How Earth Got Its Moon Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimization Studies of the CERN-ISOLDE Neutron Converter and Fission Target System
Optimization Studies of the CERN-ISOLDE neutron converter and fission target system Raul Luís1, José G. Marques, Thierry Stora, Pedro Vaz, Luca Zanini 1ITN – Estrada Nacional 10, 2686-953, Sacavém, Portugal 2CERN – CH-1211, Genève 23, Switzerland 3PSI – 5232 Villigen, Switzerland E-mail: [email protected] Abstract. The ISOLDE facility at CERN has been one of the leading isotope separator on-line (ISOL) facilities worldwide since it became operative in 1967. More than 1000 isotopes are available at ISOLDE, produced after the bombardment of various primary targets with a pulsed proton beam of energy 1.4 GeV and an average intensity of 2 μA. A tungsten solid neutron converter has been used for ten years to produce neutron-rich fission fragments in UCx targets. In this work, the Monte Carlo code FLUKA and the cross section codes TALYS and ABRABLA were used to study the current layout of the neutron converter and fission target system of the ISOLDE facility. An optimized target system layout is proposed, which maximizes the production of neutron-rich isotopes and reduces the contamination by undesired proton-rich isobars. The studies here reported can already be applied to ISOLDE and will be of special relevance for the future facilities HIE-ISOLDE and EURISOL. 1. Introduction One of the most efficient ways to study nuclei far from stability is the Isotope Separation On-Line (ISOL) method, in which a beam of high-energy hadrons hits a thick target, producing a great variety of radioactive products through different processes like fission, spallation and fragmentation [1]. The resulting nuclides can be studied after they are extracted from the target, ionized and mass separated. -
Concurrent Reduction and Distillation; an Improved Technique for the Recovery and Chemical Refinement of the Isotopes of Cadmium and Zinc*
If I CONCURRENT REDUCTION AND DISTILLATION; AN IMPROVED TECHNIQUE FOR THE RECOVERY AND CHEMICAL REFINEMENT OF THE ISOTOPES OF CADMIUM AND ZINC* H. H. Cardill L. E. McBride LOHF-821046—2 E. W. McDaniel DE83 001931 Operations Division Oak Ridge National Laboratory Oak Ridge, Tennessee 3 7830 .DISCLAIMER • s prepared es an accouni oi WOTk sconsQ'ed by an agency of itie United Slates Cover r "iiit?3 Stilt 65 Gov(?fnft»gn ^ ri(jt ^nv aQcncy Tllf GO* ^or rlny O^ tt^^ir ^rnployut^. TigV MASTER lostifl. ion, apod'aiuj pioiJut;. <y vned nghtv Reference hcein xc any v>t^-'T*t. ^ Dv ^.r^de narno, tf^Oernafk^ mir'ij'iJClureT. or otrierw «d <Jo*^ •nenaalion. or liivONng bv 'Vhe United _^_ . vs and opinions of authors enp'«i«] herein do noi IOM t' irip UnitK* Stales Govefnrneni c a^v agency For presentation at the 11th World Conference of the International Nuclear Target Development Society, October 6-8, 1982, Seattle, Washington. By acceptance of this article, the publisher or recipient acknowledge* the U.S. Govarnment's right to retain a nonaxclusiva, royalty-frtta license in and to any copyright covering tha article. NOTICE P0T09_0£-Jfns,J^SPQRT_JfgE_Il,LESIBLE. I has been reproauce.1 from the best available aopy to pensit the broadest possible avail- ability* *Research sponsored by the Office of Basic Energy Science, U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Co rpcration,, DISTRIBUTION OF THIS DOCUMEHT 18 UNLIMITED ' CONCURRENT REDUCTION AND DISTILLATION - AY. IMPROVED TECHNIQUE FOR THE RECOVERY AND CHEMICAL REFINEMENT OF THE ISOTOPES OF CADMIUM AND ZINC H. -
I, Bichard Lewis Woodward, Was Horn in Kansas City
AUTOBIOGRAPHT I, Bichard Lewis Woodward, was horn in Kansas City, Missouri, December 11, 1913 - My elementary and secondary school education was in the public schools of Kansas City and St . Louis, Missouri. In June, 1935. I received the degree Bachelor of Science in Civil Engineering from Washington University. I received the degree Master of Science from Harvard University in June, 1948. Since 1937 I have been an officer of tie United States Public Health Service . Under the auspices of this organisation, I have studied in the Department of Physics at the Ohio State University since June, 1949- - 42 - ACKNOWLEDGMENTS I wish to acknowledge the assistance of my adviser Prof M. L. Pool, of my coworker Mr. S . C. Fultz, of our chemist Mr. James McGlotten, and of Mr. Claude McWhlrt and other members of the staff of the Physics Department shops. - hi - BLBLIOGEAPHT 1. J. H. Buck, Fhys. Rev., 59, 1025 (1938) 2. A. Mukerji. P. Preiswerk, Felv . Phys. Acta, 23, 516 (1950) 3* G • T. Seahorg, I. Perlman, Rev. Mod. Phys., 20, 585 (1998) 9-. G. E. Valley, R. 1. McCreary, Phys. Rev., 5 6, 863 (1939) 5 . S. Sag&ne, S . Kojina, G. Miyamoto, Fhys. Math. Soc . Japan, Proc., 21, 728 (1939) 6 . E. C. Barker, Plutonium Proj . Report Mon. P-269, 8 (199-7) 7. S . E. Haynes, Phys. Rev., 79, 9-23 (1998) 8 . I*. M. Langer, R. D. Moffat, Ihys . Rev., 80, 6 51 (1950) 9. A. C. Helmholz, Phys. Rev., 60, 9-15 (1991) 10. J. M. Cork, L. N. Hadley, Jr., C. V. -
