I'll Build You a Rainbow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Colors of the Rainbow 105
©2011 by Connie Bergstein Dow. Published by Redleaf Press, www.redleafpress.org. Unauthorized reproduction or distribution of these pages is strictly prohibited. Colors of the Rainbow 105 This activity is an extended movement study based on the theme of color. It will take about an hour to an hour and a half, including the time it takes to help the children make ribbon bangles. If you expand it into a presentation, plan to add about an extra half hour to hang the large sheet of paper on which you write the children’s suggestions in the opening section of the lesson, hang the paper plate rainbows, place the bangle props, get your music set up, and have the children in their spots ready to begin the dance. What You Need ` a large space ` “Catsup” instrumental (disc 1, track 17), “Goldie Rock” instrumental (disc 2, track 23), “Care of the Earth” instrumental (disc 1, track 16), and “Shine & Brighten” instrumental (disc 2, track 37) ` a large roll of paper; red, yellow, and blue markers; the book Color Dance by Ann Jonas; pipe cleaners and precut ten-inch strips of ribbon in many different colors; crayons of many colors; paper plates What You Do Begin with the children seated in a circle. These places will be their home spots as you introduce each new color. Say to the children: Today we are going to dance about all the colors! What is your favor- ite color? Why is it your favorite color? How does thinking about that color make you feel? First let’s talk about red. -
How the Rainbow Was Made
How the Rainbow Was Made A Creation Tale from the Ojibwe Nation retold by S. E. Schlosser One day when the earth was new, Nanabozho looked out the window of his house beside the wide waterfall and realized that all of the flowers in his meadow were exactly the same offwhite color. How boring! He decided to make a change, so he gathered up his paints and his paintbrushes and went out to the meadow. Nanabozho sat down in the tall grass and arranged his red and orange and yellow and green and blue and violet paint pots next to him. Then he began to paint the flowers in his meadow in many different colors. He painted the violets dark blue and the tiger lilies orange with brown dots. He made the roses red and pink and purple. He painted the pansies in every color combination he could think of. Then he painted every single daffodil bright yellow. Nanabozho hummed happily to himself as he worked in the brilliant daylight provided by Brother Sun. Overhead, two little bluebirds were playing games with each other. The first little bluebird would chase his friend across the meadow one way. Then they would turn around and the second bluebird would chase him back the other way. Zippityzip went the first bluebird as he raced across the sky. Zappityzing went the second bluebird as he chased him in the brilliant sunshine. Occasionally, Nanabozho would shade his eyes and look up…up into the endless blue sky to watch the two little birds playing. -
Esoteric Theories of Color
chapter 18 Esoteric Theories of Color Joscelyn Godwin As with Divine truths so also with colours, we see them as they appear to be, not as they really are. j. stuart bogg1 Although color, like music, is both a science and an art, color theory has al- ways been at a disadvantage vis-à-vis the companion discipline of Harmonics. The latter rests on empirical and mathematical principles, exemplified by the legendary experiments of Pythagoras, which have given rise to the rich vein of musica speculativa that runs parallel to the Western esoteric tradition. Color, lacking harmony’s mathematical anchor and its link to perception (e.g., that the purest perceived interval, the octave, derives from the simplest proportion of 1:2; the perfect fifth from 2:3, and so on), is a fluctuating field, even in its major landmarks such as the primary colors. Its definitions rely not on number but on words, whose translation of the eye’s experience is at best imprecise and at worst contradictory. A second problem is the abstraction of colors from the things colored. To separate them and develop an independent color vocabulary did not come naturally to the ancients, though scholars resist the idea that they didn’t see colors as we do.2 Homer’s “wine-dark sea” and the multiple hues represented by purpureus (the murex dye) are well-known instances of the problem. When Pliny, a walking dictionary and generally so finicky in his categories, comes to write of the color of the eyes, the only one he names is caesius, a word used only of eyes and presumed to mean blue, or gray.3 The classical world, so ad- vanced in harmonics, has little to offer here. -
WHITE LIGHT and COLORED LIGHT Grades K–5
WHITE LIGHT AND COLORED LIGHT grades K–5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make up white light. The second involves spinning a colorful top to blend different colors into white. Together, these activities can be thought of as taking white light apart and putting it back together again. Introduction The Sun, the stars, and a light bulb are all sources of “white” light. But what is white light? What we see as white light is actually a combination of all visible colors of light mixed together. Astronomers spread starlight into a rainbow or spectrum to study the specific colors of light it contains. The colors hidden in white starlight can reveal what the star is made of and how hot it is. The tool astronomers use to spread light into a spectrum is called a spectroscope. But many things, such as glass prisms and water droplets, can also separate white light into a rainbow of colors. After it rains, there are often lots of water droplets in the air. White sunlight passing through these droplets is spread apart into its component colors, creating a rainbow. In this activity, you will view the rainbow of colors contained in white light by using a pair of “Rainbow Glasses” that separate white light into a spectrum. ! SAFETY NOTE These glasses do NOT protect your eyes from the Sun. NEVER LOOK AT THE SUN! Background Reading for Educators Light: Its Secrets Revealed, available at http://www.amnh.org/education/resources/rfl/pdf/du_x01_light.pdf Developed with the generous support of The Charles Hayden Foundation WHITE LIGHT AND COLORED LIGHT Materials Rainbow Glasses Possible white light sources: (paper glasses containing a Incandescent light bulb diffraction grating). -
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation. -
Atmospheric Optics Learning Module
