réponses comme la prolifération. Les EROs, à cause du stress oxydant qu’elles génèrent, sont impliquées dans de nombreuses pathologies, notamment l’athérosclérose. Les monoamine oxydases (MAOs) sont deux flavoenzymes responsables de la dégradation des catécholamines et des amines biogènes comme la sérotonine ; elles sont une source importante d’EROs. Il a été montré qu’elles peuvent être impliquées dans la prolifération cellulaire ou l’apoptose du fait du stress oxydant qu’elles génèrent. Ce travail de thèse a montré que la MAO-A, en dégradant son substrat (sérotonine ou tyramine), active une voie de signalisation mitogène particulière : la voie métalloprotéase- 2/sphingolipides (MMP2/sphingolipides), et contribue à la prolifération de cellules musculaire lisses vasculaires induite par ces monoamines. De plus, une étude complémentaire a confirmé l’importance des EROs comme stimulus mitogène (utilisation de peroxyde d’hydrogène exogène), et a décrit plus spécifiquement les étapes en amont de l’activation de MMP2, ainsi que l’activation par la MMP2 de la sphingomyélinase neutre (première enzyme de la cascade des sphingolipides).
    [Show full text]
  • A Guide to Export Controls
    Foreign Affairs, Trade and Affaires étrangères, Commerce et Development Canada Développment Canada A Guide To CANADA’S EXPORT CONTROLS December 2012 Introduction The issuance of export permits is administered by the Export Controls Division (TIE) of Foreign Affairs, Trade and Development Canada (DFATD). TIE provides assistance to exporters in determining if export permits are required. It also publishes brochures and Notices to Exporters that are freely available on request and on our website www.exportcontrols.gc.ca. How to contact us: Export Controls Division (TIE) Foreign Affairs, Trade and Development Canada 111 Sussex Drive Ottawa, Ontario K1A 0G2 Telephone: (613) 996-2387 Facsimile: (613) 996-9933 Email: [email protected] For information on how to apply for an export permit and additional information on export controls please refer to our website. To enquire on the status of an export permit application: Recognized EXCOL users can check the status of an export permit application on-line. Non-recognized users can call (613) 996-2387 or email [email protected] and quote your export permit application identification (ref ID) number. Export Controls Division website: www.exportcontrols.gc.ca This Guide, at time of publication, encompasses the list of items enumerated on the Export Control List (ECL) that are controlled for export in accordance with Canadian foreign policy, including Canada’s participation in multilateral export control regimes and bilateral agreements. Unless otherwise specified, the export controls contained in this Guide apply to all destinations except the United States. Canada’s Export Control List can be found at the Department of Justice website at http://canada.justice.gc.ca/.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Silybum Marianum (Milk Thistle) Flower in Vitro and on Human Explants
    Molecules 2015, 20, 3549-3564; doi:10.3390/molecules20033549 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants Seoungwoo Shin, Jung-A Lee, Minkyung Kim, Hyunwoo Kum, Eunsun Jung * and Deokhoon Park * Biospectrum Life Science Institute, Eines Platz 11th FL, 442-13 Sangdaewon Dong, Seoungnam City, Gyunggi Do 462-807, Korea; E-Mails: [email protected] (S.S.); [email protected] (J.-A.L.); [email protected] (M.K.); [email protected] (H.K.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.J.); [email protected] (D.P.); Tel.: +82-31-750-9400 (E.J. & D.P.); Fax: +82-31-750-9494 (E.J. & D.P.). Academic Editor: Derek J. McPhee Received: 25 November 2014 / Accepted: 15 February 2015 / Published: 19 February 2015 Abstract: Glycation is an ageing reaction of naturally occurring sugars with dermal proteins, with clinical signs appearing in vivo around age 30, and increasing steadily/regularly with age. The suppleness of the dermis is affected by the formation of bridges between proteins and sugars (Maillard’s reaction). The accumulation of advanced glycation end products (AGEs) in skin plays a very important role in skin ageing. Therefore, natural compounds or extracts that possess antiglycation activities may have great anti-ageing potential. In the present study, Silybum marianum flower extract (SMFE) was demonstrated to possess antiglycation activity. We found that SMFE inhibits glycation reaction between BSA and glucose. In addition, antiglycation activity of SMFE was confirmed in a human skin explants model.