Way-Out World
Non-fiction: Way-Out World Way-Out World By Hugh Westrup What strange satellite circles the visible edge of the solar system? The detonation of a single nuclear bomb can do catastrophic damage. So imagine the power of more than one bomb—not just two or 10 or even 10 million, but 10 billion. Astronomers have evidence that a collision with enough force to equal the explosion of 10 billion nuclear bombs once happened in the solar system. Out of that crack-up was born one of the oddest things in space. Its name is Haumea. “There is so much to learn about this newfound object, and we keep finding surprises,” says Mike Brown, an astronomer at the California Institute of Technology. “It’s just crazy.” ODD Balls The solar system is always changing. What astronomers know about it is changing even faster. Advances in telescope technology keep deepening their view of space, continually revealing new objects and new features on old objects. One example of that change in perspective is Pluto. For more than 70 years, astronomers considered it the ninth planet. Then, in 2007, the International Astronomical Union reclassified it as a dwarf planet. Like a planet, a dwarf planet orbits the sun. It also has enough mass, and therefore enough gravity, to give it a rounded shape. But it lacks pull; its gravity isn’t strong enough to clear its neighborhood of most smaller objects the way that planets do. A year later Pluto was reclassified again. Now it’s a plutoid. A plutoid is simply a dwarf planet that exists beyond Neptune, the eighth planet. -
Waves, Sampling) Our Solar System: Sizes Are to Scale; Distances Are Not!
OCN 201: Origin of the Earth and Oceans Waimea Bay, Jan 2002 Periodic Table of the Elements Noble IA IIA IIIA IVA VA VIA VIIA VIIIA IB IIB IIIB IVB VB VIB VIIB gases H He Li Be B C N O FNe Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr RbSrY ZrNbMoTcRuRhPdAgCdInSnSbTeI Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Lanthanides: Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinides: Th Pa U Sun Earth Oceans Atmosphere Life H, He Fe, O, Si, Mg O, H N, O H2O, C Ni, Ca, S, Al Cl, Na, Mg, S, Ca, K Ar, H2O, CO2 N, P With only a few exceptions, each of these reservoirs is made up of a different set of elements. This implies CHEMICAL DIFFERENTIATION. CHEMICAL DIFFERENTIATION: --large-scale separation of chemical elements on the basis of their physical and chemical properties, by a variety of processes Solar System:Sun Inner rocky planets (Mercury, Venus, Earth, Mars, asteroid belt) Outer gas-giant planets (Jupiter, Saturn) Outer ice-giant planets (Uranus, Neptune) Earth: *Core of iron *Mantle and crust of rock Oceans Atmosphere (*How do we know? Meteorites, bulk density, seismic waves, sampling) Our Solar System: sizes are to scale; distances are not! Inner rocky planets: Mercury, Venus, Earth, Mars, asteroid belt Outer gas-giants: Jupiter, Saturn Outer ice-giants: Uranus, Neptune (Pluto is rocky and about the size of Earth’s Moon. -
April 15, 2017 How Earth Got Its Moon
April 15, 2017 IN HIGH SCHOOLS How Earth Got its Moon Article-Based Observation Directions: After reading the article “How Earth got its moon,” answer these questions: 1. What was the moon-formation idea proposed in the mid-1970s? 2. Why does the author describe Earth’s moon as an “oddball”? 3. A study in 2001 analyzed rocks collected during the Apollo mission to the moon. How did these lunar rocks support the hypothesis that the moon was formed by multiple impacts and contradict the giant-impact hypothesis? 4. What did planetary scientist Raluca Rufu and her colleagues learn recently that supports the multi-impact hypothesis? Explain how their findings support this hypothesis and why scientists were not able to figure this out previously. 5. According to planetary scientist Nicolas Dauphas, how does the isotopic combination of materials that make up Earth tell a story that supports the idea of a single impact? What does Dauphas say supplied the Earth’s mass? BLACKLINE MASTER 1, P. 1 6. Planetary scientist Sarah Stewart states that we need to test all the new ideas about the moon’s formation. Describe the recent test that used temperature to help explain how the moon formed, and explain which moon-formation idea is consistent with the results. 7. Explain the similarities and differences between the graphic titled “Making moons” and the com- puter simulation images shown below. R. CANUP/SWRI Making moons The multi-impact hypothesis says several small hits sent terrestrial materials into orbit that eventually formed our large moon. First Disk of debris Moonlet drifts Subsequent Disk formation Moonlets merge in impact forms outward impact far-out orbit (Repeat) Millions Days Centuries of years Days Centuries R. -
