Proceedings of the California Academy of Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scincidae: Liburnascincus) from Rocky Habitat on Cape York, Northeast Australia
Zootaxa 3994 (3): 222–234 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3994.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:FF5A5B78-4BF6-4225-AF4B-527C06BDF6E5 A new skink (Scincidae: Liburnascincus) from rocky habitat on Cape York, northeast Australia CONRAD J. HOSKIN1 & PATRICK J. COUPER2 1Centre for Tropical Biodiversity & Climate Change, College of Marine & Environmental Sciences, James Cook University, Towns- ville, Queensland 4811, Australia. E-mail: [email protected] 2Natural Environments Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia Abstract The genus Liburnascincus is composed of saxicoline skinks restricted to northeast Australia. This small radiation consists of one widespread species, L. mundivensis, found in a variety of rocky habitats in eastern Queensland, and two localized species, L. coensis and L. scirtetis, restricted to granite boulder habitats on Cape York Peninsula, in north Queensland. Here we describe a fourth species, L. artemis sp. nov., from the Bamboo Range, a low rocky range on Cape York. As for other Liburnascincus, the new species is a saxicoline skink that is active on boulder surfaces primarily early and late in the day. Liburnascincus artemis sp. nov. is most similar to L. mundivensis but can be diagnosed based on longer limbs, higher toe and finger lamellae counts, lower midbody scale count, and other aspects of morphology, scalation and colour pattern. Liburnascincus artemis sp. nov. is currently known from a very small area but further surveys will likely extend the range. -
Nature Conservation (Wildlife) Regulation 2006
Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value . -
The Direct and Indirect Effects of Predation in a Terrestrial Trophic Web
This file is part of the following reference: Manicom, Carryn (2010) Beyond abundance: the direct and indirect effects of predation in a terrestrial trophic web. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/19007 Beyond Abundance: The direct and indirect effects of predation in a terrestrial trophic web Thesis submitted by Carryn Manicom BSc (Hons) University of Cape Town March 2010 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University Clockwise from top: The study site at Ramsey Bay, Hinchinbrook Island, picture taken from Nina Peak towards north; juvenile Carlia storri; varanid access study plot in Melaleuca woodland; spider Argiope aethera wrapping a march fly; mating pair of Carlia rubrigularis; male Carlia rostralis eating huntsman spider (Family Sparassidae). C. Manicom i Abstract We need to understand the mechanism by which species interact in food webs to predict how natural ecosystems will respond to disturbances that affect species abundance, such as the loss of top predators. The study of predator-prey interactions and trophic cascades has a long tradition in ecology, and classical views have focused on the importance of lethal predator effects on prey populations (direct effects on density), and the indirect transmission of effects that may cascade through the system (density-mediated indirect interactions). However, trophic cascades can also occur without changes in the density of interacting species, due to non-lethal predator effects on prey traits, such as behaviour (trait-mediated indirect interactions). Studies of direct and indirect predation effects have traditionally considered predator control of herbivore populations; however, top predators may also control smaller predators. -
Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description
Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description 2010 Disclaimer While reasonable efforts have been made to ensure the contents of this ECD are correct, the Commonwealth of Australia as represented by the Department of the Environment does not guarantee and accepts no legal liability whatsoever arising from or connected to the currency, accuracy, completeness, reliability or suitability of the information in this ECD. Note: There may be differences in the type of information contained in this ECD publication, to those of other Ramsar wetlands. © Copyright Commonwealth of Australia, 2010. The ‘Ecological Character Description for the Shoalwater and Corio Bays Area Ramsar Site: Final Report’ is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This report should be attributed as ‘BMT WBM. (2010). Ecological Character Description of the Shoalwater and Corio Bays Area Ramsar Site. Prepared for the Department of the Environment, Water, Heritage and the Arts.’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Ecological Character Description for the Shoalwater and -
