Cloning the Vision Related G Protein Transducin for Live Cell Fluorescence Studies Deanna M

Total Page:16

File Type:pdf, Size:1020Kb

Cloning the Vision Related G Protein Transducin for Live Cell Fluorescence Studies Deanna M The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2019 Cloning the vision related G protein transducin for live cell fluorescence studies Deanna M. Bowman The University of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Biochemistry Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Bowman, Deanna M., "Cloning the vision related G protein transducin for live cell fluorescence studies" (2019). Williams Honors College, Honors Research Projects. 943. https://ideaexchange.uakron.edu/honors_research_projects/943 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Title: Cloning the vision related G protein transducin for live cell fluorescence studies Name: Deanna Bowman Course: 3150:497 Date: April 26 2019 1 Abstract: G coupled protein receptors (GCPR) are one of the largest families of receptors and mediate a variety of biological responses. Rhodopsin is the largest family and aids in sight, the α-subunit of the GCPR complex in extremely important to the activation and downstream signaling effects of GCPR. The α-subunit contains a small trans-domain portion and in this project the sequence of that portion will be inserted into a vector containing a fluorescent tag. These vectors will then be used to collect fluorescent cross correlation spectroscopy or FCCS data. The unit was cloned using assembly methods that include PCR and purification techniques. The vector containing the transducin α-subunit is then transfected into live Cos-7 cells. Images of the cell can then be taken and FCCS data can also be collected. This will give insight to the dimerization and localization of the subunit in real time live cell experiments. GCPRs are extremely important cell receptors and insights on how molecular interactions between GPCRs and other proteins can lead to new routes for drug discovery. Abbreviations: GPCR: G protein-coupled receptor; Rho, rhodopsin; GDP, guanine diphosphate; GTP, guanine triphosphate; FCS, Fluorescence Correlation Spectroscopy; PIE FCCS, Pulsed-Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy; GFP, green fluorescent protein; 2 Introduction: Guanine nucleotide binding protein (G protein) coupled receptors (GPCR) are not only one of the largest families of receptors found in biological systems but also mediate a large array of biological functions from sight to neurotransmitters.1 In this study, rhodopsin is examined, the rhodopsin family is the largest of the five GPCR families. The family shares a few conserved sequence motifs that are important for sight and mutations in rhodopsin have been found to contribute to night blindness.2 Within rod cells there are GPCRs in the discs that form the rod outer segment, with light activation in the transmembrane segment that contains a chromophore that undergoes photoisomerization.3 The light activation is by a single photon, causing the receptor, Rho, to undergo a conformational change as seen in Figure 1.4 The conformational change allows for 5 the light signal to be amplified by the heterotrimeric transducin molecule, Gt, and then dissociate. This conformational change is critical to the activation of the receptor and the subsequent signal transduction. Figure 1: This image shows GPCR on the cell membrane and the α-subunit. This image helps to visualize the activation of the Gα and how the signal transduction works. From Li, J. et al. (2002) Nature 420, 716-717. The alpha subunit (α-subunit, or Gα) is part of the heterotrimeric G proteins that associate with GCPRs when they are activated. The Gα subunit anchors to the plasma membrane and is important in the binding of GTP or GDP and specifically the amplification of the light signal in rhodopsin. The activation of the rod receptors is related to rhodopsin clustering, which could lead the receptors to localize to particular parts of the membrane effecting the kinetics of the receptor G protein interactions. In a recent study it was speculated that at high levels of illumination would reduce the availability of Gα to activate, this could lead to problems with eye sight.3 The Gα subunit is encoded by the gene GNAT1. This portion of the heterotrimeric G protein molecular interacts with the membrane in order to anchor the inactive Gα subunit that is bound to GDP. The molecule uses a N-myristoyl glycine on position 2 as a lipidation site to bind to the membrane.6 The heterotrimeric transducin domain also contains the binding site for GTP or GDP depending on the activation state of