Habitat Preferences of the Terrestrial Vertebrate Fauna of Weipa, Cape York Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Preferences of the Terrestrial Vertebrate Fauna of Weipa, Cape York Peninsula Habitat preferences of the terrestrial vertebrate fauna of Weipa, Cape York Peninsula Thesis submitted by Alexander J. THOMAS BSc, PGDip in Oct 2004 Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. A J Thomas October 2004 STATEMENT OF ACCESS I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work. _________________________ ______________ Signature Date ELECTRONIC COPY I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available. _________________________ ______________ Signature Date Contents Preface ............................................................................................ 1 Acknowledgments .......................................................................... 2 Abstract .......................................................................................... 4 1 Introduction .......................................................................... 7 1.1 Introduction ............................................................................ 7 1.2 Habitat preference .................................................................. 9 1.3 Anticipated fauna at Weipa .................................................. 21 1.4 The orebody at Weipa .......................................................... 25 1.5 The habitats of Weipa .......................................................... 27 1.6 The mine regions.................................................................. 33 1.7 Landscape effects ................................................................. 34 1.8 Seasonality ........................................................................... 39 1.9 Aims, objectives and hypotheses ......................................... 46 2 Methods ............................................................................... 50 2.1 Study area............................................................................. 50 2.2 Survey design ....................................................................... 51 2.3 Survey sites .......................................................................... 53 2.4 Field schedules..................................................................... 58 2.5 Field methods....................................................................... 61 2.6 Data analysis ........................................................................ 66 3 Results ................................................................................. 74 3.1 Ore value.............................................................................. 74 3.2 Landscape position............................................................... 86 3.3 Creek, Swamp and Marine habitats.................................... 103 3.4 Andoom and Weipa regions............................................... 114 3.5 Seasonal habitat observations............................................. 122 3.6 Microhabitat factors .......................................................... 125 3.7 Species-specific accounts................................................... 126 3.8 Species sampling................................................................ 136 4 Discussion.......................................................................... 141 4.1 Principal conclusions.......................................................... 141 4.2 Contribution to ecological theory....................................... 144 4.3 Implications for practice..................................................... 148 4.4 Unresolved issues............................................................... 153 Bibliography............................................................................... 158 Appendices.................................................................................. 174 i List of Tables Table 1 - Number of vertebrates recorded in selected major habitats at Weipa, based on Winter and Atherton (1985)....... 23 Table 2 - Thirteen endangered, vulnerable, rare or poorly known vertebrates that are known or are likely to occur on the mine lease. ........................................................................ 25 Table 3 - Summary of the survey design factors, levels of each factor and number of replicates at each level. ........................ 52 Table 4 - Schedule of survey visits with dates of arrival and departure, and duration of each visit....................................... 59 Table 5 - Sequence of sites surveyed for each visit....................... 60 Table 6 - Daily site sampling schedule.......................................... 61 Table 7 – Structural habitat attributes sampled from all sites. ...... 65 Table 8 - Terminology used to explain numerical statistical probabilities ............................................................................ 73 Table 9 – Species diversity of woodland habitats above economic and uneconomic ore. .............................................. 74 Table 10 – Results of resampling procedure for comparisons of composition of observed terrestrial vertebrates in woodland habitats above economic and uneconomic ore showed no significant differences at any level of analysis..... 78 Table 11 - The top five terrestrial vertebrates which most characterised woodland habitat above economic ore. ............ 81 Table 12 - The top five terrestrial vertebrates which most characterised woodland habitat above uneconomic ore. ........ 82 Table 13 - The top five terrestrial vertebrates which most characterised the difference in woodland habitats above economic and uneconomic ore. .............................................. 82 Table 14 - Number of terrestrial vertebrates systematically and incidentally observed in woodland habitat sites economic ii and uneconomic, and the number of these with a significant difference in incidence.......................................... 83 Table 15 – Species diversity of woodland, ecotone and riparian habitats.................................................................................... 86 Table 16 – Results of resampling procedure for comparisons of composition of observed terrestrial vertebrates in woodland, ecotone and riparian habitats. ............................... 93 Table 17 - Number of species used in comparison of woodland, ecotone and riparian habitat sites, and the number of these with a significant observed difference in incidence................................................................................. 