Galileo Regio

Total Page:16

File Type:pdf, Size:1020Kb

Galileo Regio 180˚ 0˚ 55˚ –55˚ . Geb Ur Sulcus 210˚ 330˚ 150˚ . Latpon 30˚ 60˚ –60˚ . Namtar . Agrotes Elam Sulci Philae Sulcus . Nigirsu 70˚ –70˚ 240˚ 3 00˚ 60˚ 120˚ . Humbaba . Lagamal 80˚ . Wepwawet –80˚ . Teshub 90˚ 270˚ 90˚ 270˚ . Hathor Anubis . Bubastis Sulci . Neheh Dukug Sulcus 80˚ –80˚ Anzu . Adapa Etana . Gilgamesh Kishar . Aya 120˚ 60˚ 300˚ 240˚ . Ptah –70˚ . 70˚ Isis Ninkasi . Anu . Zaqar Gula . Tanit . Sapas . Achelous Sebek 60˚ –60˚ 30˚ 150˚ 330˚ 210˚ . Adad 55˚ –55˚ 0˚ 180˚ North Pole South Pole 180˚ 170˚ 160˚ 150˚ 140˚ 130˚ 120˚ 110˚ 100˚ 90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚ 20˚ 10˚ 0˚ 350˚ 340˚ 330˚ 320˚ 310˚ 300˚ 290˚ 280˚ 270˚ 260˚ 250˚ 240˚ 230˚ 220˚ 210˚ 200˚ 190˚ 180˚ 57˚ 57˚ Geb . Enlil . Asshur Elam . Sin Sulci Zu Fossae Ur Sulcus 50˚ 50˚ Aquarius Sulcus . Nun Sulci Kadi . Hershef . Upuant Mashu Sulcus Lakhmu Fossae Galileo . Mont Ur Nefertum Nippur Sulcus . Shu Byblus Sulcus Sulcus Philus Sulcus 40˚ Enki Catena 40˚ Nergal . Akitu Sulcus Tettu Facula . Lumha . Harakhtes . Halieus Abydos . Perrine Regio Gir . Khnum . Amon Facula Regio Kulla Catena . Anhur . Marius Nippur Sulcus M . Sati Ammura Zakar . 30˚ Bigeh Mor a 30˚ . s Mehit Min . h u Akhmin Facula Neith . Haroeris Sicyon Sulcus Ta-urt S Facula Edfu Xibalba Sulcus Nineveh Sulcus u Anshar Sulcus l c Facula . u Ba'al s Epigeus . Bau Diment . Lugalmeslam Epigeus . Ilah Atra-hasis Hermopolis . Facula 20˚ Khepri 20˚ . Ea . Heliopolis . Geinos Nidaba Nanshe . Facula Memphis Catena Seima . Busiris Regio Chrysor.. Aleyin . Keret Agreus . Hay-tau Selket Facula Buto . Tammuz Ningishzida Ruti Facula . Facula Uruk En-zu Sulcus . Tros U Coptos 10˚ . Mot m 10˚ Terah m Facula . Isimu a Catena T Thebes Siwah ia . m Facula Ninlil Barnard Regio a Facula Ombos . Antum t Sulcus Facula Phrygia Sulcus arsa L S . Khensu . El Mysia Sulci u Maa . Ishkur . Kittu l 0˚ c 0˚ u . S Dendera s u l . Mir c . u Anat Danel Misharu s Sh L u E a ru r . H g e Ninki Harpagia Sulcus Apophis p u c p r a s h a a s k g . S -10˚ -10˚ h S Lakhamu Fossa u u Kishar Sulcus Sippar Sulcus l S lc c Mysia Sulci u u u . s lc s Melkart s Serapis u . u S lc We-ila s . Ilus D u u Gad S . l . a Amset c Ninsum . r . u Mush d s a Erichthonius a l e n b u . r . Nanna Eshmun Nah-Hunte s Mysia Sulci A -20˚ -20˚ S h S u r u u l . p c Khumbam p u . Punt a k . s Bes . Enkidu S u l -30˚ c -30˚ u . s Hapi . Cisti Irkalla . Hedetet . Kingu ulci psu S A . Osiris . Khonsu Ashîma Seker . Tashmetum -40˚ Nicholson Regio -40˚ Apsu Sulci . Thoth . Nabu -50˚ -50˚ . Andjeti Nut . Humbaba -57˚ -57˚ 180˚ 170˚ 160˚ 150˚ 140˚ 130˚ 120˚ 110˚ 100˚ 90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚ 20˚ 10˚ 0˚ 350˚ 340˚ 330˚ 320˚ 310˚ 300˚ 290˚ 280˚ 270˚ 260˚ 250˚ 240˚ 230˚ 220˚ 210˚ 200˚ 190˚ 180˚ .
