The Origin of the Moon

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of the Moon A Digital Supplement to Astronomy Insights Astronomy Magazine © 2019 Kalmbach Media THE ORIGIN OF THE MOON December 2019 • Astronomy.com The Moon’s violent origin Apollo astronauts returned 842 pounds of Moon rocks to Earth. These precious samples have revealed a lot about the Moon’s past. BY ROBIN CANUP T HE MOON HAS ALWAYS BECKONED. Long before our ancestors realized “wandering stars” were actually planets sharing the solar system with Earth, they recognized the Moon was a sort of sibling to our planet. And surely one of the first big questions to arise was: How did the Moon come to be? Fifty years ago, humans accomplished one of our greatest feats of exploration when we set foot on the Moon. The Apollo program has been recognized as a political and technological triumph, but less widely appre- ciated is the scientific windfall brought by the valuable lunar samples Apollo astronauts returned to Earth. These relics have ultimately proven vital to answering the age-old question of how the Moon formed. Apollo rocks reveal the Moon’s past Our planet has largely erased the record of its ancient past, thanks to a continual reshap- ing of its surface through geological activity. But the Moon is essentially dormant, so its heavily cratered surface preserves a record of solar system events going back bil- lions of years. Thus, the Moon also opens a window into our planet’s primordial history. The Giant Impact Hypothesis posits the Moon formed after a Harrison Schmitt collects lunar samples from the surface of the collision between early Moon during Apollo 17 using a specialized scoop. Note how dirty Earth and a planet-sized Schmitt’s suit is, thanks to the cohesive nature of lunar regolith. impactor, as shown in NASA this artist’s concept. NASA/JPL-CALTECH 2 ASTRONOMY INSIGHTS • DECEMBER 2019 The Moon’s violent origin Apollo astronauts returned 842 pounds of Moon rocks to Earth. These precious samples have revealed a lot about the Moon’s past. BY ROBIN CANUP T HE MOON HAS ALWAYS BECKONED. Long before our ancestors realized “wandering stars” were actually planets sharing the solar system with Earth, they recognized the Moon was a sort of sibling to our planet. And surely one of the first big questions to arise was: How did the Moon come to be? Fifty years ago, humans accomplished one of our greatest feats of exploration when we set foot on the Moon. The Apollo program has been recognized as a political and technological triumph, but less widely appre- ciated is the scientific windfall brought by the valuable lunar samples Apollo astronauts returned to Earth. These relics have ultimately proven vital to answering the age-old question of how the Moon formed. Apollo rocks reveal the Moon’s past Our planet has largely erased the record of its ancient past, thanks to a continual reshap- ing of its surface through geological activity. But the Moon is essentially dormant, so its heavily cratered surface preserves a record of solar system events going back bil- lions of years. Thus, the Moon also opens a window into our planet’s primordial history. The Giant Impact Hypothesis posits the Moon formed after a Harrison Schmitt collects lunar samples from the surface of the collision between early Moon during Apollo 17 using a specialized scoop. Note how dirty Earth and a planet-sized Schmitt’s suit is, thanks to the cohesive nature of lunar regolith. impactor, as shown in NASA this artist’s concept. NASA/JPL-CALTECH WWW.ASTRONOMY.COM 3 One of the main goals of the Apollo Lunar samples GIANT IMPACT collected during the program was to distinguish among the Apollo missions, like HYPOTHESIS then-leading theories about how the those seen here, help reveal the Moon’s Moon formed: capture, co-formation, mysterious origin. and fission. The capture theory posited The small cubes the Moon formed independently from measure 0.4 inch Theia (1 cm) on a side and Earth Earth, only to be caught later by our are included for planet during a fortuitous close flyby. scale. NASA/DAVID KRING The co-formation theory, however, envi- sioned the Moon grew alongside Earth, with the pair accumulating mass from Earth to spin more slowly. This implies the same time, work on the competing enter into a stable orbit around the the Moon, while simultaneously leading the same source of material. The third the Moon formed much closer to Earth models proved increasingly unsatisfying. planet. However, a large enough impact to a five-hour day for Earth. Then, over model, fission, proposed ancient Earth than it is now. Precise measurements of The energy dissipation needed to cap- — one by a body roughly the size of the billions of years, tidal interactions trans- rotated so rapidly that it became unsta- the Moon’s position using surface reflec- ture the Moon intact during a close flyby target itself — distorts the shape of the ferred angular momentum to the Moon, ble, developing a bloated midsection and tors placed during the Apollo program seemed implausible, if not impossible. impacted planet, altering its gravitational which gradually pushed the Moon out- shedding material from its equator that subsequently confirmed this, verifying Models of the Moon’s co-formation interactions with the ejecta. ward and slowed Earth’s spin. This fits would eventually become the Moon. the Moon’s orbit expands by about alongside Earth struggled to explain why Additionally, researchers knew par- well both with Earth’s current 24-hour Apollo’s cache of lunar samples and 1.5 inches (3.8 centimeters) each year. the