Atmospheric Optics Learning Module Everything we see is the reflection of light and without light, everything would be dark. In this learning module, we will discuss the various wavelengths of light and how it is transmitted through Earth’s atmosphere to explain fascinating optical phenomena including why the sky is blue and how rainbows form! To get started, watch this video describing energy in the form of waves. A sundog and halo display in Greenland. Electromagnetic Spectrum (0 – 6:30) Source Electromagnetic Spectrum Electromagnetic (EM) radiation is light. Light you might see in a rainbow, or better yet, a double rainbow such as the one seen in Figure 1. But it is also radio waves, x-rays, and gamma rays. It is incredibly important because there are only two ways we can move energy from place to place. The first is using what is called a particle, or an object moving from place to place. The second way to move energy is through a wave. The interesting thing about EM radiation is that it is both a particle and a wave 1. Figure 1. Double rainbow Source 1 Created by Tyra Brown, Nicole Riemer, Eric Snodgrass and Anna Ortiz at the University of Illinois at Urbana- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Champaign. 2015-2016. Supported by the National Science Foundation CAREER Grant #1254428. There are many frequencies of EM radiation that we cannot see. So if we change the frequency, we might have radio waves, which we cannot see, but they are all around us! The same goes for x-rays you might get if you break a bone. -
Introduction to Collection Surveys and Condition Reports
Fundamentals of the Conservation of Photographs SESSION: Introduction to Collection-Level Surveys and Condition Reporting INSTRUCTOR: Monique Fischer, Tram Vo SESSION OUTLINE ABSTRACT This part of the course will provide systematic approaches to writing condition reports for photographs and performing collection-level surveys. This section of the course will provide students with the information needed to perform the small scale survey during the distance mentoring phase. LEARNING OBJECTIVES As a result of this session, participants should be able to: Understand photographic materials, processes, and deterioration characteristics in order to write a proper condition report. Know how to implement a systematic preservation program and understand issues such as environmental control, disaster preparedness, storage and handling, potential hazards, reformatting and conservation treatment. Understand that performing a survey is the best way for a collection to survive. CONTENT OUTLINE Introduction with PPT presentations: “Condition Reporting of Photographs” and “Surveying Photograph Collection” Examples of different condition report forms, including electronic formats, will be examined and discussed. Samples will be provided to participants. Provide students with a basic outline of a survey report and discuss. Pros and cons of the condition report and survey form hand -outs will be discussed. “Hands-on” exercise: provide each student with an unknown photograph and have them write a complete condition report using a form that has been made available. Students will present reports in class. During the distance mentoring phase students will conduct a survey of their family photographs. The introduction given during the summer school will provide the information students need for this activity. www.getty.edu/conservation SESSION OUTLINE CONT’D. -
A Study to Determine the Color Preferences of School Children, 1950-1951
A study to determine the color preferences of school children, 1950-1951 Item Type text; Thesis-Reproduction (electronic) Authors Ryan, Leo Thomas, 1914- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 16:01:14 Link to Item http://hdl.handle.net/10150/319109 A STUDY TO DETERMINE THE COLOR PREFERENCES OF SCHOOL CHILDREN 1950 - 1951 LeoL Ryanz /' v \ A Thesis submitted to the faculty of the Department of Education in partial fulfillment of the requirements for the degree of MASTER OF ARTS in the Graduate College, University of Arizona 1951 TABLE OP CONTENTS: Chapter Page ■I. INTRODUCTION«, t . 6 "II. BACKGROUND FOR THE STUDY. - . , . .18: III. METHOD OF PROCEDURE .............. 40 IVp PRESENTATION OF DATA. .............. 50 V. ANALYSIS AND INTERPRETATION .......... 64 VI. SUMMARY.-. ... V ' . .... ... ... 75 Oozig3.U1 s 2.ons o oo o a o o o o 0 a & 0 o o o 5 Recommendations® o 76 Xj im 11 a t x on s <> o ©& <» » « @ @ 6 « « © <> * © *7 7 Suggestions for Future Research • *, . <> • „ 77 BIBLIOGRAPHY o . < . , . o . , -* . , 78 AP P BIX 3D IDC ^ 0 8 o o o o o e o O © o o o © o o o o 8 ii LIST OF GH&RTS Ghart , . Page lo ■ SYMBOLISM OF COLORS Q . 0 21 II.:- SYMBOLISM OF DIRECTIONAL COLORS IN . ' DIFFERENT COUNTRIES . .. .. ... 23 III, SYMBOLISM OF COLORS OF THE ELEMENTS . -
The Physics, Chemistry and Perception of Colored Flames
An earlier version appeared in: Pyrotechnica VII (1981). The Physics, Chemistry and Perception of Colored Flames Part I K. L. Kosanke SUMMARY ed analogy, semi-classical explanations, and a little hand waving in place of perfectly rigorous The first part of this three-part monograph science. In doing this, I have been careful not to presents an in-depth examination of the develop- distort the science being discussed, but only to ment of light theory; mechanisms of light genera- make the subject more understandable. I have in- tion in flames; atomic line, molecular band and cluded numerous drawings, notes and equations as continuous spectra; the definition, laws and figures. I hope the result is complete, accurate, measurement of color; chromaticity diagrams and useful, understandable, and may possibly even how the pyrotechnist can use this knowledge of makes enjoyable reading. physics in planning colored flame formulations of optimal purity. 2.0 Introduction 1.0 Preface Many of the concepts discussed in this paper are not particularly easy to understand or to work In my examination of pyrotechnic literature, I with. It is reasonable to wonder why you should have not been able to find a comprehensive dis- bother to read it and what you will get out of it. cussion of the physics, chemistry and perception The answer is slightly different depending on your of colored flames, let alone one that could be un- scientific background and on what type of pyro- derstood by the average fireworks enthusiast. The technist you are. I will assume your scientific standard texts such as Davis (1943), Weingart background is limited. -
Light and the Electromagnetic Spectrum
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave. -