Recommended publications
  • The Planets BIBLIOGRAPHY 3–1
    3–1 The Planets BIBLIOGRAPHY 3–1 The aim of this chapter is to introduce the physics of planetary motion and the general properties of the planets. Useful background reading includes: • Young & Freedman: – section 12.1 (Newton’s Law of Gravitation), – section 12.3 (Gravitational Potential Energy), – section 12.4 (The Motion of Satellites), – section 12.5 (Kepler’s Laws and the Motion of Planets) • Zeilik & Gregory: – chapter P1 (Orbits in the Solar System), – chapter 1 (Celestial Mechanics and the Solar System), – chapter 2 (The Solar System in Perspective), – section 4-3 (Interiors), – section 4-5 (Atmospheres), – chapter 5 (The Terrestrial Planets), – chapter 6 (The Jovian Planets and Pluto). • Kutner: – chapter 22 (Overview of the Solar System), – section 23.3 (The atmosphere), – chapter 24 (The inner planets, especially section 24.3), – chapter 25 (The outer planets). Relative sizes of the Sun and the planets Venus Transit, 2004 June 8 Elio Daniele, Palermo The Inner Planets (SSE, NASA) The Outer Planets (SSE, NASA) 3–6 Planets: Properties ◦ a [AU] Porb [yr] i [ ] e Prot M/M R/R Mercury ' 0.387 0.241 7.00 0.205 58.8d 0.055 0.383 Venus ♀ 0.723 0.615 3.40 0.007 −243.0d 0.815 0.949 Earth 1.000 1.000 0.00 0.017 23.9h 1.000 1.00 Mars ♂ 1.52 1.88 1.90 0.094 24.6h 0.107 0.533 Jupiter X 5.20 11.9 1.30 0.049 9.9h 318 11.2 Saturn Y 9.58 29.4 2.50 0.057 10.7h 95.2 9.45 Uranus Z 19.2 83.7 0.78 0.046 −17.2h 14.5 4.01 Neptune [ 30.1 163.7 1.78 0.011 16.1h 17.1 3.88 (Pluto \ 39.2 248 17.2 0.244 6.39d 0.002 0.19) After Kutner, Appendix D; a: semi-major axis Porb: orbital period i: orbital inclination (wrt Earth’s orbit) e: eccentricity of the orbit Prot: rotational period M: mass R: equatorial radius 1 AU = 1.496 × 1011 m.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Hermeticism Pt 1\374
    "I wish to learn about the things that are, to understand their nature and to know God. How much I want to hear!" from [Discourse] of Hermes Trismegistus : Poimandres Hermeticism "The fifteen tractates of the Corpus Hermeticum, along with the Perfect Sermon or Asclepius, are the foundation documents of the Hermetic tradition. Written by unknown authors in Egypt sometime before the end of the third century C.E., they were part of a once substantial literature attributed to the mythic figure of Hermes Trismegistus, a Hellenistic fusion of the Greek god Hermes and the Egyptian god Thoth. This literature came out of the same religious and philosophical ferment that produced Neoplatonism, Christianity, and the diverse collection of teachings usually lumped together under the label "Gnosticism": a ferment which had its roots in the impact of Platonic thought on the older traditions of the Hellenized East. There are obvious connections and common themes linking each of these traditions, although each had its own answer to the major questions of the time." John Michael Greer : An Introduction to the Corpus Hermeticum "The Corpus Hermeticum landed like a well-aimed bomb amid the philosophical systems of late medieval Europe. Quotations from the Hermetic literature in the Church Fathers (who were never shy of leaning on pagan sources to prove a point) accepted a traditional chronology which dated "Hermes Trismegistus," as a historical figure, to the time of Moses. As a result, the Hermetic tractates' borrowings from Jewish scripture and Platonic philosophy were seen, in the Renaissance, as evidence that the Corpus Hermeticum had anticipated and influenced both.
    [Show full text]
  • Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data David A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E9, 5068, doi:10.1029/2001JE001821, 2002 Geologic mapping of the Chaac-Camaxtli region of Io from Galileo imaging data David A. Williams,1 Jani Radebaugh,2 Laszlo P. Keszthelyi,2 Alfred S. McEwen,2 Rosaly M. C. Lopes,3 Sylvain Doute´,3 and Ronald Greeley1 Received 13 November 2001; revised 22 April 2002; accepted 5 June 2002; published 26 September 2002. [1] We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io’s leading anti-Jovian hemisphere using regional resolution (186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/ pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys (1979) are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae.