Beta Decay of Neutron-Rich Isotopes of Zinc and Gallium
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2015 Beta decay of neutron-rich isotopes of zinc and gallium Mohammad Faleh M. Al-Shudifat University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Commons Recommended Citation Al-Shudifat, Mohammad Faleh M., "Beta decay of neutron-rich isotopes of zinc and gallium. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3288 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Faleh M. Al-Shudifat entitled "Beta decay of neutron-rich isotopes of zinc and gallium." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. Robert Grzywacz, Major Professor We have read this dissertation and recommend its acceptance: Soren Sorensen, Thomas Papenbrock, Jason P. Hayward Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Beta decay of neutron-rich isotopes of zinc and gallium A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Mohammad Faleh M. -
Light Hydrogen in the Lunar Interior: No One Expects the Theia Contribution
EPSC Abstracts Vol. 13, EPSC-DPS2019-2056, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Light Hydrogen in the Lunar Interior: No One Expects the Theia Contribution Steven J. Desch (1), Katharine L. Robinson (2) (1) School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, (2) Lunar and Planetary Institute, Houston, TX, USA ([email protected]) Abstract × 1021 kg) solar nebula hydrogen with D/H=21 × 10-6, combined with ~8 oceans of chondritic water with D/H=140 × 10-6, leading to some materials with The Moon is thought to have formed after a planetary -6 embryo, known as Theia, collided with the proto- D/H=120 × 10 (δD≈-230‰) that should reside at the Earth over 4.5 billion years ago. For the first time, we Earth’s core-mantle boundary. The discovery of samples with δD≈-218‰ in terrestrial lavas sampling use H isotopes to help constrain the composition of deep-mantle plumes [8] may support this hypothesis. Theia. We suggest the Moon incorporated very low- D/H (δD ≈ -750‰) hydrogen derived from solar nebula H2 ingassed into the magma ocean of a large (~0.4 ME), enstatite chondrite-like planetary embryo that was largely devoid of chondritic water. These new constraints have profound implications for the Moon-forming impact and the evolution of the Earth- Moon system. 1. Introduction Apatite [Ca5(PO4)3(OH,F,Cl) is the only water- bearing mineral found in lunar samples. Hydrogen isotopic measurements of apatites in lunar rocks show that there seem to be multiple H reservoirs with diverse D/H ratios within the lunar interior, e.g. -
Launch Uncertainty
GRANT R. CATES Grant R. Cates is a senior engineering specialist at The Aerospace Corporation in Chantilly, Virginia. He has more than 30 years of experience in space launch and simulation modeling. His recent work and publications have focused on the use of discrete event simulation to advise the Air Force on future launch rates and NASA on the space shuttle, the International Space Station, human exploration of the solar system, and launch probability. Cates received a bachelor’s degree in engineering science from Colorado State University and a master’s degree and Ph.D. in industrial engineering from the University of Central Florida. DANIEL X. HOUSTON Daniel X. Houston is a senior project leader at The Aerospace Corporation in El Segundo, California. He applies qualitative and quantitative analytical methods, including statistics and simulation, to industrial and software engineering processes. Houston received a B.S. in mechanical engineering from The University of Texas at Austin and a master’s degree and Ph.D. in industrial engineering at Arizona State University. His publications include statistical modeling and simulation of software development processes, software process improvement, and the management of software projects, with a focus on risk, product quality, and economics. DOUGLAS G. CONLEY Douglas G. Conley is chief engineer of Launch Program Operations at The Aerospace Corporation in El Segundo, California. He has been engaged in domestic and international space launch programs spacecraft systems engineering, and mission assurance for over 35 years, mostly in the commercial realm before joining Aerospace in 2016. Conley received a B.S. in engineering and applied science from Caltech and a master’s degree in dynamics and control from the University of California, Los Angeles. -
