bioRxiv preprint doi: https://doi.org/10.1101/719211; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Highly reduced genomes of protist endosymbionts show evolutionary convergence Emma E. George1,4,*, Filip Husnik1,4, Daria Tashyreva2,4, Galina Prokopchuk2,4, Aleš Horák2,3, Waldan K. Kwong1, Julius Lukeš2,3,5, and Patrick J. Keeling1,5 1 University of British Columbia, Department of Botany, Vancouver, Canada 2 Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic 3 Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic 4 Equal contributions 5 Senior authors * Correspondence:
[email protected] Keywords: Endosymbiosis, genome reduction, convergent evolution, Rickettsiaceae, Holosporaceae, diplonemid, T6SS Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1–4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best- studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their more diverse hosts are largely unexplored [5–7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly-studied but abundant and diverse heterotrophic protists [8–10]. The endosymbionts come from two intracellular families from different orders, Rickettsiaceae and Holosporaceae, that have invaded diplonemids multiple times, and their genomes have converged on an extremely small size (605–632 kbp), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism).