Copper-Containing Magnesioferrite in Vesicular Trachyandesite in a Lava Tube from the 2012–2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia

Total Page:16

File Type:pdf, Size:1020Kb

Copper-Containing Magnesioferrite in Vesicular Trachyandesite in a Lava Tube from the 2012–2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia minerals Article Copper-Containing Magnesioferrite in Vesicular Trachyandesite in a Lava Tube from the 2012–2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia Victor V. Sharygin 1,2,3,* , Vadim S. Kamenetsky 4,5 , Liudmila M. Zhitova 1,2, Alexander B. Belousov 6 and Adam Abersteiner 5 1 V.S. Sobolev Institute of Geology and Mineralogy, Novosibirsk 630090, Russia; [email protected] 2 Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia 3 Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia 4 Institute of Experimental Mineralogy, Chernogolovka 142432, Russia; [email protected] 5 School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia; [email protected] 6 Institute of Volcanology and Seismology, Petropavlovsk-Kamchatsky 683006, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-383-330-80-84 Received: 13 October 2018; Accepted: 5 November 2018; Published: 8 November 2018 Abstract: Cu-rich magnesioferrite was found in vesicular basaltic trachyandesite in one of lava tubes (Duplex) that formed during the 2012–2013 eruption of the Tolbachik volcano, Kamchatka. This mineral is commonly associated with hematite, tenorite, halite, sylvite, and Ca-rich silicates (mainly, esseneite and Na-rich melilite) in high-temperature (800–1000 ◦C) reactionary zones (up to 100 µm) covering vesicular rocks and lava stalactites in the Duplex tube. The mineral relationships of this assemblage indicate the following crystallization sequence: Ca-rich silicates + hematite ! Cu-rich magnesioferrite ! tenorite ! chlorides. This formed due to the reaction of hot gases containing Cu, alkalis, and Cl with solidified lava rock. The composition of magnesioferrite varies strongly in CuO (5.8–17.3 wt %; cuprospinel end-member—15–47 mol %), whereas the contents of other oxides are minor, indicating the main isomorphic substitution is Mg2+ $ Cu2+. Compositions with maximal CuO content nominally belong to Mg-rich cuprospinel: (Cu0.48Mg0.41Mn0.09Zn0.02Ca0.02) 3+ (Fe 1.94Al0.03Ti0.02)O4. Increasing CuO content of the Duplex Cu-rich magnesioferrite is reflected in Raman spectra by moderate right shifting bands at ≈700–710 and 200–210 cm−1 and the appearance of an additional band at 596 cm−1. This supports the main isomorphic scheme and may indicate a degree of inversion in the spinel structure. Keywords: magnesioferrite; cuprospinel; hematite; tenorite; trachyandesite; lava tube; Tolbachik volcano; Kamchatka 1. Introduction Copper-rich spinels are well-documented in synthetic compounds, but rarely occur as minerals in the natural environment. Their origin is largely attributed to combustion processes or fumarole activity 3+ in young volcanoes. Cuprospinel, CuFe 2O4, was first described as a new mineral species from burnt dump from the Consolidated Rambler Mines Limited near Baie Verte, Newfoundland, Canada [1]. In this semi-anthropogenic system, cuprospinel is associated with Cu-rich magnesioferrite (13.9 wt % CuO) and hematite. This assemblage was formed as a result of a spontaneous ignition and burning of the mined copper–zinc ore. Cuprospinel, together with delafossite (CuFeO2), tenorite, and Fe-silicates, Minerals 2018, 8, 514; doi:10.3390/min8110514 www.mdpi.com/journal/minerals Minerals 2018, 8, 514 2 of 22 Minerals 2018, 8, x FOR PEER REVIEW 2 of 21 weredelafossite found as (CuFeO products2), oftenorite, oxidative and combustion Fe-silicates, of were copper found sulfides as products and related of oxidative phases (hematite, combustion quartz, of andcopper K-silicates), sulfides alongand related with anphases additional (hematite, silica quartz, flux foundand K-silicates), at the Olympic along with Dam an copper additional smelter silica [2 ]. Aflux new Cu-richfound at spinel, the Olympic thermaerogenite Dam copper (CuAl smelte2O4; IMAr [2]. 2018-021), A new cuprospinel,Cu-rich spinel, and thermaerogenite other Cu-bearing spinel-group(CuAl2O4; IMA minerals 2018-021), (usually cuprospinel, with >6 wt and % CuO:other gahnite,Cu-bearing spinel, spinel-group and magnesioferrite) minerals (usually were recently with discovered>6 wt % CuO: in the gahnite, Arsenatnaya spinel, fumarole,and magnesioferrite) which occurs were in recently the Second discovered scoria cone in the of Arsenatnaya the Northern Breakthroughfumarole, which of the occurs 1975–1976 in the Second Great Tolbachikscoria cone Fissure of the Eruption,Northern Breakthrough Tolbachik volcano, of the Kamchatka,1975–1976 RussiaGreat [ 3Tolbachik–5] and in Fissure the Western Eruption, paleo-fumarole Tolbachik volcan field ato, MountainKamchatka, 1004, Russia ancient [3–5] eruption and in the of Western Tolbachik (≈paleo-fumarole2000 years) [5]. field In thisat Mountain paper, we 1004, present ancient detailed eruption descriptions of Tolbachik of (≈ a2000 new years) locality [5]. forIn this Cu-bearing paper, magnesioferritewe present detailed within thedescriptions Tolbachik volcanicof a new system, locality where for itCu-bearing occurs as exhalationmagnesioferrite products within in basaltic the trachyandesitesTolbachik volcanic from thesystem, Duplex where lava it tubeoccurs of theas exhalation 2012–2013 products flank fissure in basaltic eruption. trachyandesites The findings offrom new Cu-richthe Duplex spinels lava provide tube of new the insights 2012–2013 into flank a new fiss Cu-dominanture eruption. clanThe withinfindings the of spinelnew Cu-rich supergroup spinels [6 ]. provide new insights into a new Cu-dominant clan within the spinel supergroup [6]. 2. Brief Data of the 2012–2013 Fissure Eruption of the Tolbachik Volcano 2. Brief Data of the 2012–2013 Fissure Eruption of the Tolbachik Volcano The 2012–2013 flank fissure eruption of the Tolbachik volcano in the Kamchatka Peninsula (Far East,The Russia) 2012–2013 lasted flank 9 months fissure anderuption produced of the 0.54Tolbachik km3 of volcano basaltic in trachyandesite the Kamchatka lava Peninsula that covered (Far a totalEast, areaRussia) of 36 lasted km2 with9 months a maximum and produced thickness 0.54 of km 703 mof [basaltic7] (Figure trachyandesite1). This eruption lava isthat considered covered a as onetotal of thearea most of 36 voluminous km2 with a maximum historical outpouringthickness of of70 basicm [7] lava(Figure in a1). subduction-related This eruption is considered environment. as Duringone of the the eruption,most voluminous the style historical of lava propagation outpouring of gradually basic lava changed in a subduction-related from channel-fed environment. ‘a’a flowsto tube-fedDuring pahoehoe the eruption, flows the [ 8style]. When of lava the propagation rate of magma gradually discharge changed declined from from channel-fed the initial ‘a’a 440 flows m3/s to to 3 severaltube-fed tens pahoehoe of m3/s inflows January [8]. When 2013, lavathe rate tubes of magma started formingdischarge via declined surface from solidification the initial (“roofing”) 440 m /s toof several tens of m3/s in January 2013, lava tubes started forming via surface solidification (“roofing”) the open lava channels (Figure2A). During the later stages of the eruption, the tube system extended of the open lava channels (Figure 2A). During the later stages of the eruption, the tube system downslope by complex branching to reach a total length of ≈4 km and included multiple interlacing extended downslope by complex branching to reach a total length of ≈4 km and included multiple tubes with average diameters ranging from 1 to 10 m. interlacing tubes with average diameters ranging from 1 to 10 m. FigureFigure 1. Sketch1. Sketch map map after after References References [8,9 ][8,9] showing showin theg distribution the distribution of the of 2012–2013 the 2012–2013 Tolbachik Tolbachik eruption lavaeruption fields, fissures,lava fields, vents, fissures, and thevents, location and the of location the Duplex of the lava Duplex tube segment lava tube (sampling segment (sampling site). The mapsite). is derivedThe map from is TERRA,derived ASTERfrom TERRA, (NASA, ASTER JPL), and (NASA, EO-1 ALIJPL), (NASA) and EO-1 satellite ALI image(NASA) interpretations satellite image and fieldinterpretations observations. and The field topographic observations. base The is a topogr DEM-derivedaphic base from is a SRTM DEM-derived X-band (DLR). from SRTM X-band (DLR). Minerals 2018, 8, 514 3 of 22 Minerals 2018, 8, x FOR PEER REVIEW 3 of 21 FigureFigure 2. 2. (A()A Gas-venting) Gas-venting skylight skylight in inthe the lava lava tube tube during during the Tolbachik the Tolbachik eruption eruption in 2012–2013. in 2012–2013. (B) Entrance(B) Entrance into intothe theDuplex Duplex lava lava tube tube after after the the 2012–2013 2012–2013 eruption, eruption, June June 2017. 2017. (C ()C Lava) Lava “stalactites” “stalactites” coveredcovered with with chlorides chlorides on on the the roof roof of of the the Duplex Duplex tube, tube, June June 2017. 2017. LavaLava flowing flowing through the tubetube systemsystem preservedpreserved temperatures temperatures and and viscosities viscosities close close to to those those in thein thesource source (1082 (1082◦C and °C(1 and−3) (1×−103)3 ×Pa 10·s)3 [8Pa],∙ buts) [8], experienced but experienced degassing, degassing, which was which frequently was observedfrequently as observedbursting bubblesas bursting at the bubbles lava surface. at the Gases lava released surface. from Gases the released lava leaked from upwards the lava through leaked the upwards fractured throughroof of the the
Recommended publications
  • IMA Commission on New Minerals, Nomenclature and Classification (CNMNC)
    Mineralogical Magazine, August 2015, Vol. 79(4), pp. 941À947 CNMNC Newsletter IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) NEWSLETTER 26 New minerals and nomenclature modifications approved in 2015 1 2 3 U. HA˚ LENIUS (Chairman, CNMNC), F. HATERT (Vice-Chairman, CNMNC), M. PASERO (Vice-Chairman, 4 CNMNC) AND S. J. MILLS (Secretary, CNMNC) 1 Department of Mineralogy, Naturhistoriska Riksmuseet, Box 50007, SE-104 05 Stockholm, Sweden – [email protected] 2 Laboratoire de Mine´ralogie, Universite´ de Lie`ge, B-4000 Lie`ge, Belgium À [email protected] 3 Dipartimento di Scienze della Terra, Universita` degli Studi di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy À [email protected] 4 Geosciences, Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia À [email protected] The information given here is provided by the IMA Commission on New Minerals, Nomenclature and Classification for comparative purposes and as a service to mineralogists working on new species. Each mineral is described in the following format: Mineral name, if the authors agree on its release prior to the full description appearing in press Chemical formula Type locality Full authorship of proposal E-mail address of corresponding author Relationship to other minerals Crystal system, Space group; Structure determined, yes or no Unit-cell parameters Strongest lines in the X-ray powder diffraction pattern Type specimen repository and specimen number Citation details for the mineral prior to publication of full description Citation details concern the fact that this information will be published in the Mineralogical Magazine on a routine basis, as well as being added month by month to the Commission’s web site.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 104, pages 625–629, 2019 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND FERNANDO CÁMARA2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Dipartimento di Scienze della Terra “Ardito Desio”, Universitá di degli Studi di Milano, Via Mangiagalli, 34, 20133 Milano, Italy IN THIS ISSUE This New Mineral Names has entries for 8 new minerals, including fengchengite, ferriperbøeite-(Ce), genplesite, heyerdahlite, millsite, saranchinaite, siudaite, vymazalováite and new data on lavinskyite-1M. FENGCHENGITE* X-ray diffraction pattern [d Å (I%; hkl)] are: 7.186 (55; 110), 5.761 (44; 113), 4.187 (53; 123), 3.201 (47; 028), 2.978 (61; 135). 