Compact Instruments and Instrument Suites for Future Small Satellite Opportunities in Cislunar Space and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v. -
General Index
General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d. -
Vegetative Ecology of a Montane Mire, Crater Lake National
AJ ABSTRACT OF THE THESIS OF Susan Cornelia Seyer for the degree of Master of Science in Botany and Plant Pathology presented on December 14, 1979 Title: VEGETATIVE ECOLOGY OF A MONTANE MIRE, CRATER LAKE NATIONAL PARK, OREGON Redacted for Privacy Abstract approved: Jerry F. Franklin Mires, or peat-producing ecosystems, dominated by sedges, shrubs, and brown mosses, are common features in Cascade subalpine regions, occurring where moisture accumulates in small basins or on poorly-drained slopes. Although descriptions and classifications have been developed for mire vegetation in much of the world, there is little information of even a descriptive nature for these montane mires in Oregon and Washington. This thesis reports on phytosocia- logical structure, env'ironental relations, and successional trends in one such mire in the Oregon Cascade mountains. To characterize the general phytosociological structure of the mire vegetation at Sphagnum Bog, Crater Lake National Park, quantitative species cover data were used in conjunction with a Braun-Blanquet tabular analysis and two-dimensional stand ordinations, reciprocal averaging and a Bray-Curtis polar ordination. Defined community types correspond to physiognomic types as follows: Carex rostrata (reedswamp); Eleocharis pauciflora-Carex limosa, Eleocharis pauciflora/bryophytes (low sedge fens); Carex sichensis (tall sedge fen); Vaccinium/ Aulacomnium palustre, Vaccinium occidentala/Carex sitchensis (shrub thickets; Alnus incana/Brachythacium sp. and Salix barclayi (marginal carrs).Phases were defined when appropriate. A vegetation map was made to illustrate the locations and extent of the variouscommunities. Comparisons with other montane mires in thearea determined that the physiognomic units defined are repeatable when appropriate habitat conditions are present, and that they usually includemany of the same characteristic species, the dominant mosses being particularly constant. -
DMAAC – February 1973
LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base. -
October 2006
OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
User Guide to 1:250,000 Scale Lunar Maps
CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west. -
Interpreting Cultural Resources at Craters of the Moon National Monument & Preserve
National Park Service U.S. Department of the Interior Interpreting Cultural Resources at Craters of the Moon National Monument & Preserve Table of Contents Introduction……………………………………………………...3 Interpretive Themes……………………………………...……...4 Protecting Cultural Resources…………………………………..6 Native Americans……………………………………………….8 Fur Trade and Early Exploration………………………………12 Emigrants………………………………………………………13 Surveys, Mining, and Ranching………………………………..16 Robert Limbert……………………………………………....…18 Park Structures………………………………………………....21 The Apollo Astronauts…………………………………….…...23 Monument Expansion………………………………...….….…25 Appendix I: Timeline of Events……………………….……….26 Appendix II: Projectile Point Chronology………………….….31 Sources……………………………………………………..…..32 Page 2 Introduction Volcanic geology is what makes Craters of the sites once used by the Shoshone on their Moon a national monument. Every year travels through the area. Since then, most visitors are awed, inspired, and inquisitive travelers have done everything they could to about the vast volumes of blackened lava that avoid the uninviting lava fields. cover hundreds of square miles of Idaho’s However limited, the cultural record of the high desert. monument boasts an amazing range of groups The emphasis on the area’s volcanism as the and individuals that have alternately shunned reason for designating the area a monument is and embraced the harsh terrain over thousands clear in Calvin Coolidge’s 1924 proclamation, of years, and for a variety of reasons. It is this citing the “remarkable fissure eruption range of uses and emotions evoked by the together with its associated volcanic cones, terrain that makes understanding the cultural craters, rifts, lava flows, caves, natural past of Craters of the Moon so important in bridges, and other phenomena…of unusual relating a seemingly-dead environment to scientific value and general interest.” visitors today. -
Ages of Large Lunar Impact Craters and Implications for Bombardment During the Moon’S Middle Age ⇑ Michelle R