the receptor. As mentioned earlier, light absorption will activate conformational changes in rhodopsin that leads to the binding and activation of transducin to switch out GDP for GTP at the Gα subunit then dissociate from the rest of the 3 subunits. It has also been found that gene GNAT1 is highly conserved among different species and a missense mutation is often found in congenital stationary night blindness (CSNB).7 This mutation effects the activation of the receptor and the conformational changes needed to activate the signal. Figure 2 shows the structure for the Gα transducing domain complexed with GTP, this means that the protein is activated and able to dissociate from the membrane.8 Figure 2: In this figure the structure of the G alpha transducing domain is shown. This figure was created using the mmCIF file found on rcsb.org and software PyMOL. The code for the structure is 1TND. In this study Gα interaction with rhodopsin will be examined with the technique called fluorescence correlation spectroscopy (FCS) and pulse-interleaved excitation fluorescence cross correlation spectroscopy or PIE FCCS.9 PIE FCCS uses fluorescently labeled molecules to determine dimerization and activation of membrane bound receptors, this allows for quantification of rhodopsin interaction in situ. This method works by using time-correlated photon counting with fluorescent imaging using custom developed equipment. With PIE FCCS one can determine the protein concentration, mobility, and clustering.9 This clustering can be analyzed and the order can be determined to be either a monomer, dimer, trimer, or oligomer. This is an extremely powerful and accurate tool since the experiments can be done in live cells without the need to fix the cells. For FCS, a single fluorescent molecule is examined, while with PIE FCCS a two-color fluorescence is evaluated. The spatial organization of the rhodopsin receptor in a dimer or higher order oligomer could affect the transduction of the light signal. The analysis of the data takes into account the different combinations of the labeled proteins that are dimerizing or forming higher order complexes on the membrane. In this experiment I will create a clone of the transducing Gα domain that will be inserted into a vector containing a GFP tag that will allow for FCS and FCCS data to be taken on the dimerization and activation of rhodopsin. The vector will be created by means of two different methods, one is a subcloning method with an 4 insertion into the relevant expression vectors while the second method is purchasing a plasmid already containing the GNAT1 gene and a GFP tag. This will allow us to measure the interaction strength and kinetics of Gα and rho. Materials and Methods: Constructs: In order to insert the gene of interest into our florescent vectors, sub-cloning was done with the NEBuilder HiFi DNA Assembly kit. The gene of interest was purchased from AddGene, it was XE101 alpha transducing CS2+ (catalog number 16681). Primers were then designed so that half of the primer would overlap with the gene of interest (GNAT1) and the other half would overlap with the insertion vector. The forward primer being TGAACCGTCAGATCCATGGGGGCTGGGGC and the reverse primer being CGACTGCAGAATTCGTCAGAAGAGGCCACAGTCTTTGAGGTTCTCC with an annealing temperature at 72. The underlined segment of the primer is the base coding for the GNAT1 gene that was in the vector provided by AddGene. The primers where then ordered from GeneWiz. First our empty vectors, pAcGFP1-N1 and pAcmcherry-N1, were digested with Nhel (NEB) and HindIII (NEB) to linearize it for easier amplification during the PCR steps. After each digestion the plasmid was purified to remove any impurities. The vector bought from AddGene containing the gene of interest was also digested with Hind III and Nhel. After purification, the GNAT1 vector was then amplified with the overlapping primers using PCR. The PCR protocol was as follows: a hot start at 98ͦ C for 30 seconds, 98ͦ C for 10 seconds to denature, 72ͦ C for 20 seconds to allow for annealing, then one minute at 72ͦ C, these three steps are repeated 30 times. Then the mixture is held at 72ͦ C for two minutes and then the PCR product is held at 4ͦ C indefinitely. The product was then ran on a gel (agarose from Bio-Rad)to separate out the product containing the gene from linearized vectors or primer dimers. The NEBuilder HiFi DNA Assembly master mix is then added to a solution containing the PCR product and the pAcGFP1-N1 vector to anneal the DNA back together. This was then purified. The assembly product was then transformed to competent E. coli, DH5α, and plated and allowed to grow for twenty- four hours.