2.857 (100; 044), G. Shen, J. Xu, P. Yao, and G. Li (2017) Fengchengite: A new species with 2.146 (30; 336), 1.771 (36; 24.11). Single-crystal X-ray diffraction data the Na-poor but vacancy-dominante N(5) site in the eudialyte group. shows the mineral is trigonal, space group R3m, a = 14.2467 (6), c = Acta Mineralogica Sinica, 37 (1/2), 140–151. 30.033(2) Å, V = 5279.08 Å3, Z = 3. The structure was solved by direct methods and refined to R = 0.043 for all unique I > 2σ(I) reflections. Fengchengite (IMA 2007-018a), Na Ca (Fe3+,) Zr Si (Si O ) 12 3 6 3 3 25 73 Fenchengite is the Fe3+ analog of eudialyte with a structural difference (H O) (OH) , trigonal, is a new eudialyte-group mineral discovered in 2 3 2 in vacancy dominant N5 site and splitting its Na site N1 into N1a and the agpaitic nepheline syenites and its pegmatite facies near the Saima N1b sites.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Euchlorine Knacu3o(SO4)3 C 2001-2005 Mineral Data Publishing, Version 1
    Euchlorine KNaCu3O(SO4)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As crystals, tabular on {001}, with rectangular outline, to 2 mm; typically as an incrustation. Physical Properties: Cleavage: In two directions. Hardness = n.d. D(meas.) = 3.27 D(calc.) = 3.28 Soluble in H2O. Optical Properties: Semitransparent. Color: Emerald-green; emerald-green in transmitted light. Optical Class: Biaxial (+). Pleochroism: X = pale grass-green; Y = grass-green; Z = bright yellow-green. α = 1.580 β = 1.605 γ = 1.644 2V(meas.) = Moderately large. Cell Data: Space Group: C2/a. a = 18.41(5) b = 9.43(3) c = 14.21(5) β = 113.7(3)◦ Z=8 X-ray Powder Pattern: Vesuvius, Italy. 8.44 (100), 2.816 (47), 2.544 (45), 2.843 (40), 2.852 (37), 3.475 (30), 3.237 (25) Chemistry: (1) (2) SO3 41.41 43.13 Al2O3 0.06 CuO 43.69 42.85 MgO 0.17 CaO 0.07 Na2O 6.35 5.56 K2O 8.25 8.46 Total [100.00] 100.00 (1) Vesuvius, Italy; by electron microprobe, average of seven analyses, recalculated to 100% 2− from an original total of 101.86%, (SO4) shown present by IR; corresponds to K1.01Na1.18 Mg0.02Ca0.01Cu3.15O1.27(SO4)3. (2) KNaCu3O(SO4)3. Occurrence: A rare sublimate around volcanic fumaroles. Association: Dolerophanite, eriochalcite, chalcocyanite, melanothallite (Vesuvius, Italy); stoiberite, fingerite, ziesite, th´enardite,mcbirneyite (Izalco volcano, El Salvador); eriochalcite, melanothallite, fedotovite, vergasovaite, chalcocyanite, dolerophanite, tenorite, cuprian anglesite, gold (Tolbachik volcano, Russia).
    [Show full text]
  • Download the Scanned
    INDEX,VOLUME 59* Absorption coefficients Albite, continued attapulgite 1113 1ow-, comparison with ussingite 347 clay ninerals 11r3 nelting in nultispecies fluid 598 dickite 274 Alexandrite, chrorniumIII centers in 159 hal loysite 274 hectorite I 113 ALLAN, DAVID illite 1113 with V. Brown, and J. Stark, Rocke kaolinite 274 and Minez,als of Califowi,a; reviewed metabentonite 1113 by J. Murdoch 387 nontronite 1113 Allemontite, see stibarsen 1331 srnectite 1113 ALLMAN,MICHAEL Absorption spectra with D.F. Lawrence, Geological alexandrite, synthetic 159 Labonatony Techni.ques reviewed apophyllite 62I ; by F.H. Manley and W.R. Powers IL42 garnet 565 olivine 244 A1lophane rhodonite.. shocked t77 dehydration, DTA, infrared spectra 1094 Acmite, Ti-, phase relations of 536 Almandine Actinolite overgrowth by grossularite- spessartine 558 coexisting with hoinblende 529 in netamorphic rocks, optical Arnerican Crystallographic Association, properties 22 abstracts, Spring neeting,1974 1L27 Activity coefficients Amphiboles of coexisting pyroxenes 204 actinolite 2? 529 Al -Ca-anphibole ADMS, HERBERTG. 22 compositions 22 with L.H. Cohen, and W. Klenent, Jr.; coordination polyhedra M High-low quartz inversion : Thermal of site atons in I 083 analysis studies to 7 kbar I 099 hornblende L, 22, 529, 604 ADAMS,JOHN W. magnesioarfvedsonite (authigenic) 830 with T. Botinelly, W.N. Sharp, and refraction indices 22 K. Robinson; Murataite, a new richterite, Mg-Fe- 518 conplex oxide from E1 Paso County, AMSTUTZ,G.C. Colorado L72 with A.J. Bernard, Eds., )nes in Errata 640 Sediments; reviewed by P.B. Barton 881 Aenigmatite ANDERSEN,C.A. in volcanic conplex, composition, and X-ray data Micz,opnobeAnalysis; reviewed by A.E.