Icarus 225 (2013) 325–341 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age ⇑ Michelle R. Kirchoff , Clark R. Chapman, Simone Marchi, Kristen M. Curtis, Brian Enke, William F. Bottke Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Standard lunar chronologies, based on combining lunar sample radiometric ages with impact crater den- Received 20 October 2012 sities of inferred associated units, have lately been questioned about the robustness of their interpreta- Revised 28 February 2013 tions of the temporal dependance of the lunar impact flux. In particular, there has been increasing focus Accepted 10 March 2013 on the ‘‘middle age’’ of lunar bombardment, from the end of the Late Heavy Bombardment (3.8 Ga) until Available online 1 April 2013 comparatively recent times (1 Ga). To gain a better understanding of impact flux in this time period, we determined and analyzed the cratering ages of selected terrains on the Moon. We required distinct ter- Keywords: rains with random locations and areas large enough to achieve good statistics for the small, superposed Moon, Surface crater size–frequency distributions to be compiled. Therefore, we selected 40 lunar craters with diameter Cratering Impact processes 90 km and determined the model ages of their floors by measuring the density of superposed craters using the Lunar Reconnaissance Orbiter Wide Angle Camera mosaic. Absolute model ages were computed using the Model Production Function of Marchi et al. -
Proposal Information Package
NASA RESEARCH ANNOUNCEMENT PROPOSAL INFORMATION PACKAGE Mars Exploration Program 2001 Mars Odyssey Orbiter 23 July 2001 Contributors Raymond Arvidson1 Jeffrey J. Plaut5 Gautam Badhwar2 Susan Slavney1 William Boynton3 David A. Spencer5 Philip Christensen4 Compiled by Thomas W. Thompson5 Jeffrey J. Plaut5 Catherine M. Weitz6 1Washington University, 2Johnson Space Center, 3Lunar and Planetary Laboratory (University of Arizona), 4Arizona State University, 5Jet Propulsion Laboratory, California Institute of Technology 6NASA Headquarters. Table of Contents 1.0 Overview..............................................................................................................................................................1-1 1.1 Document Overview.............................................................................................................................1-1 1.2 Mars Exploration Program...................................................................................................................1-1 1.3 Mars 2001 Objectives...........................................................................................................................1-2 1.4 Mars 2001 Operations Management....................................................................................................1-2 1.5 Mars 2001 Orbiter Measurement Synergies through Coordinated Operations Planning ..................1-2 1.6 Mars 2001 Project Science Group (PSG) Members............................................................................1-3 2.0 Mars -
Locations of Anthropogenic Sites on the Moon R
Locations of Anthropogenic Sites on the Moon R. V. Wagner1, M. S. Robinson1, E. J. Speyerer1, and J. B. Plescia2 1Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-3603; [email protected] 2The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 Abstract #2259 Introduction Methods and Accuracy Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera To get the location of each object, we recorded its line and sample in (NAC) images, with resolutions from 0.25-1.5 m/pixel, allow the each image it appears in, and then used USGS ISIS routines to extract identifcation of historical and present-day landers and spacecraft impact latitude and longitude for each point. The true position is calculated to be sites. Repeat observations, along with recent improvements to the the average of the positions from individual images, excluding any extreme spacecraft position model [1] and the camera pointing model [2], allow the outliers. This process used Spacecraft Position Kernels improved by LOLA precise determination of coordinates for those sites. Accurate knowledge of cross-over analysis and the GRAIL gravity model, with an uncertainty of the coordinates of spacecraft and spacecraft impact craters is critical for ±10 meters [1], and a temperature-corrected camera pointing model [2]. placing scientifc and engineering observations into their proper geologic At sites with a retrorefector in the same image as other objects (Apollo and geophysical context as well as completing the historic record of past 11, 14, and 15; Luna 17), we can improve the accuracy signifcantly. Since trips to the Moon.