Hydrogen Abstraction from Titanium and Zirconium Oxides
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School Eberly College of Science NEW INSIGHTS IN THE GAS-PHASE ION CHEMISTRY OF GROUP IVB TRANSITION METAL OXIDES: CLUSTER MODELS FOR CATALYSIS A Dissertation in Chemistry by Christopher L. Harmon © 2016 Christopher L. Harmon Submitted in Partial Fulfillment Of the Requirements For the Degree of Doctor of Philosophy August 2016 The dissertation of Christopher L. Harmon was reviewed and approved* by the following: A. W. Castleman, Jr. Evan Pugh Professor of Chemistry and Physics Eberly Distinguished Chair in Science Dissertation Adviser Chair of Committee Nicholas Winograd Evan Pugh Professor of Chemistry Lasse Jensen Associate Professor of Chemistry Robert M. Rioux Friedrich G. Helfferich Associate Professor of Chemical Engineering Professor of Chemistry Kenneth S. Feldman Professor of Chemistry Graduate Program Chair *Signatures are on file in the Graduate School. ii Abstract The study of gas-phase cluster models has emerged as a useful tool to model catalytic active sites on surfaces. By observing how the reactivity of TMO clusters changes with cluster size, active site, and metal composition, we draw insights about the molecular factors governing reactivity and selectivity. The aim is to provide a conceptual framework to drive the development of improved catalysts with higher activity and selectivity. As group IVB transition metal oxides (TMOs) are widely used as catalysts and supports, we have undertaken mass spectrometric reactivity studies of titanium, zirconium, and hafnium oxide clusters with small organic molecules of interest in catalysis. We particularly note the differences in reactivity observed as the identity of the + metal in the cluster changes. We report the reactivity of MxO2x (M = Ti, Zr) clusters that contain radical atomic oxygen, O•−, with methane, ethane, propane, ethylene, and propylene. We observe that in many cases the titanium clusters undergo a type of “etching” reaction, where the cluster loses a TiO unit and associates the reactant gas. Zirconium oxides strongly prefer the hydrogen atom abstraction pathway, and no evidence for an etching type of reaction is found for zirconium clusters. Next, we examine + the reactivity of TixO2x+1 clusters that are theoretically predicted to contain a superoxide •− + active site, O2 , and find that the reactivity is quite different from ZrxO2x+1 . We also present one of the first studies of the reactivity of hafnium oxide clusters, and show that + + HfxO2x+1 acts very similarly to ZrxO2x+1 clusters, attributed to a superoxide active site. + However, Hf2O4 , which contains a radical oxygen atom, shows drastically different iii + reactivity from Zr2O4 . Finally, we discuss these studies in the context of isoelectronic superatoms. iv Contents List of Figures ..................................................................................................................... vii List of Tables ........................................................................................................................ x Acknowledgements ............................................................................................................. xi Introduction ....................................................................................................... 1 1.1 Catalysis .................................................................................................................. 1 1.2 Clusters: “Every Atom Counts” ............................................................................... 3 1.3 Clusters in Catalysis Research ................................................................................. 5 1.4 Outline of Dissertation .......................................................................................... 10 Experimental Apparatus .................................................................................. 11 2.1 Overview ............................................................................................................... 11 2.2 Vacuum System ..................................................................................................... 12 2.3 Ion Creation........................................................................................................... 13 2.4 TQMS System: Quadrupoles, Octopoles and Ion Optics ...................................... 15 2.5 Ion Detection ........................................................................................................ 18 2.6 Data Analysis ......................................................................................................... 19 Differing Selectivity and Reactivity of Stoichiometric Titanium and Zirconium Oxide Cations with Small Hydrocarbons: Observation of a TiO Etching Reaction ..... 22 3.1 Introduction .......................................................................................................... 22 3.2 Methods ................................................................................................................ 24 3.2.1 Experimental Methods ................................................................................ 24 3.2.2 Computational Methods .............................................................................. 26 3.3 Results and Discussion .......................................................................................... 27 3.3.1 Observation of a TiO Etching Reaction ........................................................ 27 3.3.2 Reactions with Methane .............................................................................. 30 3.3.3 Reactions with Ethane ................................................................................. 33 3.3.4 Reactions with Propane ............................................................................... 39 3.3.5 Reactions with Ethylene .............................................................................. 43 3.3.6 Reactions with Propylene ............................................................................ 46 3.3.7 Overall Relative Rates .................................................................................. 49 3.4 Conclusion ............................................................................................................. 52 + Further Reactions of Titanium Oxide Clusters: Superoxide Behavior of TixO2x+1 ? ..................................................................................................................................... 54 4.1 Introduction .......................................................................................................... 54 4.2 Methods ................................................................................................................ 55 4.2.1 Experimental Methods ................................................................................ 55 4.2.2 Computational Methods .............................................................................. 55 4.3 Results and Discussion .......................................................................................... 56 + 4.3.1 Calculated Structures of Ti2O2x+1 Clusters .................................................. 56 4.3.2 Revisiting Superoxide-Containing Zirconium Cluster Reactions: Correcting Assigned Reaction Products ............................................................................ 57 4.3.3 Titanium Superoxide Behavior ..................................................................... 60 v 4.4 Conclusion ............................................................................................................. 66 Preliminary Studies on Hafnium Oxide Reactivity ........................................... 67 5.1 Introduction .......................................................................................................... 67 5.2 Experimental Methods ......................................................................................... 69 5.3 Results and Discussion .......................................................................................... 69 + 5.3.1 HfxO2x+1 Reactions ....................................................................................... 69 + 5.3.2 Hf2O4 with Ethylene: Preference for the Oxidative Dehydrogenation Pathway........................................................................................................... 75 5.4 Conclusion ............................................................................................................. 78 Superatoms ...................................................................................................... 80 6.1 Development of the Concept of “Superatoms” .................................................... 80 6.2 Physical Explanations for the Phenomena ............................................................ 84 Conclusion and Future Directions .................................................................... 93 Appendix A. Theory of Quadrupole Operation ................................................................. 95 A-1. The Mathieu Equations of Motion ...................................................................... 95 A-2. Applications to Quadrupole Operation ............................................................. 102 Appendix B. Operating the Merlin Software .................................................................. 104 B-1. How Mass Scanning Works ................................................................................ 104 B-2. Data Collection Macros for the Merlin Software