96 Table 18 - Taxa observed exclusively and significantly in one habitat type.............................................................................. 96 Table 19 – Six species accounted for the first 30% of the dissimilarity of riparian habitat............................................... 99 Table 20 – Five species accounted for the first 30% of the dissimilarity of ecotone habitat............................................. 100 Table 21 – Seven species accounted for the first 30% of the dissimilarity of woodland habitat. ........................................ 100 Table 22 - Species considered by Winter (1989) to be locally rare and restricted to woodland habitat, and the number of observations of these made in this survey. ........................... 101 Table 23 – Species diversity of creek, swamp and marine riparian habitats. ................................................................... 103 Table 24 – Results of resampling procedure for comparisons of composition of observed terrestrial vertebrates in creek, swamp and marine riparian habitats. .................................... 107 Table 25 - Number of species used in comparison of creek, swamp and marine riparian habitat sites and with a significant habitat preference................................................ 110 iii Table 26 - Number of species by class which were observed (significantly) for each permutation of habitat preference among creek, swamp and marine habitat sites...................... 110 Table 27 – Five species accounted for the first 30% of the dissimilarity of riparian creek habitat................................... 112 Table 28 – Five species accounted for the first 30% of the dissimilarity of riparian swamp habitat. ............................... 113 Table 29 – Five species accounted for the first 30% of the dissimilarity of riparian marine habitat................................. 113 Table 30 - Species diversity of the woodland habitats of the Andoom and Weipa regions. ................................................ 114 Table 31 – Results of resampling procedure for comparisons of composition of observed terrestrial vertebrates in woodland habitats from Andoom and Weipa regions show no significant differences at any level of analysis................ 116 Table 32 - Number of species observed (significantly) between the Andoom and Weipa
Recommended publications
  • Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
    Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency.
    [Show full text]
  • Hollow-Bearing Trees As a Habitat Resource Along an Urbanisation Gradient
    Hollow-Bearing Trees as a Habitat Resource along an Urbanisation Gradient Author Treby, Donna Louise Published 2014 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/1674 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367782 Griffith Research Online https://research-repository.griffith.edu.au Hollow-bearing Trees as a Habitat Resource along an Urbanisation Gradient Donna Louise Treby MPhil (The University of Queensland) Environmental Futures Centre. Griffith School of Environment, Griffith University, Gold Coast. A thesis submitted for the fulfilment for the requirements of the degree of Doctor of Philosophy. December 2013. “If we all did the things we are capable of doing. We would literally live outstanding lives. I think; if we all lived our lives this way, we would truly create an amazing world.” Thomas Edison. i Acknowledgements: It would be remiss of me if I did not begin by acknowledging my principal supervisor Dr Guy Castley, for the inception, development and assistance with the completion of this study. Your generosity, open door policy and smiling face made it a pleasure to work with you. I owe you so much, but all I can give you is my respect and heartfelt thanks. Along with my associate supervisor Prof. Jean-Marc Hero their joint efforts inspired me and opened my mind to the complexities and vagaries of ecological systems and processes on such a large scale. To my volunteers in the field, Katie Robertson who gave so much of her time and help in the early stages of my project, Agustina Barros, Ivan Gregorian, Sally Healy, Guy Castley, Katrin Lowe, Kieran Treby, Phil Treby, Erin Wallace, Nicole Glenane, Nick Clark, Mark Ballantyne, Chris Tuohy, Ryan Pearson and Nickolas Rakatopare all contributed to the collection of data for this study.
    [Show full text]
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Environment and Communications Legislation Committee Answers to Questions on Notice Environment Portfolio
    Senate Standing Committee on Environment and Communications Legislation Committee Answers to questions on notice Environment portfolio Question No: 3 Hearing: Additional Estimates Outcome: Outcome 1 Programme: Biodiversity Conservation Division (BCD) Topic: Threatened Species Commissioner Hansard Page: N/A Question Date: 24 February 2016 Question Type: Written Senator Waters asked: The department has noted that more than $131 million has been committed to projects in support of threatened species – identifying 273 Green Army Projects, 88 20 Million Trees projects, 92 Landcare Grants (http://www.environment.gov.au/system/files/resources/3be28db4-0b66-4aef-9991- 2a2f83d4ab22/files/tsc-report-dec2015.pdf) 1. Can the department provide an itemised list of these projects, including title, location, description and amount funded? Answer: Please refer to below table for itemised lists of projects addressing threatened species outcomes, including title, location, description and amount funded. INFORMATION ON PROJECTS WITH THREATENED SPECIES OUTCOMES The following projects were identified by the funding applicant as having threatened species outcomes and were assessed against the criteria for the respective programme round. Funding is for a broad range of activities, not only threatened species conservation activities. Figures provided for the Green Army are approximate and are calculated on the 2015-16 indexed figure of $176,732. Some of the funding is provided in partnership with State & Territory Governments. Additional projects may be approved under the Natinoal Environmental Science programme and the Nest to Ocean turtle Protection Programme up to the value of the programme allocation These project lists reflect projects and funding originally approved. Not all projects will proceed to completion.
