Phylogenomics of a Rapid Radiation: the Australian Rainbow Skinks Jason G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scincidae: Liburnascincus) from Rocky Habitat on Cape York, Northeast Australia
Zootaxa 3994 (3): 222–234 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3994.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:FF5A5B78-4BF6-4225-AF4B-527C06BDF6E5 A new skink (Scincidae: Liburnascincus) from rocky habitat on Cape York, northeast Australia CONRAD J. HOSKIN1 & PATRICK J. COUPER2 1Centre for Tropical Biodiversity & Climate Change, College of Marine & Environmental Sciences, James Cook University, Towns- ville, Queensland 4811, Australia. E-mail: [email protected] 2Natural Environments Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia Abstract The genus Liburnascincus is composed of saxicoline skinks restricted to northeast Australia. This small radiation consists of one widespread species, L. mundivensis, found in a variety of rocky habitats in eastern Queensland, and two localized species, L. coensis and L. scirtetis, restricted to granite boulder habitats on Cape York Peninsula, in north Queensland. Here we describe a fourth species, L. artemis sp. nov., from the Bamboo Range, a low rocky range on Cape York. As for other Liburnascincus, the new species is a saxicoline skink that is active on boulder surfaces primarily early and late in the day. Liburnascincus artemis sp. nov. is most similar to L. mundivensis but can be diagnosed based on longer limbs, higher toe and finger lamellae counts, lower midbody scale count, and other aspects of morphology, scalation and colour pattern. Liburnascincus artemis sp. nov. is currently known from a very small area but further surveys will likely extend the range. -
Nature Conservation (Wildlife) Regulation 2006
Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value . -
Species Management Program for LNG Facility Construction Phase
Species Management Program for LNG Facility Construction Phase September 2010 Uncontrolled when printed QUEENSLAND CURTIS LNG PROJECT Species Management Program for LNG Facility Construction Activities September 2010 Table of Contents 1.0 INTRODUCTION 4 2.0 TERMS 4 2.1 Term of Approval 4 2.2 Approved Parties 4 3.0 SCOPE 5 3.1 Applicant 5 3.2 Organisational Summary 5 3.2.1 QCLNG Project 5 3.2.2 Environmental Impact Statement 6 3.3 Activity 7 3.3.1 Site Description 7 3.3.2 Clearing Activity 7 3.4 Legislative Framework 8 3.4.1 Vegetation Clearing 8 3.4.2 Fauna Handling and Removal of or Tampering With Animal Breeding Places 9 3.5 Relevant Conditions 10 3.5.1 Coordinator General Condition 9 – Nature Conservation Act 10 3.5.2 Environmental Authority Conditions 11 3.6 Applicable Species 11 4.0 IMPACTS 12 4.1 Impacts on Wildlife and Habitat 12 4.2 Impacts on Animal Breeding Places 12 4.2.1 Reptile and Amphibian Species 12 4.2.2 Mammal Species 13 4.2.3 Bird Species 14 4.3 Assessment and Research 22 4.3.1 Desktop Studies 22 4.3.2 Field Surveys – Draft EIS 23 4.3.3 Field Surveys – Supplementary EIS 23 5.0 MANAGEMENT OF IMPACTS 24 5.1 Environmental Management Plan 24 5.2 Environmental Control Measures 24 5.2.1 Handling of a Protected Species under the Nature Conservation Act 1992 25 5.2.2 Tampering with the Breeding Place of a Protected Animal Species 25 5.3 Management of Unavoidable Impacts 27 5.3.1 Offset Strategy 28 5.4 Summary of Compliance with Relevant Coordinator General and Environmental Authority Conditions 30 5.5 Responsibilities 32 5.6 -
Environmental and Social Monitoring Report INDONESIA: Tangguh Liquefied Natural Gas Project Operator's Environmental, Healt
Environmental and Social Monitoring Report Project Number: 38919 April – October 2012 INDONESIA: Tangguh Liquefied Natural Gas Project Operator’s Environmental, Health and Safety Report Prepared by BP Berau Limited Tangguh LNG Project Operator This report has been submitted to ADB by BP Berau Limited and is made publicly available in accordance with ADB’s public communications policy (2005). It does not necessarily reflect the views of ADB. Operator’s Environmental, Health and Safety Report Tangguh LNG April– October 2012 TABLE OF CONTENTS ENVIRONMENTAL AND HEALTH SAFETY REPORT TANGGUH LNG PROJECT TABLE OF CONTENTS .................................................................................................... 1 Table List .......................................................................................................................... 2 EXECUTIVE SUMMARY .................................................................................................. 3 1. Regulatory Compliance ............................................................................................ 4 1.1. Summary Description ...................................................................................... 4 1.2. Implications for Tangguh ................................................................................. 4 2. Environmental Management Plan ............................................................................ 5 2.1. LNG Plant and its Supporting Facilities including Marine Facilities ................ 5 2.1.1. Wastewater Management -
Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process. -