Moon would have a vastly different tially vaporized material can get its own day, as well as the present orbital distance Impact data introduced researchers to tantaliz- proportion of iron. Additionally, the cur- acceleration with the help of escaping of the Moon. ing new clues and constraints for these Giant Impact Hypothesis rent angular momentum of the Earth- gas, which changes the material’s trajec- three models. For instance, measuring As is not uncommon in science, the Moon system is too low to be explained tory. However, assessing the effects of Lingering questions the age of the oldest Apollo samples Apollo data, which was originally by a rotationally unstable Earth that this scenario required a new generation If the Moon were like other astronomi- showed that the Moon must have formed intended to test existing theories, instead flung off enough material to form the of computer simulations at a scale never cal bodies, for which we typically have some 4.5 billion years ago, only inspired a new one. In the mid- Moon. Although researchers carried out before modeled. With then-available only remote observations, at this point 60 million years or so after the 1970s, researchers pro- little quantitative work on the giant technology, such simulations were we would have likely declared the origin first grains in our solar sys- posed the Giant Impact impact model at first, it eventually extremely challenging, but researchers story of the Moon solved. In this case, tem condensed. This The Apollo Hypothesis. The novel emerged as the most promising theory eventually showed that giant impacts however, we have physical samples from means the Moon came data, which was scenario envisioned during a mid-1980s conference on lunar could produce orbiting material that both the Moon and Earth that we can to be during the same that at the end of its origin, largely due to the weaknesses of might assemble itself into the Moon. compare. Explaining the chemical rela- early epoch that saw originally intended to formation, Earth col- competing theories. Thanks to vast computational tionship of those samples has proven the birth of the planets. test existing theories, lided with another But could a giant impact really pro- improvements, researchers had identified to be the biggest challenge to the Giant From remote mea- planet-sized body. duce the Moon? The answer to this by the early 2000s what would later Impact Hypothesis, inspiring a flurry of surements of the instead inspired This produced a great question was not obvious at the time. become known as the “canonical” impact work over the past decade investigating Moon’s mass and radius, a new one. deal of debris in Earth’s From basic physics, scientists knew that theory: a low-velocity collision at about a how exactly the Moon came to be. researchers also know its orbit, which in turn ejecta launched from a spherical planet 45-degree angle by Theia, which had a The conundrum is this: In most giant, Debris density is anomalously low, coalesced into the Moon. should either escape entirely into space mass similar to that of Mars. Such an disk-forming impacts like those disk indicating it lacks iron. While The impacting planet would or plummet back to the planet’s surface. impact would produce an iron-depleted described above, it is mainly material about 30 percent of Earth’s mass is later be named Theia, in honor of the The ejected material should not simply disk of material massive enough to form from the outer portions of Theia that are trapped in its iron-rich core, the Moon’s Greek goddess who was the mother of slung into Earth orbit. But we cannot core accounts for only a few percent of its the Moon. know for certain what Theia’s composi- total mass. Despite this substantial dif- The new impact theory seemed to rec- tion was when it impacted Earth. If ference in iron, Apollo samples later oncile multiple lines of evidence. If the METEORIC CONFLICT Theia, like Mars or main-belt asteroids, revealed that mantle rocks from the material that formed the Moon origi- 3.5 Meteorites from Mars were made of different material than Debris coalesces and Vesta have different Moon and Earth have remarkably similar nated from the outer layers of Earth and compositions than the Earth, then ejecta coming from Theia Moon concentrations of oxygen.
Recommended publications
  • For Creative Minds
    For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to www.ArbordalePublishing.com and click on the book’s cover to explore all the links. Moon Observations The months as we know them (January, February, etc.) are solar, based on how many days it takes the earth to revolve around the sun, roughly divided by twelve. A moon-th, or lunar (moon) month, is based on how long it takes the moon to orbit around the earth. The phases (shapes) of the moon change according to its cycle as it rotates around the earth, and the position of the moon with respect to the rising or setting sun. This cycle lasts about 29 ½ days. A (moon) month starts on “day one” with a new moon. The sun and the moon are in the same position and rise and set together. We can’t see the new moon. New Moon The moon rises and sets roughly 50 minutes later each day. The moon appears to “grow” or it waxes each day from a new moon to a full moon. The waxing moon’s bright side points at the setting Waxing sun and can be seen in the late afternoon on a clear day. Crescent A crescent moon is between new and half (less than half full), and may be waxing or waning. First Quarter The half-moon waxing or first quarter moon occurs about a week after the new moon.