    [Show full text]
  • Toxicological Profile for Hydrazines. US Department Of
    TOXICOLOGICAL PROFILE FOR HYDRAZINES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 HYDRAZINES ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HYDRAZINES iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 HYDRAZINES vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Gangadhar Choudhary, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Hugh IIansen, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Steve Donkin, Ph.D. Sciences International, Inc., Alexandria, VA Mr. Christopher Kirman Life Systems, Inc., Cleveland, OH THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1 . Green Border Review. Green Border review assures the consistency with ATSDR policy. 2 . Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. HYDRAZINES ix PEER REVIEW A peer review panel was assembled for hydrazines. The panel consisted of the following members: 1. Dr.
    [Show full text]
  • Synthetic and Naturally Occurring Hydrazines As Possible Cancer Causative Agents
    [CANCER RESEARCH 35, 3693-3697 December 1975] Synthetic and Naturally Occurring Hydrazines as Possible Cancer Causative Agents Bela Toth' The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68105 SUMMARY SYNTHETIC HYDRAZINES The various synthetic substituted hydrazines, which cause tumors in animals, are briefly enumerated. To date, 19 of Studies on the carcinogenic potentialities of synthetic them have proved to be tumorigenic in animals. A number substituted hydrazines began in 1962, when it was shown of these chemicals are found today in the environment, in that the base compound hydrazine sulfate induced lung industry, in agriculture, and in medicine, and the human neoplasms in mice (1). Subsequently, a series of hydrazine population is exposed to a certain degree to some of them. derivatives were investigated in various laboratories for Hydrazine also occurs in nature in tobacco and tobacco tumor-inducing capabilities. These studies clearly demon smoke. The three other naturally occurring hydrazine strated that these chemicals are indeed powerful tumori compounds are N-methyl-N-formylhydrazine, which oc genic substances in mice, hamsters, and rats, due to their curs in the wild edible mushroom, Gyromitra esculenta, tumor-inducing abilities in the intestines, brain, lungs, and @-N-[―y-L(+)-glutamylJ-4-hydroxymethylphenyl blood vessels, liver, breasts, kidneys, etc. Now, we know of hydrazine and 4-hydroxymethylphenylhydrazine, whkh 19 hydrazine derivatives that have been shown to be tumor are found in the commonly eaten cultivated mushroom, inducers. These include, in addition to hydrazine (1, 32), Agaricus bisporus. Tumorigenesis studies with the natu methyl- (35, 40), 1,2-dimethyl- (6, 27, 36, 46, 52), 1,1- rally occurring hydrazines are in progress.
    [Show full text]
  • Handbook on the Management of Munitions Response Actions
    United States Office of Solid Waste and EPA 505-B-01-001 Environmental Protection Emergency Response May 2005 Agency Washington, DC 20460 EPA Handbook on the Management of Munitions Response Actions Interim Final 000735 EPA Handbook on The Management of Munitions Response Actions INTERIM FINAL May 2005 000736 This page intentionally left blank. 000737 Disclaimer This handbook provides guidance to EPA staff. The document does not substitute for EPA’s statutes or regulations, nor is it a regulation itself. Thus, it cannot impose legally binding requirements on EPA, States, or the regulated community, and may not apply to a particular situation based upon the circumstances. This handbook is an Interim Final document and allows for future revisions as applicable. 000738 This page intentionally left blank. 000739 TABLE OF CONTENTS GLOSSARY OF TERMS ..................................................... xiii ACRONYMS ...............................................................xxv 1.0 INTRODUCTION ..................................................... 1-1 1.1 Overview...................................................... 1-1 1.2 The Common Nomenclature ....................................... 1-2 1.3 Organization of This Handbook .................................... 1-5 2.0 REGULATORY OVERVIEW ........................................... 2-1 2.1 Regulatory Overview............................................. 2-2 2.1.1 Defense Environmental Restoration Program .................... 2-2 2.1.2 CERCLA ...............................................