    [Show full text]
  • Derivation of Intermediate to Silicic Magma from the Basalt Analyzed at the Vega 2 Landing Site, Venus
    RESEARCH ARTICLE Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus J. Gregory Shellnutt* National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan * [email protected] Abstract a1111111111 a1111111111 Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site a1111111111 indicates that intermediate to silicic liquids can be generated by fractional crystallization and a1111111111 equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 a1111111111 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) composi- tions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at OPEN ACCESS all pressures but requires relatively high temperatures ( 950ÊC) to generate the initial melt Citation: Shellnutt JG (2018) Derivation of at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be intermediate to silicic magma from the basalt generated at much lower temperatures (< 800ÊC). Anhydrous partial melt modeling yielded analyzed at the Vega 2 landing site, Venus. PLoS mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature ONE 13(3): e0194155. https://doi.org/10.1371/ journal.pone.0194155 required to produce the first liquid is very high ( 1130ÊC). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate Editor: Axel K Schmitt, Heidelberg University, GERMANY that, under certain conditions, the Vega 2 composition can generate silicic liquids that pro- duce granitic and rhyolitic rocks.
    [Show full text]
  • Copper Oxosulphates from Fumaroles of Tolbachik Volcano
    Eur. J. Mineral. 2017, 29, 499–510 Published online 10 January 2017 Copper oxosulphates from fumaroles of Tolbachik volcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite 1,* 1 2 1 OLEG I. SIIDRA ,EVGENII V. NAZARCHUK ,ANATOLY N. ZAITSEV ,EVGENIYA A. LUKINA , 1 3 4 1 EVGENIYA Y. AVDONTSEVA ,LIDIYA P. VERGASOVA ,NATALIA S. VLASENKO ,STANISLAV K. FILATOV , 5 3 RICK TURNER and GENNADY A. KARPOV 1 Department of Crystallography, St. Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia *Corresponding author, e-mail: [email protected] 2 Department of Mineralogy, St. Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia 3 Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, 683006 Petropavlovsk-Kamchatskiy, Russia 4 Research Park, Resource Centre Geomodel, St. Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia 5 The Drey, Allington Track, Allington, Salisbury SP4 0DD, Wiltshire, UK Abstract: Typical characteristics of many anhydrous sulphates of exhalative origin at fumaroles at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia, are the presence of additional oxygen atoms (Oa) in the composition. Recent field works on the fumaroles of the Second scoria cone in 2014 and 2015 resulted in discovery of a new mineral species, puninite, and collection of fresh alumoklyuchevskite and kamchatkite samples which allowed the re-refinement of crystal structures. The crystal structure of kamchatkite, KCu3O(SO4)2Cl, was solved and refined in Pnma 3 space group (a = 9.755(2), b = 7.0152(15), c = 12.886(3) Å, V = 881.8(3) Å , R1 = 0.021), whereas alumoklyuchevskite, K3Cu3 AlO2(SO4)4, is triclinic, P1(a = 4.952(3), b = 11.978(6), c = 14.626(12) Å, a = 87.119(9), b = 80.251(9), g = 78.070(9)°, V = 836.3 3 (9) Å , R1 = 0.049) in contrast to previously reported data.
    [Show full text]
  • Copper-Nickel Mixed Oxide Catalysts from Layered Double Hydroxides For
    Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valorisation of lignin in organosolv pulping Iqra Zubair Awan, Giada Beltrami, Danilo Bonincontro, Olinda Gimello, Thomas Cacciaguerra, Nathalie Tanchoux, Annalisa Martucci, Stefania Albonetti, Fabrizio Cavani, Francesco Di Renzo To cite this version: Iqra Zubair Awan, Giada Beltrami, Danilo Bonincontro, Olinda Gimello, Thomas Cacciaguerra, et al.. Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valori- sation of lignin in organosolv pulping. Applied Catalysis A : General, Elsevier, 2021, 609, pp.117929. 10.1016/j.apcata.2020.117929. hal-03080770 HAL Id: hal-03080770 https://hal.archives-ouvertes.fr/hal-03080770 Submitted on 17 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valorisation of lignin in organosolv pulping. Iqra Zubair AWAN,a,b,1 Giada BELTRAMI,c Danilo BONINCONTRO,a,2 Olinda GIMELLO,b Thomas CACCIAGUERRA,b
    [Show full text]
  • Thermaerogenite Cual2o4 - Crystal Data: Cubic