    [Show full text]
  • High-Resolution Mosaics of the Galilean Satellites from Galileo SSI
    Lunar and Planetary Science XXIX 1833.pdf High-Resolution Mosaics of the Galilean Satellites from Galileo SSI. M. Milazzo, A. McEwen, C. B. Phillips, N. Dieter, J. Plassmann. Planetary Image Research Laboratory, LPL, University of Arizona, Tucson, AZ 85721; [email protected] The Galileo Spacecraft began mapping the Jovian orthographic projection centered at the latitude and system in June 1996. Twelve orbits of Jupiter and more longitude coordinates of the sub-spacecraft point to than 1000 images later, the Solid State Imager (SSI) is still preserve their perspective. Depending on the photometric collecting images, most far superior in resolution to geometry and scale, it may be necessary to apply a anything collected by the Voyager spacecraft. The data photometric normalization to the images. Next, the collected includes: low to medium resolution color data, individual frames are mosaicked together, and mosaicked medium resolution data to fill gaps in Voyager coverage, and onto a portion of the base map for regional context. Once very high-resolution data over selected areas. We have the mosaic is finished, it is checked to make sure that the tie been systematically processing the SSI images of the and match points were correct, and that the frames mesh. Galilean satellites to produce high-resolution mosaics and to We produce 3 final products: (i) an SSI-only mosaic, (ii) SSI place them into the regional context provided by medium- images mosaicked onto regional context, and (iii) the resolution mosaics from Voyager and/or Galileo. addition of a latitude-longitude grid to the context mosaic. Production of medium-resolution global mosaics is The purpose of this poster is to show the mosa- described in a companion abstract [1].
    [Show full text]
  • Appendix Contains a Timeline, Galileo Mission Overview (June 1996–December 1997), and a Set of Quick–Look Orbit Facts Sheets
    A P P E N D I X This appendix contains a timeline, Galileo Mission Overview (June 1996–December 1997), and a set of Quick–Look Orbit Facts sheets. The essentials of each orbit are listed. We have provided them as a handy reference while the orbiter’s tour progresses in the months to come. Appendix • Page A-1 Project Galileo Quick-Look Orbit Facts Appendix • Page A- 5 PROJECT GALILEO QUICK-LOOK ORBIT FACTS Fact Sheet Guide Title Quick Facts Indicates the target satellite and the number of the This section provides a summary listing of the orbit in the satellite tour. In this example, Ganymede is characteristics of the target satellite encounter as well the target satellite on the first orbit of the orbital tour. as the Jupiter encounter. PROJECT GALILEO QUICK-LOOK ORBIT FACTS PROJECT GALILEO QUICK-LOOK ORBIT FACTS Ganymede - Orbit 1 Ganymede - Orbit 1 Encounter Trajectory Quick Facts Ganymede Flyby Geometry +30 min Ganymede Encounter Earth Sun 27 June 1996 Ganymede C/A +15 min 06:29 UTC Ganymede C/A Altitude: 844 km Jupiter 6/27 6/26 133 times closer than VGR1 70 times closer than VGR2 Earth Speed: 7.8 km/s 0W -15 min Sun Jupiter C/A 6/28 Latitude: 30 deg N Longitude: 112 deg W 270W -30 min Perijove Io 28 June 1996 00:31 UTC Europa Jupiter Range: 11.0 Rj Time Ordered Listing Ganymede 6/29 Earth Range: 4.2 AU EVENT TIME (PDT-SCET) EVENT (continued) TIME (PDT-SCET) OWLT: 35 min Start Encounter 23 June 96 09:00 Europa C/A (156000 km) 18:22 Callisto Start Ganymede-1 real-time survey (F&P) 09:02 Europa global observation (NIMS/SSI) 18:43
    [Show full text]
  • The Global Colors of Ganymede As Seen by Galileo Ssi
    Lunar and Planetary Science XXX 1822.pdf THE GLOBAL COLORS OF GANYMEDE AS SEEN BY GALILEO SSI. T. Denk1, K.K. Khurana2, R.T. Pappalardo3, G. Neukum1, J.W. Head3, T.V. Rosanova4, and the Galileo SSI Team, 1DLR, Institute of Planetary Exploration, 12484 Berlin, Germany, e-mail: [email protected], 2UCLA, Los Angeles, CA, 3Brown University, Providence, RI, 4USGS, Flagstaff, AZ. Ganymede, as observed by the Galileo SSI Dark vs. bright and polar terrain. The bright camera, shows a banded, latitude-dependent color ("sulci") and dark ("regio") areas as well as the polar structure which is partly independent of geologic caps are the most obvious surface features on Ganyme- units. A correlation of the surface color with the de when seen at global scale from large distances. The magnetic field of Ganymede is reported, with areas albedo of the polar caps on the leading side is highest, exposed to the charged particles coming from the of the "regio" areas lowest, and of the "sulci" areas in Jovian environment often being redder than shielded between. (The polar caps of the trailing side will be terrain. The northern polar cap can be subdivided discussed below.) The bright polar caps are probably into a whitish area on the pole and the leading side, caused by water frost (e.g., Smith et al. 1981, Hillier and a darker, reddish area on the trailing side. The frost of the south-polar cap appears less opaque than in the north. The spectra of the dark "regio" areas are redder at the long SSI wavelength range than those of the brighter "sulci" terrains, but not significantly different at short SSI wavelengths.