    [Show full text]
  • Bombardment History of the Moon: What We Think We Know and What We Don’T Know Donald Bogard, ARES-KR, NASA-JSC, Houston, TX 77058 ([email protected])
    Planetary Chronology Workshop 2006 6001.pdf Bombardment History of the Moon: What We Think We Know and What We Don’t Know Donald Bogard, ARES-KR, NASA-JSC, Houston, TX 77058 ([email protected]) Summary. The absolute impact history of and 14 soils show a decrease in the number of the moon and inner solar system can in principle beads with age from ~4 Gyr ago to ~0.4 Gyr ago, be derived from the statistics of radiometric ages followed by a significant increase in beads with of shock-heated planetary samples (lunar or age <0.4 Gyr (2). These authors concluded that meteoritic), from the formation ages of specific the projectile flux had decreased over time, impact craters on the moon or Earth; and from followed by a significant flux increase more age-dating samples representing geologic surface recently. However, this data set has also been units on the moon (or Mars) for which crater interpreted to represent variable rates of impact densities have been determined. This impact melt production as a function of regolith maturity history, however, is still poorly defined. (3). In another study, measured ages of 21 small The heavily cratered surface of the moon is a impact melt clasts in four lunar meteorites from testimony to the importance of impact events in the lunar highlands suggested four to six impact the evolution of terrestrial planets and satellites. events over the period ~2.5-4.0 Gyr ago (4). Lunar impacts range in scale from an early Clearly considerable uncertainty exists in the intense flux of large objects that defined the projectile flux over the past ~3.5 Gyr and whether surface geology of the moon, down to recent, this flux has been approximately constant or smaller impacts that continually generate and exhibited appreciable shorter-term variations.
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • Exploring the Bombardment History of the Moon
    EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Planetary Surfaces
    Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I].
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • The Association Between the Lunar Cycle and Patterns
    THE ASSOCIATION BETWEEN THE LUNAR CYCLE AND PATTERNS OF PATIENT PRESENTATION TO THE EMERGENCY DEPARTMENT. Grant Dudley Futcher Student number: 7709742 A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Medicine in Emergency Medicine. Johannesburg, 2015 i DECLARATION I, Grant Dudley Futcher, declare that this research report is my own work. It is being submitted for the degree of Master of Science in Medicine (Emergency Medicine) in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University. Signed on 25th day of August 2015 ii DEDICATION This work is dedicated to my children, Charis, Luke and Jarryd, who have patiently endured their father’s choice of medical discipline. iii PUBLICATIONS ARISING FROM THIS STUDY Nil iv ABSTRACT Aim: To determine any association between the lunar synodic or anomalistic months and the nature and volume of emergency department patient consultations and hospital admissions from the emergency department (ED). Design: A retrospective, descriptive study. Setting: All South African EDs of a private hospital group. Patients: All patients consulted from 01 January 2005 to 31 December 2010. Methods: Data was extracted from monthly records and statistically evaluated, controlling for calendric variables. Lunar variables were modelled with volumes of differing priority of hospital admissions and consultation categories including; trauma, medical, paediatric, work injuries, obstetrics and gynaecology, intentional self harm, sexual assault, dog bites and total ED consultations. Main Results: No significant differences were found in all anomalistic and most synodic models with the consultation categories.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • A Zircon U-Pb Study of the Evolution of Lunar KREEP
    A zircon U-Pb study of the evolution of lunar KREEP By A.A. Nemchin, R.T. Pidgeon, M.J. Whitehouse, J.P. Vaughan and C. Meyer Abstract SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages <4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane. Introduction One of the most enigmatic features of the geology of the Moon is the presence of high concentrations of large ion lithophile elements in clasts from breccias from non mare regions. This material, referred to as KREEP (1) from its high levels of K, REE and P, also contains relatively high concentrations of other incompatible elements including Th, U and Zr. Fragments of rocks with KREEP trace element signatures have been identified in samples from all Apollo landing sites (2). The presence of phosphate minerals, such as apatite and merrillite (3); zirconium minerals, such as zircon (4), zirconolite (5) and badelleyite (6), and rare earth minerals such as yttrobetafite (7), are direct expressions of the presence of KREEP. Dickinson and Hess (8) concluded that about 9000 ppm of Zr in basaltic melt is required to saturate it with zircon at about 1100oC (the saturation concentration increases exponentially with increasing temperature).
    [Show full text]
  • How Earth Got Its Moon Article
    FEATURE How Earth Got its MOON Standard formation tale may need a rewrite By Thomas Sumner he moon’s origin story does not add up. Most “Multiple impacts just make more sense,” says planetary scientists think that the moon formed in the earli- scientist Raluca Rufu of the Weizmann Institute of Science in est days of the solar system, around 4.5 billion years Rehovot, Israel. “You don’t need this one special impactor to Tago, when a Mars-sized protoplanet called Theia form the moon.” whacked into the young Earth. The collision sent But Theia shouldn’t be left on the cutting room floor just debris from both worlds hurling into orbit, where the rubble yet. Earth and Theia were built largely from the same kind of eventually mingled and combined to form the moon. material, new research suggests, and so had similar composi- If that happened, scientists expect that Theia’s contribution tions. There is no sign of “other” material on the moon, this would give the moon a different composition from Earth’s. perspective holds, because nothing about Theia was different. Yet studies of lunar rocks show that Earth and its moon are “I’m absolutely on the fence between these two opposing compositionally identical. That fact throws a wrench into the ideas,” says UCLA cosmochemist Edward Young. Determining planet-on-planet impact narrative. which story is correct is going to take more research. But the Researchers have been exploring other scenarios. Maybe answer will offer profound insights into the evolution of the the Theia impact never happened (there’s no direct evidence early solar system, Young says.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]