    [Show full text]
  • Ecology and Behaviour of Burton's Legless Lizard (Lialis Burtonis, Pygopodidae) in Tropical Australia
    Asian Herpetological Research 2013, 4(1): 9–21 DOI: 10.3724/SP.J.1245.2013.00009 Ecology and Behaviour of Burton’s Legless Lizard (Lialis burtonis, Pygopodidae) in Tropical Australia Michael WALL1, 2 and Richard SHINE1* 1 School of Biological Sciences A08, University of Sydney, NSW 2006, Australia 2 Current address: 4940 Anza St. No. 4, San Francisco, CA 94121, USA Abstract The elongate, functionally limbless flap-footed lizards (family Pygopodidae) are found throughout Australia, ranging into southern New Guinea. Despite their diversity and abundance in most Australian ecosystems, pygopodids have attracted little scientific study. An intensive ecological study of one pygopodid, Burton’s legless lizard (Lialis burtonis Gray 1835), was conducted in Australia’s tropical Northern Territory. L. burtonis eats nothing but other lizards, primarily skinks, and appears to feed relatively infrequently (only 20.8% of stomachs contained prey). Ovulation and mating occur chiefly in the late dry-season (beginning around September), and most egg-laying takes place in the early to middle wet-season (November–January). Females can lay multiple clutches per year, some of which may be fertilised with stored sperm. Free-ranging L. burtonis are sedentary ambush foragers, with radio-tracked lizards moving on average < 5 m/day. Most foraging is done diurnally, but lizards may be active at any time of day or night. Radiotracked lizards were usually found in leaf-litter microhabitats, a preference that was also evident in habitat-choice experiments using field enclosures. Lizards typically buried themselves in 6–8 cm of litter; at this depth, they detect potential prey items while staying hidden from predators and prey and avoiding lethally high temperatures.
    [Show full text]
  • Recommended Band Size List Page 1
    Jun 00 Australian Bird and Bat Banding Scheme - Recommended Band Size List Page 1 Australian Bird and Bat Banding Scheme Recommended Band Size List - Birds of Australia and its Territories Number 24 - May 2000 This list contains all extant bird species which have been recorded for Australia and its Territories, including Antarctica, Norfolk Island, Christmas Island and Cocos and Keeling Islands, with their respective RAOU numbers and band sizes as recommended by the Australian Bird and Bat Banding Scheme. The list is in two parts: Part 1 is in taxonomic order, based on information in "The Taxonomy and Species of Birds of Australia and its Territories" (1994) by Leslie Christidis and Walter E. Boles, RAOU Monograph 2, RAOU, Melbourne, for non-passerines; and “The Directory of Australian Birds: Passerines” (1999) by R. Schodde and I.J. Mason, CSIRO Publishing, Collingwood, for passerines. Part 2 is in alphabetic order of common names. The lists include sub-species where these are listed on the Census of Australian Vertebrate Species (CAVS version 8.1, 1994). CHOOSING THE CORRECT BAND Selecting the appropriate band to use combines several factors, including the species to be banded, variability within the species, growth characteristics of the species, and band design. The following list recommends band sizes and metals based on reports from banders, compiled over the life of the ABBBS. For most species, the recommended sizes have been used on substantial numbers of birds. For some species, relatively few individuals have been banded and the size is listed with a question mark. In still other species, too few birds have been banded to justify a size recommendation and none is made.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • Bird Watcher
    THE AUSTRALIAN BIRD WATCHER VOLUME19 2001-2002 Editors: Stephen Debus, Graham Cam, Andrew Ley, Ken Simpson Index Compiler: Julia Hurley Published by THE BIRD OBSERVERS CLUB OF AUSTRALIA Melbourne, Victoria THE AUSTRALIAN BIRD WATCHER VOLUME19 2001-2002 Editors: Stephen Debus, Graham Cam, Andrew Ley, Ken Simpson Index Compiler: Julia Hurley Published by THE BIRD 0BSERVERS CLUB OF AUSTRALIA Melbourne, Victoria GENERAL INDEX TO VOLUME 19, 2001-2002 Page Apostlebird Struthidea cinerea, The changing distribution of the ........ 14, 77 Bellbird, Crested, Oreoica gutturalis, The, in the Hunter Valley of New South Wales .................................................................................... 