The Anatomy of the Moon
The anatomy of the Moon The Moon is about one quarter the diameter of 384,000 km The hidden side of the Moon the Earth. This makes it The Moon takes 27.3 days to revolve once – the same one of the biggest moons The Moon is about 384,000 km from the Earth and is amount of time it takes for the Moon to orbit the Earth. in the Solar System and slowly moving further away (about 3.8 cm a year). When it This is why we only ever see one side of the Moon. the biggest compared to 3474 was first formed it was only 23,000 km away. its host planet. km 12,756 km Spacecraft have seen its hidden side and it looks very different to the Moon we are used to seeing! Although it is difficult to see when you look up at the The lighter coloured areas are the lunar highlands, Moon, the lunar surface is actually full of interesting called terrae (which means ‘land’ in latin) and the dark features. It is covered with craters created by millions of areas are relatively flat plains, called maria (which years of impacts with meteorites, asteroids and comets. means ‘sea’), that are actually ancient flows of lava. The Moon does have an atmosphere The Moon only has but it is very thin – more than a about 1% of the million million times less dense Earth’s mass and than the Earth’s. Plato its gravity is crater This means that only 0.17G the footprints Sea of (Earth’s is 1G). -
Evolution of Nuclear Structure in Neutron-Rich Odd-Zn Isotopes and Isomers ∗ C
Physics Letters B 771 (2017) 385–391 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers ∗ C. Wraith a, X.F. Yang b, , L. Xie c, C. Babcock a, J. Bieron´ d, J. Billowes c, M.L. Bissell b,c, K. Blaum e, B. Cheal a, L. Filippin f, R.F. Garcia Ruiz b,c, W. Gins b, L.K. Grob g, G. Gaigalas h, M. Godefroid f, C. Gorges i, H. Heylen b, M. Honma j, P. Jönsson k, S. Kaufmann g, M. Kowalska l, J. Krämer i, S. Malbrunot-Ettenauer l, R. Neugart e,g, G. Neyens b, W. Nörtershäuser g,i, F. Nowacki m, T. Otsuka n, J. Papuga b, R. Sánchez o, Y. Tsunoda p, D.T. Yordanov q a Oliver Lodge Laboratory, Oxford Street, University of Liverpool, Liverpool, L69 7ZE, United Kingdom b KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium c School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom d Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiello´nski, ul. prof. Stanisława Łojasiewicza 11, Kraków, Poland e Max-Plank-Institut für Kernphysik, D-69117 Heidelberg, Germany f Chimie Quantique et Photophysique, Université Libre de Bruxelles, B-1050 Brussels, Belgium g Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany h Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio˙ av. 3, LT-10222 Vilnius, Lithuania i Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany j Center for Mathematical Sciences, University of Aizu, Tsuruga, -
Giant Impact: Accretion and Evolution of the Moon Implications for Earth, Mars and the Solar System As a Whole1
FEATURES GIANT IMPACT: ACCRETION AND EVOLUTION OF THE MOON IMPLICATIONS FOR EARTH, MARS AND THE SOLAR SYSTEM AS A WHOLE1 1 2 3 l J. Geiss , M.C.E. Huber and A.P. Rossi – DOI: 10.1051/epn/2014403 l 1 International Space Science Institute, Bern l 2 Jungfraujoch Commission – Swiss Academy of Sciences l 3 Jacobs University Bremen Our planetary system has not always been as serene as it appears to us today. Exploration of the Moon has shown that disastrous collisions and violent epochs have occurred in the early part of its history. Indeed, a collision of the Earth with another planet – the Giant Impact – is the most widely accepted theory for the origin of the Moon. Several hundred million years later, Moon and Earth received a Late Heavy Bombardment that created the large basins on the Moon and must have devastated the atmosphere and hydrosphere of the Earth. 24 EPN 45/4 Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2014403 GIANT IMpact FEATURES he exact place and time of such disastrous events are impos- sible to accurately retrace in time, but that does not mean they are unlikely. It has been proposed, for example, that the Thigh density of Mercury is due to a giant impact as well, or that Uranus and Neptune migrated outwards, ravaging small-object populations until reaching their final positions several hundred million years after their formation. Also the existence of extra-solar “Hot Jupiters” – large planets circling close to a star – is explained by planet migration.