Recommended publications
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision
    The Journal of Neuroscience, June 1, 2011 • 31(22):8067–8077 • 8067 Cellular/Molecular G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision Alexander V. Kolesnikov,1 Loryn Rikimaru,2 Anne K. Hennig,1 Peter D. Lukasiewicz,1 Steven J. Fliesler,4,5,6,7 Victor I. Govardovskii,8 Vladimir J. Kefalov,1 and Oleg G. Kisselev2,3 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Ophthalmology and 3Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, 4Research Service, Veterans Administration Western New York Healthcare System, and Departments of 5Ophthalmology (Ross Eye Institute) and 6Biochemistry, University at Buffalo/The State University of New York (SUNY), and 7SUNY Eye Institute, Buffalo, New York 14215, and 8Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the ␣-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary ␤␥-complex in this process remains a mystery. Here, we show that elimination of the transducin ␥-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin ␤␥-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
    [Show full text]
  • G Protein Alpha Inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA335036 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-GNAI1 antibody: synthetic peptide directed towards the middle region of human GNAI1. Synthetic peptide located within the following region: YQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKTTGIVETHFTFKDLH Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 40 kDa Gene Name: G protein subunit alpha i1 Database Link: NP_002060 Entrez Gene 14677 MouseEntrez Gene 25686 RatEntrez Gene 2770 Human P63096 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 G protein alpha inhibitor 1 (GNAI1) Rabbit Polyclonal Antibody – TA335036 Background: Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules.
    [Show full text]
  • GNAT1 (NM 144499) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221246 GNAT1 (NM_144499) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: GNAT1 (NM_144499) Human Tagged ORF Clone Tag: Myc-DDK Symbol: GNAT1 Synonyms: CSNB1G; CSNBAD3; GBT1; GNATR Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221246 representing NM_144499 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGGGCTGGGGCCAGTGCTGAGGAGAAGCACTCCAGGGAGCTGGAAAAGAAGCTGAAAGAGGACGCTG AGAAGGATGCTCGAACCGTGAAGCTGCTGCTTCTGGGTGCCGGTGAGTCCGGGAAGAGCACCATCGTCAA GCAGATGAAGATTATCCACCAGGACGGGTACTCGCTGGAAGAGTGCCTCGAGTTTATCGCCATCATCTAC GGCAACACGTTGCAGTCCATCCTGGCCATCGTACGCGCCATGACCACACTCAACATCCAGTACGGAGACT CTGCACGCCAGGACGACGCCCGGAAGCTGATGCACATGGCAGACACTATCGAGGAGGGCACGATGCCCAA GGAGATGTCGGACATCATCCAGCGGCTGTGGAAGGACTCCGGTATCCAGGCCTGTTTTGAGCGCGCCTCG GAGTACCAGCTCAACGACTCGGCGGGCTACTACCTCTCCGACCTGGAGCGCCTGGTAACCCCGGGCTACG TGCCCACCGAGCAGGACGTGCTGCGCTCGCGAGTCAAGACCACTGGCATCATCGAGACGCAGTTCTCCTT CAAGGATCTCAACTTCCGGATGTTCGATGTGGGCGGGCAGCGCTCGGAGCGCAAGAAGTGGATCCACTGC TTCGAGGGCGTGACCTGCATCATCTTCATCGCGGCGCTGAGCGCCTACGACATGGTGCTAGTGGAGGACG ACGAAGTGAACCGCATGCACGAGAGCCTGCACCTGTTCAACAGCATCTGCAACCACCGCTACTTCGCCAC GACGTCCATCGTGCTCTTCCTTAACAAGAAGGACGTCTTCTTCGAGAAGATCAAGAAGGCGCACCTCAGC ATCTGTTTCCCGGACTACGATGGACCCAACACCTACGAGGACGCCGGCAACTACATCAAGGTGCAGTTCC