    [Show full text]
  • Receptor Antagonist
    Europäisches Patentamt *EP001604983A1* (19) European Patent Office Office européen des brevets (11) EP 1 604 983 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C07D 217/26, C07D 403/06, 14.12.2005 Bulletin 2005/50 C07D 403/12, C07D 491/113, A61K 31/472, A61K 31/4741, (21) Application number: 04721010.9 A61P 43/00, A61P 29/00, (22) Date of filing: 16.03.2004 A61P 35/00, A61P 15/00, A61P 15/08, A61P 15/10, A61P 15/14, A61P 37/00, A61P 5/48, A61P 3/10, A61P 3/02, A61P 3/06, A61P 17/00, A61P 19/02, A61P 19/08 (86) International application number: PCT/JP2004/003496 (87) International publication number: WO 2004/083184 (30.09.2004 Gazette 2004/40) (84) Designated Contracting States: • HINUMA, Shuji AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tsukuba-shi, Ibaraki 3050821 (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • KANZAKI, Naoyuki, c/o Takeda Pharmaceutical Designated Extension States: Yodogawa-ku, Osaka-shi, Osaka (JP) AL LT LV MK • BANNO, Yoshihiro, c/o Takeda Pharmaceutical Yodogawa-ku, Osaka-shi, Osaka (JP) (30) Priority: 17.03.2003 JP 2003072709 • YOSHIDA, Hiromi Yuki-gun, Ibar aki 3002741 (JP) (71) Applicant: Takeda Pharmaceutical Company • MATSUMOTO, Hirokazu Limited Tsukuba-shi, Ibaraki 3050821 (JP) Osaka 541-0045 (JP) (74) Representative: Rickard, Timothy Mark Adrian (72) Inventors: Takeda Euro IP Department, • ITOH, Fumio 11-12 Charles II Street Tsukuba-shi, Ibaraki 3050821 (JP) London SW1Y 4QU (GB) (54) RECEPTOR ANTAGONIST (57) A compound represented by
    [Show full text]
  • 1-Alkyl--1-Phenylhydraz Ines: Their Synthesis And
    1-ALKYL--1-PHENYLHYDRAZ INES: THEIR SYNTHESIS AND OXIDATIVE REARRANGEMENT LACELAN MACLEAN B.Sc. Ph.D. Chemistry UNIVERSITY OF EDINBURGH 1977 To Irod parents ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. A.J. Bellamy for his advice, encouragement. and assistance throughout the duration of this study. I also thank the staff and fellow students of the Chemistry Department for their general helpfulness: in particular Dr. E. Stefaniuk and Mr. C.D. Anderson for supplying samples of 2-forxnylstilbene and pent-3-en-2--one respectively, and Mrs. J. Gorrie for her care in typing this thesis. Finally, I thank the Science Research Council for financial support. L.M. I have composed this thesis which describes my own work. Where the work of other authors is referred to, this is clearly indicated. ABSTRACT OF THESIS Some historical aspects of the oxidation reactions of 1,1-disub- stituted hydrazines are reviewed. In particular, the evidence for the proposed intermediacy of diazenes in these reactions is outlined and the nature of the oxidation products is considered in the broader context of diazene-generating reactions. The synthesis of l-alkyl-l-phenylhydrazines has been examined and several preparative procedures are discussed. The alkylation of the sodium salt of phenyihydrazine with the appropriate alkyl halides was found to be the most successful method; the hydrazines prepared in this way all had substituents of the allylic type. Purification (to remove residual phenyihydrazine) can be achieved by selective recrystallisation of the hydrochloride derivative from benzene. Some limitations of this general method are described. The oxidation studies were carried out using lead tetra-acetate and mercuric oxide.
    [Show full text]
  • HAZARD ASSESSMENT REPORT Hydrazine
    HAZARD ASSESSMENT REPORT Hydrazine CAS No. 302-01-2 Chemicals Evaluation and Research Institute (CERI), Japan This report was prepared by CERI in collaboration with National Institute of Technology and Evaluation (NITE) under the sponsorship of New Energy and Industrial Technology Development Organization (NEDO). Preface to the English Version of the Hazard Assessment Reports For six years from April 2001 to March 2007, Chemicals Evaluation and Research Institute (CERI/Japan) was engaged in a project named “Chemical Risk Assessment and Development of Risk Assessment Methods” under "Comprehensive Chemical Substance Assessment and Management Program" funded by New Energy and Industrial Technology Development Organization (NEDO/Japan). Under this project, about 150 chemical substances were selected among those designated as Class-I Chemicals in the Law for Pollutant Release and Transfer Register and Promotion of Chemical Management (hereafter PRTR Law)1). The selection criteria of these chemicals were their priorities for risk assessment based on their production levels and environmental/human health concerns. CERI developed the hazard assessment reports of these selected chemical substances based on the review and evaluation of the environmental and human health hazard data obtained from the existing evaluation documents released by the regulatory agencies and international organizations as well as those from the published scientific literatures. The data review and compilation of the reports were conducted according to the guidelines2) and the guidance manual2) developed for this project. The proposed hazard assessment reports by CERI were reviewed by the experts in the relevant scientific fields from both inside and outside this project for accuracy, relevance and completeness. The final reports were published in Japanese after going through the deliberation by the “Council on Chemical Substances” under the Ministry of Economy, Trade and Industry (METI/Japan), which is responsible for regulation of chemical substances in Japan.