Australian Society of Herpetologists
1 THE AUSTRALIAN SOCIETY OF HERPETOLOGISTS INCORPORATED NEWSLETTER 48 Published 29 October 2014 2 Letter from the editor This letter finds itself far removed from last year’s ASH conference, held in Point Wolstoncroft, New South Wales. Run by Frank Lemckert and Michael Mahony and their team of froglab strong, the conference featured some new additions including the hospitality suite (as inspired by the Turtle Survival Alliance conference in Tuscon, Arizona though sadly lacking of the naked basketball), egg and goon race and bouncing castle (Simon’s was a deprived childhood), as well as the more traditional elements of ASH such as the cricket match and Glenn Shea’s trivia quiz. May I just add that Glenn Shea wowed everyone with his delightful skin tight, anatomically correct, and multi-coloured, leggings! To the joy of everybody in the world, the conference was opened by our very own Hal Cogger (I love you Hal). Plenary speeches were given by Dale Roberts, Lin Schwarzkopf and Gordon Grigg and concurrent sessions were run about all that is cutting edge in science and herpetology. Of note, award winning speeches were given by Kate Hodges (Ph.D) and Grant Webster (Honours) and the poster prize was awarded to Claire Treilibs. Thank you to everyone who contributed towards an update and Jacquie Herbert for all the fantastic photos. By now I trust you are all preparing for the fast approaching ASH 2014, the 50 year reunion and set to have many treats in store. I am sad to not be able to join you all in celebrating what is sure to be, an informative and fun spectacle. -
Ecology Assessment Report Q-4500-15-RP-1383
REPORT Ecology Assessment Report Q-4500-15-RP-1383 Australia Pacific LNG Project This report provides an overview of the environmental and ecological values for the Site contained within Lot 2 on Plan RG540, within ATP1178, associated with DA#1703. Revision Date Description Originator Checked QA/Eng Approved 0 09/04/2015 Issued for Use S Tune G Phillips T Howell S Dale Uncontrolled when printed unless issued and stamped Controlled Copy. Ecology Assessment Report REPORT Release Notice This document is available through the Australia Pacific LNG Project controlled document system TeamBinder™. The responsibility for ensuring that printed copies remain valid rests with the user. Once printed, this is an uncontrolled document unless issued and stamped Controlled Copy. Third-party issue can be requested via the Australia Pacific LNG Project Document Control Group. Document Conventions The following terms in this document apply: Will, shall or must indicate a mandatory course of action Should indicates a recommended course of action May or can indicate a possible course of action. Document Custodian The custodian of this document is the Australia Pacific LNG Project – Environmental Approvals Manager. The custodian is responsible for maintaining and controlling changes (additions and modifications) to this document and ensuring the stakeholders validate any changes made to this document. Deviations from Document Any deviation from this document must be approved by the Australia Pacific LNG Project – Environmental Approvals Manager. Doc Ref: Q-4500-15-RP-1383 Revision: 0 Page 2 of 28 Business Integrity, Australia Pacific LNG Project Uncontrolled when printed unless issued and stamped Controlled Copy. Ecology Assessment Report REPORT Table of Contents 1. -
PHYLOGENETIC ANALYSIS of ECONOMICALLY IMPORTANT AUSTRALIAN CARLIA LIZARDS Priyanka Gautam, D