    [Show full text]
  • Rampart Craters on Ganymede: Their Implications for Fluidized Ejecta Emplacement
    Meteoritics & Planetary Science 45, Nr 4, 638–661 (2010) doi: 10.1111/j.1945-5100.2010.01044.x Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement Joseph BOYCE1*, Nadine BARLOW2, Peter MOUGINIS-MARK1, and Sarah STEWART3 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96922, USA 2Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86001, USA 3Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 03 December 2008; revision accepted 12 February 2010) Abstract–Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters.
    [Show full text]
  • Chapter Vi Report of Divisions, Commissions, and Working
    CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting.
    [Show full text]
  • 02. Solar System (2001) 9/4/01 12:28 PM Page 2
    01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community.
    [Show full text]
  • For a Falcon
    New Larousse Encyclopedia of Mythology Introduction by Robert Graves CRESCENT BOOKS NEW YORK New Larousse Encyclopedia of Mythology Translated by Richard Aldington and Delano Ames and revised by a panel of editorial advisers from the Larousse Mvthologie Generate edited by Felix Guirand and first published in France by Auge, Gillon, Hollier-Larousse, Moreau et Cie, the Librairie Larousse, Paris This 1987 edition published by Crescent Books, distributed by: Crown Publishers, Inc., 225 Park Avenue South New York, New York 10003 Copyright 1959 The Hamlyn Publishing Group Limited New edition 1968 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of The Hamlyn Publishing Group Limited. ISBN 0-517-00404-6 Printed in Yugoslavia Scan begun 20 November 2001 Ended (at this point Goddess knows when) LaRousse Encyclopedia of Mythology Introduction by Robert Graves Perseus and Medusa With Athene's assistance, the hero has just slain the Gorgon Medusa with a bronze harpe, or curved sword given him by Hermes and now, seated on the back of Pegasus who has just sprung from her bleeding neck and holding her decapitated head in his right hand, he turns watch her two sisters who are persuing him in fury. Beneath him kneels the headless body of the Gorgon with her arms and golden wings outstretched. From her neck emerges Chrysor, father of the monster Geryon. Perseus later presented the Gorgon's head to Athene who placed it on Her shield.
    [Show full text]
  • La Nave Cassini Por Alberto Flandes
    El final de una gran dinastía: la nave Cassini Por Alberto Flandes Después de 13 años y 2 200 millones de kilómetros recorridos en 243 órbitas alrededor de Saturno, el 15 de septiembre de 2017 la nave Cassini ingresará en la atmósfera del planeta a decenas de miles de kilómetros por hora y se desintegrará. Ilustración: NASA/JPL-Caltech 16 ¿cómoves? Prohibida la reproducción parcial o total del contenido, por cualquier medio, sin la autorización expresa del editor. La nave Cassini es la última de una de Titán, la luna gigante de generación que debutó con las misiones Saturno, la trayectoria del Pioneer y Voyager en los años 70, y si- Voyager 2 se modificó para guió con la sonda Galileo, en los 90. No hacer un acercamiento a esta habrá otra igual por lo menos en varias luna y estudiarla con algo más décadas. de detalle. Las Pioneer 10 y 11 son naves ge- Tanto las naves Voyager como melas lanzadas en 1972 y 1973. Las Vo- las Pioneer, y la misma Cassini, yager 1 y 2, también gemelas, se lanzaron estaban obligadas a pasar también en 1977. Tenían como objetivo explorar el por Júpiter porque, aparte del interés Sistema Solar exterior más allá de la ór- en estudiar este planeta gigante, su Encélado bita de Marte y el cinturón de asteroides, atracción gravitacional las ayudaría Misión Cassini (NASA/JPL-Caltech/SSI) y alcanzar el medio interestelar. Su obje- a ganar velocidad para escapar de la tivo secundario era llevar un mensaje de atracción del Sol y así poder abandonar paz y hacerle saber a alguna civilización el Sistema Solar o llegar a Saturno en extraterrestre, en caso de encontrarla, el caso de Cassini.
    [Show full text]