    Thermaerogenite CuAl2O4 - Crystal Data: Cubic. Point Group: 4/m 3 2/m. As octahedral crystals to 0.02 mm displaying {111} modified by {110}, sometimes skeletal. Physical Properties: Cleavage: None. Fracture: Conchoidal. Tenacity: Brittle. Hardness = ~7 D(calc.) = 4.870 Optical Properties: Transparent to translucent. Color: Brown, yellow-brown, red-brown, brown- yellow, or brown-red; gray with yellowish internal reflections in reflected light. Streak: Yellow. Luster: Vitreous. Optical Class: Isotropic. R1-R2: (400) 16.4, (420) 16.0, (440) 15.7, (460) 15.4, (470) 15.2, (480) 15.1, (500) 14.8, (520) 14.5, (540) 14.2, (546) 14.2, (560) 14.0, (580) 13.7, (589) 13.6, (600) 13.2, (620) 13.2, (640) 13.0, (650) 12.9, (660) 12.8, (680) 12.5, (700) 12.3 - Cell Data: Space Group: Fd 3 m. a = 8.093(9) Z = [8] X-ray Powder Pattern: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka Peninsula, Russia. 2.451 (100), 2.873 (65), 1.438 (30), 1.565 (28), 1.660 (16), 2.033 (10), 1.865 (6) Chemistry: (1) (2) CuO 25.01 43.83 ZnO 17.45 Al2O3 39.43 56.17 Cr2O3 0.27 Fe2O3 17.96 . Total 100.12 100.00 (1) Arsenatnaya fumarole, Tolbachik volcano, Kamchatka Peninsula, Russia; average of 4 electron microprobe analyses supplemented by Raman spectroscopy; corresponds to (Cu0.62Zn0.42)Σ=1.04 3+ (Al1.52Fe 0.44Cr0.01)Σ=1.97O4. (2) CuAl2O4. Polymorphism & Series: Continuous series with gahnite, discontinuous with cuprospinel. Mineral Group: Spinel supergroup. Occurrence: In cavities and overgrown on earlier oxide minerals, often epitaxially, as sublimates around a volcanic fumarole.
    [Show full text]
  • New Mineral Species and Their Crystal Structures"
    Title: Editorial for Special Issue "New Mineral Species and Their Crystal Structures" Author: Irina O. Galuskina, Igor V. Pekov Citation style: Galuskina Irina O., Pekov Igor V. (2019). Editorial for Special Issue "New Mineral Species and Their Crystal Structures". "Minerals" (Vol. 9, iss. 2 (2019), art. no 106), doi 10.3390/min9020106 minerals Editorial Editorial for Special Issue “New Mineral Species and Their Crystal Structures” Irina O. Galuskina 1,* and Igor V. Pekov 2 1 Faculty of Earth Sciences, University of Silesia, B˛edzi´nska60, 41-200 Sosnowiec, Poland 2 Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia; [email protected] * Correspondence: [email protected] Received: 17 January 2019; Accepted: 1 February 2019; Published: 13 February 2019 Mineralogy is the oldest and one of the most important sciences of the geological cycle. Minerals, the basis of overwhelming mass of solid matter in the universe, are direct subjects of investigation in mineralogy. Minerals, or mineral species, are generally solid crystalline substances. Their definition indicates that, they are: (1) naturally occurring; (2) belonging to the distinct structural type; (3) stable, varying merely in the relatively small limits of chemical composition. If a given mineral differs from other known species in its structure (2) and/or composition (3) then it can be considered as a new mineral species. According to the data of the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) (http://nrmima.nrm.se/), there are currently about 5600 known mineral species. The number of minerals increases steadily year by year.
    [Show full text]
  • Vasilseverginite, Cu9o4(Aso4)2(SO4)2, a New Fumarolic Mineral with a Hybrid Structure
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7611. http://www.minsocam.org/ 1 Revision 2 2 3 Vasilseverginite, Cu9O4(AsO4)2(SO4)2, a new fumarolic mineral with a hybrid structure 4 containing novel anion-centered tetrahedral structural units 5 6 Igor V. Pekov1*, Sergey N. Britvin2,3, Sergey V. Krivovichev3,2, Vasiliy O. Yapaskurt1, Marina F. 7 Vigasina1, Anna G. Turchkova1 and Evgeny G. Sidorov4 8 9 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 10 2Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 11 St Petersburg, Russia 12 3Kola Science Center of Russian Academy of Sciences, Fersman Str. 18, 184209 Apatity, Russia 13 4Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, 14 Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia 15 16 *Corresponding author: [email protected] 17 18 1 Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7611. http://www.minsocam.org/ 19 ABSTRACT 20 21 The new mineral vasilseverginite, ideally Cu9O4(AsO4)2(SO4)2, was found in the 22 Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great 23 Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]