Innovative Thoughts International Research Journal pISSN 2321-5143 eISSN 2347-5722 Volume 2, Issue 3, December 2014 37 Retrieved from: http://itirj.naspublishers.com/ PHYLOGENETIC ANALYSIS OF ECONOMICALLY IMPORTANT AUSTRALIAN CARLIA LIZARDS Priyanka Gautam, D. Abhilasha and D. Jyoti1 Abstract Carlia lizards belong to the family Scincidae are generally found in Australia and in New Guinea and also in associated Islands. The present study is based on the phylogenetic analysis of 32 species of Carlia on the basis of their 16S rRNA sequences. All of these species differ in their color, habitat shape and size. These species are widely distributed and are kept in gardens and are non poisonous. These lizards are of major importance as they are assisted in the establishment of the invasive brown tree snake on Guam by providing a food resource. By this phylogenetic analysis we can establish a relation between different species of Carlia, using Bootstrap method. In all four types of tree prepared maximum similarity (100%) was found between C.gracillis, Crhomboidalis, C.jarnoldae, C.rubrigularis. Keywords: Carlia, Phylogenetic analysis, Economic importance. INTRODUCTION Phylogenetics and Evolutionary Biology is the field that deals with the study of evolutionary relations among groups of organisms and the computational simulation techniques for the study of biological, behavioral, and social systems. (Brinkman and Leipe, 2001) The result of a phylogenetic analysis is expressed in the form of phylogenetic tree from which we can deduce to find out the relationship and the conserved pattern. (Brinkman and Leipe, 2001) The branches present in a tree show the hypothesized evolutionary relationship between the organisms and they also shows the evolutionary time of growth of organisms in a phylogram tree. -
Native Animal Species List
Native animal species list Native animals in South Australia are categorised into one of four groups: • Unprotected • Exempt • Basic • Specialist. To find out the category your animal is in, please check the list below. However, Specialist animals are not listed. There are thousands of them, so we don’t carry a list. A Specialist animal is simply any native animal not listed in this document. Mammals Common name Zoological name Species code Category Dunnart Fat-tailed dunnart Sminthopsis crassicaudata A01072 Basic Dingo Wild dog Canis familiaris Not applicable Unprotected Gliders Squirrel glider Petaurus norfolcensis E04226 Basic Sugar glider Petaurus breviceps E01138 Basic Possum Common brushtail possum Trichosurus vulpecula K01113 Basic Potoroo and bettongs Brush-tailed bettong (Woylie) Bettongia penicillata ogilbyi M21002 Basic Long-nosed potoroo Potorous tridactylus Z01175 Basic Rufous bettong Aepyprymnus rufescens W01187 Basic Rodents Mitchell's hopping-mouse Notomys mitchellii Y01480 Basic Plains mouse (Rat) Pseudomys australis S01469 Basic Spinifex hopping-mouse Notomys alexis K01481 Exempt Wallabies Parma wallaby Macropus parma K01245 Basic Red-necked pademelon Thylogale thetis Y01236 Basic Red-necked wallaby Macropus rufogriseus K01261 Basic Swamp wallaby Wallabia bicolor E01242 Basic Tammar wallaby Macropus eugenii eugenii C05889 Basic Tasmanian pademelon Thylogale billardierii G01235 Basic 1 Amphibians Common name Zoological name Species code Category Southern bell frog Litoria raniformis G03207 Basic Smooth frog Geocrinia laevis -
A Preliminary Assessment of Faunal Values Within and Adjacent EPC 1029, Styx Basin, Central-East Queensland
A preliminary assessment of faunal values within and adjacent EPC 1029, Styx Basin, central-east Queensland ) Prepared for Yeats Consulting Engineers by Ed Meyer, Ecological Consultant,S Luscombe Street, Runcorn QLD 4113 ([email protected]) Conditions of use This report may only be used for the purposes for which it was commissioned. The use of this report, or part thereof, for any other reason or purpose is prohibited without the written consent of the author. Front cover: Fauna recorded from EPC 1029 during March 2011 surveys. Clockwise from upper left: ornamental snake (Denisonia maculata); squatter pigeon (southern race) (Geophaps scripta scripta); metallic snake-eyed skink (Cryptoblepharus metal/icus); and eastern sedgefrog (Litoria tal/ax). ©Edward Meyer 2011 5 Luscombe Street, Runcorn QLD 4113 E-mail:[email protected] Version 2 _ 3 August 2011 2 Table of contents 1. Summary 4 2. Background 6 Description of study area 6 Nomenclature 6 Abbreviations and acronyms 7 3. Methodology 9 General approach 9 ) Desktop assessment 9 Likelihood of