55 Bitt~rn, ~lack, Ixobrychus jlavicollis, Notes on the, in far eastern Vtctona ................................................................................................... 173 Boobook, Southern, Ninox novaeseelandiae, Winter home range of an adult female, in suburban Canberra ..................................................... 109 Bowerbird, Golden, Prionodura newtoniana, Display behaviour of the adult male, at the bower ......................................................................... 3 Button-quail, Black-breasted, in open eucalypt forest in south-eastern Queensland .............................................................................................. 45 Chaffinch, Common, Fringilla coelebs, A record of the, on Phillip Island (Norfolk Island group), Australia .............................................. 225 Cockatoo,
    [Show full text]
  • Printable PDF Format
    Field Guides Tour Report Australia Part 2 2019 Oct 22, 2019 to Nov 11, 2019 John Coons & Doug Gochfeld For our tour description, itinerary, past triplists, dates, fees, and more, please VISIT OUR TOUR PAGE. Water is a precious resource in the Australian deserts, so watering holes like this one near Georgetown are incredible places for concentrating wildlife. Two of our most bird diverse excursions were on our mornings in this region. Photo by guide Doug Gochfeld. Australia. A voyage to the land of Oz is guaranteed to be filled with novelty and wonder, regardless of whether we’ve been to the country previously. This was true for our group this year, with everyone coming away awed and excited by any number of a litany of great experiences, whether they had already been in the country for three weeks or were beginning their Aussie journey in Darwin. Given the far-flung locales we visit, this itinerary often provides the full spectrum of weather, and this year that was true to the extreme. The drought which had gripped much of Australia for months on end was still in full effect upon our arrival at Darwin in the steamy Top End, and Georgetown was equally hot, though about as dry as Darwin was humid. The warmth persisted along the Queensland coast in Cairns, while weather on the Atherton Tablelands and at Lamington National Park was mild and quite pleasant, a prelude to the pendulum swinging the other way. During our final hours below O’Reilly’s, a system came through bringing with it strong winds (and a brush fire warning that unfortunately turned out all too prescient).
    [Show full text]
  • Fowlers Gap Biodiversity Checklist Reptiles
    Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • The Direct and Indirect Effects of Predation in a Terrestrial Trophic Web
    This file is part of the following reference: Manicom, Carryn (2010) Beyond abundance: the direct and indirect effects of predation in a terrestrial trophic web. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/19007 Beyond Abundance: The direct and indirect effects of predation in a terrestrial trophic web Thesis submitted by Carryn Manicom BSc (Hons) University of Cape Town March 2010 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University Clockwise from top: The study site at Ramsey Bay, Hinchinbrook Island, picture taken from Nina Peak towards north; juvenile Carlia storri; varanid access study plot in Melaleuca woodland; spider Argiope aethera wrapping a march fly; mating pair of Carlia rubrigularis; male Carlia rostralis eating huntsman spider (Family Sparassidae). C. Manicom i Abstract We need to understand the mechanism by which species interact in food webs to predict how natural ecosystems will respond to disturbances that affect species abundance, such as the loss of top predators. The study of predator-prey interactions and trophic cascades has a long tradition in ecology, and classical views have focused on the importance of lethal predator effects on prey populations (direct effects on density), and the indirect transmission of effects that may cascade through the system (density-mediated indirect interactions). However, trophic cascades can also occur without changes in the density of interacting species, due to non-lethal predator effects on prey traits, such as behaviour (trait-mediated indirect interactions). Studies of direct and indirect predation effects have traditionally considered predator control of herbivore populations; however, top predators may also control smaller predators.
    [Show full text]