    [Show full text]
  • Manual on Strategic Goods
    L 134/12 EN Official Journal of the European Union 29.5.2009 ANNEX I List referred to in Article 3 of this Regulation LIST OF DUAL-USE ITEMS This list implements internationally agreed dual-use controls including the Wassenaar Arrangement, the Missile Technology Control Regime (MTCR), the Nuclear Suppliers’ Group (NSG), the Australia Group and the Chemical Weapons Convention (CWC). CONTENTS Notes Definitions Acronyms and abbreviations Category 0 Nuclear materials, facilities and equipment Category 1 Special materials and related equipment Category 2 Materials Processing Category 3 Electronics Category 4 Computers Category 5 Telecommunications and ″information security″ Category 6 Sensors and lasers Category 7 Navigation and avionics Category 8 Marine Category 9 Aerospace and Propulsion 29.5.2009 EN Official Journal of the European Union L 134/13 GENERAL NOTES TO ANNEX I 1. For control of goods which are designed or modified for military use, see the relevant list(s) of controls on military goods maintained by individual Member States. References in this Annex that state ″SEE ALSO MILITARY GOODS CONTROLS″ refer to the same lists. 2. The object of the controls contained in this Annex should not be defeated by the export of any non-controlled goods (including plant) containing one or more controlled components when the controlled component or components are the principal element of the goods and can feasibly be removed or used for other purposes. N.B.: In judging whether the controlled component or components are to be considered the principal element, it is necessary to weigh the factors of quantity, value and technological know-how involved and other special circumstances which might establish the controlled component or components as the principal element of the goods being procured.
    [Show full text]
  • DMA-Damaging Activity in Vivo and Bacterial Mutagenicity of Sixteen Hydrazine Derivatives As Related Quantitatively to Their Carcinogenicity1
    [CANCER RESEARCH 41, 1469-1482, April 1981) 0008-5472/81 /0041-OOOOS02.00 DMA-damaging Activity in Vivo and Bacterial Mutagenicity of Sixteen Hydrazine Derivatives as Related Quantitatively to their Carcinogenicity1 Silvio Parodi, Silvio De Flora, Marco Cavanna, Albiana Pino, Luigi Robbiano, Carlo Bennicelli, and Giovanni Brambilla2 Departments of Pharmacology [M. C.. A. P., L. P., G. B.¡,Hygiene [S. D. F., C. B.]. and Oncology [S. P.¡,Genoa University. 16132 Genoa, Italy ABSTRACT enees existing in the carcinogenic potency of different chemi cals, qualitative statements of positivity or negativity in a short- Sixteen hydrazine derivatives (hydrazine, 1,1-dimethylhydra- term test are of very limited value for an assessment of the zine, 1,2-dimethylhydrazine, phenylhydrazine, procarbazine, carcinogenic risk. isoniazid, isocarboxazid, nialamide, 2,4-dinitrophenylhydra- In this work, we attempted a quantitative comparison of the zine, phenelzine, hydralazine, dihydralazine, carbamylhydra- potencies of 16 hydrazine derivatives in: (a) inducing DNA zine, mebanazine, iproniazid, and 1-carbamyl-2-phenylhydra- fragmentation in liver and lung of male Swiss mice, as evaluated zine) were tested for DNA-damaging activity by the alkaline by alkaline elution technique; (b) inducing mutations in the elution technique and for mutagenic activity in the Salmonella- Sa/mone/te-microsome test, both in the presence and in the microsome (Ames) test. The first nine compounds listed (56%) absence of S-9 mix; and (c) inducing pulmonary tumors in were found to induce a significant DNA fragmentation in the chronically treated mice. The significance of a quantitative liver and/or in the lung of i.p.-treated male Swiss mice.
    [Show full text]