occurrence assessments 10 Field surveys 11 Survey conditions 15 Survey limitations 15 4. Results 17 Desktop assessment findings 17 Likelihood of occurrence assessments 17 Field survey results -fauna 20 Field survey results - fauna habitat 22 Habitat for conservation significant species 28 ) 5. Summary and conclusions 37 6. References 38 Appendix A: Fauna previously recorded from Desktop Assessment Study Area 41 Appendix B: likelihood of occurrence assessments for conservation significant fauna 57 Appendix C: March 2011 survey results 73 Appendix D: Habitat photos 85 Appendix E: Habitat assessment proforma 100 3 1. Summary The faunal values of land within and adjacent Exploration Permit for Coal (EPe) 1029 were investigated by way of desktop review of existing information as well as field surveys carried out in late March 201l. -
A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St. -
Ecomorphology, Microhabitat Use, Performance and Reproductive Output in Tropical Lygosomine Lizards
This file is part of the following reference: Goodman, Brett (2006) Ecomorphology, microhabitat use, performance and reproductive output in tropical lygosomine lizards. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/4784 Ecomorphology, Microhabitat Use, Performance and Reproductive Output in Tropical Lygosomine Lizards Brett Alexander Goodman BSc University of Melbourne BSc (Hons) Latrobe University Thesis submitted for the degree of Doctor of Philosophy School of Tropical Ecology James Cook University of North Queensland September 2006 Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given ------------------------- ------------------ (Signature) (Date) Statement of Access I, the undersigned, author of this thesis, understand that James Cook University will make this thesis available for use within the University library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work. ------------------------- ------------------ (Signature) (Date) Preface The following is a list of publications arising from work related to, or conducted as part of this thesis to date: HOEFER , A.M., B. A. GOODMAN , AND S.J. DOWNES (2003) Two effective and inexpensive methods for restraining small lizards. Herpetological Review 34 :223-224. GOODMAN , B.A., G.N.L. -
A New Genus and Species of Lizard (Reptilia: Scincidae) from New Caledonia, Southwest Pacific!
Pacific Science (1997), vol. 51, no. 1: 91-96 © 1997 by University of Hawai'i Press. All rights reserved A New Genus and Species of Lizard (Reptilia: Scincidae) from New Caledonia, Southwest Pacific! Ross A. SADLIER2 AND AARON M. BAUER3 ABSTRACT: An unusual new lygosomine skink, Simiscincus aurantiacus Sadlier & Bauer, n. sp., is described from a single specimen collected in southern New Cale donia. This species is a member of the Eugongyius group of skinks, but is not readily assignable to any known genus. It has a number of derived characteristics that serve to distinguish it, the most notable of which is the highest number of premaxillary teeth of any scincid. Although its relationships cannot, at present, be established unambiguously, it appears to share affinities with another monotypic endemic New Caledonian genus, Graciliscincus. The discovery of this species high lights the extreme diversity and endemicity of the New Caledonian lizard fauna. THE TERRESTRlAL HERPETOFAUNA of New Cale Simiscincus Sadlier & Bauer, n. genus donia is extremely diverse and highly endemic (Bauer and Vindum 1990, Bauer and Sadlier TYPE SPECIES: Simiscincus aurantiacus Sad 1993) and is dominated by carphodactyline lier & Bauer, n. sp., here designated. geckos and lygosomine skinks of the Eugongy ius group. Many of the New Caledonian lizards are apparently restricted to small regions of the DIAGNOSIS: Simiscincus is diagnosed as a island as a whole. Indeed, a recent review of member of the Eugongyius group of skinks as the status of the lizard fauna of New Caledonia defined by Greer (1979): the parietals meet identified almost half the species either as mod behind the interparietal; the parietal is bordered erately well known but restricted in distribution along its posterior edge by an upper secondary or as known from only a few specimens from temporal and transversely enlarged nuchal scale; one or a few localities (Bauer and Sadlier 1993).