Testing the Relevance of Binary, Mosaic and Continuous Landscape Conceptualisations to Reptiles in Regenerating Dryland Landscapes
Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes Melissa J. Bruton1, Martine Maron1,2, Noam Levin1,3, Clive A. McAlpine1,2 1The University of Queensland, Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental Management, St Lucia, Australia 4067 2The University of Queensland, ARC Centre of Excellence for Environmental Decisions, St. Lucia, Australia 4067 3Hebrew University of Jerusalem, Department of Geography, Mt. Scopus, Jerusalem, Israel, 91905 Corresponding author: [email protected] Ph: (+61) 409 875 780 The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-015-0157-9 Abstract: Context: Fauna distributions are assessed using discrete (binary and mosaic) or continuous conceptualisations of the landscape. The value of the information derived from these analyses depends on the relevance of the landscape representation (or model) used to the landscape and fauna of interest. Discrete representations dominate analyses of landscape context in disturbed and regenerating landscapes; however within-patch variation suggests that continuous representations may help explain the distribution of fauna in such landscapes. Objectives: We tested the relevance of binary, mosaic, and continuous conceptualisations of landscape context to reptiles in regenerating dryland landscapes. Methods: For each of thirteen reptile groups, we compared the fit of models consisting of one landscape composition and one landscape heterogeneity variable for each of six landscape representations (2 x binary, 2 x mosaic, and 2 x continuous), at three buffer distances. We used Akaike weights to assess the relative support for each model. Maps were created from Landsat satellite images. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Ngangkan Culture Camp and Biodiversity Survey
Ngangkan Culture Camp and Biodiversity Survey June 2013 Where and Why? Our camp was on Ngangkan in Ngolkwarre country, in the Warddeken IPA on the western Arnhem Plateau, Northern Territory. The elders chose Ngangkan for the families to camp because it is a peaceful place, away from town, with lots of bush tucker; a place to bring back memories to share and a place for kids to learn about cultural knowledge. Warddeken Indigenous Protected Area is funded to look after the country and its animals. Every year, the Warddeken rangers do surveys to look for animals and to build up a picture of what is happening with the animals over time. Surveys have been done at Ngangkan since 2012 and the same sites are visited each year to see if the animal numbers are changing. It is planned to use Ngangkan as a long term monitoring site to keep a check on animal numbers in Warddeken IPA. 2 Who was there? • Rangers and Traditional Owners of the Warddeken IPA from the Manmoyi and Kamarrkawarn ranger bases, with their families and lots of kids as it was the school holidays • Scientists Alys Stevens and Terry Mahney from Flora and Fauna Division (NT Govt) • Manmoyi Outstation school teacher – Dan McLaren • Volunteer Doctor – Gabby Hall • Georgia Vallance – Warddeken Coordinator 3 3 What we did Cultural activities Cultural activities included; gathering (bushtucker, cultural materials like pandanas, digging sticks), knowledge sharing in evenings, corroboree with singing and dancing, traditional cooking, making music with traditional instruments and knowledge sharing everyday as part of life. Berribob taught the boys and young men how to make shovel spears, spear throwers and make fire in preparation for a fire drive to hunt kangaroo. -
The Direct and Indirect Effects of Predation in a Terrestrial Trophic Web
This file is part of the following reference: Manicom, Carryn (2010) Beyond abundance: the direct and indirect effects of predation in a terrestrial trophic web. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/19007 Beyond Abundance: The direct and indirect effects of predation in a terrestrial trophic web Thesis submitted by Carryn Manicom BSc (Hons) University of Cape Town March 2010 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University Clockwise from top: The study site at Ramsey Bay, Hinchinbrook Island, picture taken from Nina Peak towards north; juvenile Carlia storri; varanid access study plot in Melaleuca woodland; spider Argiope aethera wrapping a march fly; mating pair of Carlia rubrigularis; male Carlia rostralis eating huntsman spider (Family Sparassidae). C. Manicom i Abstract We need to understand the mechanism by which species interact in food webs to predict how natural ecosystems will respond to disturbances that affect species abundance, such as the loss of top predators. The study of predator-prey interactions and trophic cascades has a long tradition in ecology, and classical views have focused on the importance of lethal predator effects on prey populations (direct effects on density), and the indirect transmission of effects that may cascade through the system (density-mediated indirect interactions). However, trophic cascades can also occur without changes in the density of interacting species, due to non-lethal predator effects on prey traits, such as behaviour (trait-mediated indirect interactions). Studies of direct and indirect predation effects have traditionally considered predator control of herbivore populations; however, top predators may also control smaller predators. -
Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description
Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description 2010 Disclaimer While reasonable efforts have been made to ensure the contents of this ECD are correct, the Commonwealth of Australia as represented by the Department of the Environment does not guarantee and accepts no legal liability whatsoever arising from or connected to the currency, accuracy, completeness, reliability or suitability of the information in this ECD. Note: There may be differences in the type of information contained in this ECD publication, to those of other Ramsar wetlands. © Copyright Commonwealth of Australia, 2010. The ‘Ecological Character Description for the Shoalwater and Corio Bays Area Ramsar Site: Final Report’ is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This report should be attributed as ‘BMT WBM. (2010). Ecological Character Description of the Shoalwater and Corio Bays Area Ramsar Site. Prepared for the Department of the Environment, Water, Heritage and the Arts.’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Ecological Character Description for the Shoalwater and -
WRA23 Fauna Report Sept 2002
VVEERRTTEEBBRRAATTEE Brigalow Belt South FFAAUUNNAA SSUURRVVEEYY,, AANNAALLYYSSIISS AANNDD Stage 2 MMOODDEELLLLIINNGG PROJECTS PROJECTS NSW WESTERN REGIONAL ASSESSMENTS SEPTEMBER 2002 Resource and Conservation Assessment Council VERTEBRATE FAUNA SURVEY, ANALYSIS AND MODELLING PROJECTS NSW WESTERN REGIONAL ASSESSMENTS BRIGALOW BELT SOUTH BIOREGION (STAGE 2) NSW National Parks and Wildlife Service Projects undertaken for the Resource and Conservation Assessment Council NSW Western Regional Assessments Project numbers WRA 23 and WRA 27 For more information and for information on access to data contact the: Resource and Conservation Division, Planning NSW GPO Box 3927 SYDNEY NSW 2002 Phone: (02) 9762 8052 Fax: (02) 9762 8712 www.racac.nsw.gov.au © Crown copyright September 2002 New South Wales Government ISBN [1740291921] This project has been funded and managed by the Resource and Conservation Division, Planning NSW Main Author: Michael Pennay Co Author: Carl Gosper Co Authors (Species Profiles): Jade Freeman, Robyn Molsher, Marc Irvin, Tania Laity. Reviewers: Murray Ellis (NPWS), Darren Shelly (DLWC), Jim Shields (SFNSW), David Goldney (Charles Sturt University), Martin Denny (Independent), Todd Soderquist (NPWS). Acknowledgments: Western Regional Assessment Unit Manager: Gary Saunders. Project Manager: Michael Pennay. Technical Working Group: Murray Ellis (NPWS), Darren Shelly (DLWC), Jim Shields (SFNSW), David Goldney (Charles Sturt University). GIS Support: Heidi Henry, Steve Thornton, Michael Pennay. Data entry: Jade Freeman, Rebecca Drury. Data check: Technical Working Group, Carl Gosper, Rebecca Drury, Chris Turbill, Michael Pennay. Bat Call Analysis: Greg Ford. Voucher specimen identification: Sandy Ingleby, Terry Reardon, Hank Godthelp, Harry Parnaby, Ross Sadlier, Australian Museum. Survey Team Leaders: Rebecca Drury, Carl Gosper, Michael Pennay. NPWS Survey Team Members: Alex Dudley, Chris Turbill. -
Intra and Interspecific Variation in Critical Thermal Minimum and Maximum of Four Species of Anole Lizards (Reptilia: Squamata: Dactyloidae: Anolis)
INTRA AND INTERSPECIFIC VARIATION IN CRITICAL THERMAL MINIMUM AND MAXIMUM OF FOUR SPECIES OF ANOLE LIZARDS (REPTILIA: SQUAMATA: DACTYLOIDAE: ANOLIS) JHAN CARLOS SALAZAR SALAZAR UNIVERSIDAD ICESI FACULTAD DE CIENCIAS NATURALES, DEPARTAMENTO DE CIENCIAS BIOLÓGICAS BIOLOGÍA SANTIAGO DE CALI 2017 INTRA AND INTERSPECIFIC VARIATION IN CRITICAL THERMAL MINIMUM AND MAXIMUM OF FOUR SPECIES OF ANOLE LIZARDS (REPTILIA: SQUAMATA: DACTYLOIDAE: ANOLIS) JHAN CARLOS SALAZAR SALAZAR TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE PREGRADO EN BIOLOGÍA DIRECTORA: MARÍA DEL ROSARIO CASTAÑEDA, Ph. D. DIRECTOR: GUSTAVO ADOLFO LONDOÑO, Ph. D. TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE PREGRADO EN BIOLOGÍA SANTIAGO DE CALI 2017 SANTIAGO DE CALI, MIÉRCOLES, 08 DE AGOSTO DE 2017 ACKNOWLEDGEMENT I give my most sincere thanks to my parents and godparents for their unconditional support throughout the entire process of the completion of this Undergraduate Degree Project. Likewise, I thank my directors María del Rosario Castañeda, Ph.D. and Gustavo A. Londoño, Ph.D. for all their patience support and time they invested to help me, guide me and correct me throughout the process. In addition, I want to thank the Betty Cadena and her family, Don Juan, Gustavo from Parques Nacionales Naturales, Don Bertulfo from DAGMA and those people who made this project possible. Icesi University let us use the field station facilities. Also, I want to thank M. Loaiza and M. Sanchez for their help and guide in R. Finally, I want to thank M. F. Restrepo, C. Cárdenas, C. Estupiñán, S. Muñoz, N. Jimenez, S. Orozco, M. Cantero, L. Gonzales, P. Montes and J. Lizarazo for their help during the field work.