Chassis Layout of an Autonomous Truck a Transportation Concept for the Mining Industry
Total Page:16
File Type:pdf, Size:1020Kb
Chassis Layout of an Autonomous Truck A Transportation Concept for the Mining Industry Johannes Dahl Gabriél-André Grönvik Mechanical Engineering, masters level 2016 Luleå University of Technology Department of Engineering Sciences and Mathematics Preface This thesis was performed by Johannes Dahl and Gabriél-André Grönvik at Scania. Johannes was studying Mechanical Engineering at Luleå University of Technology and has experience in product development and great knowledge in machine design and components. Gabriél was studying Vehicle Engineering at KTH and has competence in vehicle concepts, components and dynamics. The authors want to thank the supervisors Jenny Jerrelind at KTH, Torbjörn Lindbäck at LTU and Måns Lundberg at Scania for their support and advices. We also want to thank other personnel at Scania; our boss Christian Lauffs, Eric Falkgrim and Jan Dellrud for running this project, Mikael Wågberg and Daniel Bergqvist for sharing their expertise about the mining industry and everyone that we have been in contact with at Scania for exchanging many great ideas. Finally, we want to thank all staff at RTMX for great support, good advice and involvement. I II Abstract Autonomous driving might increase safety and profitability of trucks in many applications. The mining industry, with its enclosed and controlled areas, is ideal for early implementation of autonomous solutions. The possibility of increased productivity, profitability and safety for the mining industry and the mining area as a ground for development could, through collaboration, result in many benefits for both mining companies and truck manufactures. Scania must investigate how these autonomous vehicles should be constructed. The project goal is thereby to develop a chassis layout concept for an autonomous truck. The concept should improve profitability and safety for transportation of materials within the mining industry while minimizing the introduction of new components to Scania. The chosen approach is based on the Ulrich & Eppinger method for product development including generation and selection of concepts. Product requirements were specified from identified customer needs. The generated concepts were evaluated against these requirements and comparisons were performed with weighted matrices. Some benefits of the final chassis layout concept are a higher load carrying capacity, more robust component placement and higher ground clearance. The vehicle concept would also be able to operate in underground mines with low roof clearance which could open new market segments for Scania. However, the concept requires development to gain higher performance on load carrying components in the chassis front. The suggested concept shows that Scania could build and deliver autonomous mining vehicles with optimized chassis layouts based on Scania’s existing components within a near future. Keywords Autonomous, cab-less, driver-less, dump truck, chassis layout, hauling, mining transportation, underground mines, open-pit mines, mining industry. III IV Sammanfattning Autonom körning kan öka säkerheten och lönsamheten för lastbilar i många applikationer. Gruvindustin, med dess avgränsade och kontrollerade områden, är ideal för tidig implementation av autonoma lösningar. Möjligheten till ökad produktivitet, lönsamhet och säkerhet med gruvindustrin och gruvområderna som plats för utveckling kan, genom samarbete, resultera i många fördelar för både gruvföretagen och lastbilstillverkarna. Scania måste därmed undersöka hur dessa autonoma fordon bör konstrueras. Projektmålet är därmed att ta fram ett koncept på en chassilayout för en autonom lastbil. Konceptet bör öka lönsamheten och säkerheten för transport av material inom gruvindustrin medan introduktionen av, för Scania, nya komponenter minimeras. Det valda angreppssättet är baserat på Ulrich & Eppingers metod för produktutveckling inkluderande generering och urval av koncept. Produktkraven specificerades utifrån de identifierade kundkraven. De framtagna koncepten utvärderades mot dessa krav och jämförelser genomfördes med viktade matriser. Några fördelar hos det slutgiltiga chassilayoutskonceptet är högre lastkapacitet, mer robust komponentplacering och högre markfri gång. Fordonskonceptet har även möjlighet att köra i underjordiska gruvor med låg takhöjd vilket kan öppna upp nya marknadssegment för Scania. Dock kräver konceptet utveckling för att nå högre prestanda hos lastbärande komponenter i främre chassi. Det föreslagna konceptet visar att Scania skulle kunna bygga och leverera autonoma gruvbilar med optimerad chassilayout baserat på Scanias existerande komponenter inom en snar framtid. Nyckelord Autonom, hyttlös, förarlös, gruvbil, chassilayout, gruvtransport, underjordsgruvor, dagbrott, gruvindustri. V VI Contents 1 Background ......................................................................................................................... 1 2 Problem formulation ........................................................................................................... 3 2.1 Project aim and goals ................................................................................................... 3 2.2 Project delimitations .................................................................................................... 3 2.3 Risk analysis ................................................................................................................ 3 3 Approach ............................................................................................................................. 5 4 Market analysis ................................................................................................................... 7 4.1 The mining industry ..................................................................................................... 7 4.2 Operating conditions .................................................................................................. 10 4.3 Benchmarking ............................................................................................................ 11 4.4 Customer needs .......................................................................................................... 20 4.5 Legal requirements .................................................................................................... 20 4.6 Market opportunities .................................................................................................. 20 5 Product requirements ........................................................................................................ 23 5.1 Mission statement ...................................................................................................... 23 5.2 Function degradation ................................................................................................. 23 5.3 Product specification ................................................................................................. 25 6 Concept design .................................................................................................................. 27 6.1 Technical specification .............................................................................................. 27 6.2 Wheel configuration and powertrain ......................................................................... 28 6.3 First concept selection ............................................................................................... 35 6.4 Bodywork and main components .............................................................................. 37 6.5 Second concept selection ........................................................................................... 48 6.6 Finalizing ................................................................................................................... 49 7 Final concept ..................................................................................................................... 51 8 Suggestions on new parts and modifications .................................................................... 55 9 Discussion and conclusions .............................................................................................. 57 10 Future work ................................................................................................................... 59 Appendix A ............................................................................................................................ A.1 Appendix B ............................................................................................................................ B.1 Appendix C ............................................................................................................................ C.1 Appendix D ............................................................................................................................. E.1 Appendix E .............................................................................................................................. E.1 Appendix F .............................................................................................................................. F.1 VII List of figures Figure 1: Scheme of general product development process. ................................................................... 5 Figure 2: Final workflow. ........................................................................................................................ 6 Figure 3: Open pit mine [5]. ...................................................................................................................