    [Show full text]
  • G Protein-Coupled Receptors
    G PROTEIN-COUPLED RECEPTORS Overview:- The completion of the Human Genome Project allowed the identification of a large family of proteins with a common motif of seven groups of 20-24 hydrophobic amino acids arranged as α-helices. Approximately 800 of these seven transmembrane (7TM) receptors have been identified of which over 300 are non-olfactory receptors (see Frederikson et al., 2003; Lagerstrom and Schioth, 2008). Subdivision on the basis of sequence homology allows the definition of rhodopsin, secretin, adhesion, glutamate and Frizzled receptor families. NC-IUPHAR recognizes Classes A, B, and C, which equate to the rhodopsin, secretin, and glutamate receptor families. The nomenclature of 7TM receptors is commonly used interchangeably with G protein-coupled receptors (GPCR), although the former nomenclature recognises signalling of 7TM receptors through pathways not involving G proteins. For example, adiponectin and membrane progestin receptors have some sequence homology to 7TM receptors but signal independently of G-proteins and appear to reside in membranes in an inverted fashion compared to conventional GPCR. Additionally, the NPR-C natriuretic peptide receptor has a single transmembrane domain structure, but appears to couple to G proteins to generate cellular responses. The 300+ non-olfactory GPCR are the targets for the majority of drugs in clinical usage (Overington et al., 2006), although only a minority of these receptors are exploited therapeutically. Signalling through GPCR is enacted by the activation of heterotrimeric GTP-binding proteins (G proteins), made up of α, β and γ subunits, where the α and βγ subunits are responsible for signalling. The α subunit (tabulated below) allows definition of one series of signalling cascades and allows grouping of GPCRs to suggest common cellular, tissue and behavioural responses.
    [Show full text]
  • ANALYSIS Doi:10.1038/Nature14663
    ANALYSIS doi:10.1038/nature14663 Universal allosteric mechanism for Ga activation by GPCRs Tilman Flock1, Charles N. J. Ravarani1*, Dawei Sun2,3*, A. J. Venkatakrishnan1{, Melis Kayikci1, Christopher G. Tate1, Dmitry B. Veprintsev2,3 & M. Madan Babu1 G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. proteins bind guanine nucleotides and act as molecular switches almost 30 A˚ away from the GDP binding region5 and allosterically trig- in a number of signalling pathways by interconverting between ger GDP release to activate them. 1,2 G a GDP-bound inactive and a GTP-bound active state . They The high-resolution structure of the Gas-bound b2-adrenergic recep- 3 5 consist of two major classes: monomeric small G proteins and hetero- tor (b2AR) provided crucial insights into the receptor–G protein inter- trimeric G proteins4. While small G proteins and the a-subunit (Ga)of face and conformational changes in Ga upon receptor binding6,7. Recent 6 8 heterotrimeric G proteins both contain a GTPase domain (G-domain), studies described dynamic regions in Gas and Gai , the importance of ˚ Ga contains an additional helical domain (H-domain) and also forms a displacement of helix 5 (H5) of Gas and Gat by up to 6 A into the complex with the Gb and Gc subunits.
    [Show full text]
  • Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors
    New Research Sensory and Motor Systems Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors Paige M. Dexter,1 Ekaterina S. Lobanova,2 Stella Finkelstein,2 William J. Spencer,1 Nikolai P. Skiba,2 and Vadim Y. Arshavsky1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0144-18.2018 1Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710 and 2Albert Eye Research Institute, Duke University, Durham, North Carolina 27710 Visual Overview The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is ␥ ␥ the knockout of its rod-specific -subunit (G 1). Two stud- ies using independently generated mice documented that this knockout results in a considerable Ͼ60-fold reduction in the light sensitivity of affected rods, but provided dif- ␣ ␣ ferent interpretations of how the remaining -subunit (G t) ␤ ␥ mediates phototransduction without its cognate G 1 1- subunit partner. One study found that the light sensitivity ␣ reduction matched a corresponding reduction in G t con- tent in the light-sensing rod outer segments and proposed ␣ ␤ that G t activation is supported by remaining G 1 asso- ciating with other G␥ subunits naturally expressed in pho- toreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approx- ␣ imately sixfold, reduction of G t and proposed that the light responses of these rods do not require G␤␥ at all. To resolve this controversy and elucidate the mechanism ␥ driving visual signaling in G 1 knock-out rods, we analyzed both mouse lines side by side.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Phototransduction Cascade Activation Steps
    1 ORIGINAL RESEARCH ARTICLE Evolution of the vertebrate phototransduction cascade activation steps Trevor D. Lamb1 and David M. Hunt2,3 1Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, ACT 2600, Australia, and 2The Lions Eye Institute and 3School of Biological Sciences, The University of Western Australia, WA 6009, Australia. Correspondence: Professor Trevor Lamb <[email protected]> Keywords: Evolution; Phototransduction; Transducin; Phosphodiesterase; Cyclic nucleotide- gated channel; Opsin ABSTRACT We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, GαT, the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication.
    [Show full text]
  • The Specificity of Downstream Signaling for A1 and A2AR
    biomedicines Article The Specificity of Downstream Signaling for A1 and A2AR Does Not Depend on the C-Terminus, Despite the Importance of This Domain in Downstream Signaling Strength Abhinav R. Jain 1 , Claire McGraw 1 and Anne S. Robinson 1,2,* 1 Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; [email protected] (A.R.J.); [email protected] (C.M.) 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA * Correspondence: [email protected]; Tel.: +1-412-268-7673 Received: 17 November 2020; Accepted: 9 December 2020; Published: 13 December 2020 Abstract: Recent efforts to determine the high-resolution crystal structures for the adenosine receptors (A1R and A2AR) have utilized modifications to the native receptors in order to facilitate receptor crystallization and structure determination. One common modification is a truncation of the unstructured C-terminus, which has been utilized for all the adenosine receptor crystal structures obtained to date. Ligand binding for this truncated receptor has been shown to be similar to full-length receptor for A2AR. However, the C-terminus has been identified as a location for protein-protein interactions that may be critical for the physiological function of these important drug targets. We show that variants with A2AR C-terminal truncations lacked cAMP-linked signaling compared to the full-length receptor constructs transfected into mammalian cells (HEK-293). In addition, we show that in a humanized yeast system, the absence of the full-length C-terminus affected downstream signaling using a yeast MAPK response-based fluorescence assay, though full-length receptors showed native-like G-protein coupling.
    [Show full text]
  • GNAI1 Antibody Cat
    GNAI1 Antibody Cat. No.: 26-905 GNAI1 Antibody Antibody used in WB on Human brain at 0.2-1 ug/ml. Antibody used in WB on Hum. Fetal Brain at 1 ug/ml. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Drosophila, Human, Mouse, Rat Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human GNAI1. TESTED APPLICATIONS: ELISA, WB GNAI1 antibody can be used for detection of GNAI1 by ELISA at 1:12500. GNAI1 antibody APPLICATIONS: can be used for detection of GNAI1 by western blot at 1 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) Cat. No. XBL-10123 - Fetal Brain Tissue Lysate PREDICTED MOLECULAR 40 kDa WEIGHT: September 27, 2021 1 https://www.prosci-inc.com/gnai1-antibody-26-905.html Properties PURIFICATION: Antibody is purified by peptide affinity chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store STORAGE CONDITIONS: GNAI1 antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: GNAI1 ALTERNATE NAMES: GNAI1, Gi ACCESSION NO.: NP_002060 PROTEIN GI NO.: 33946324 GENE ID: 2770 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References September 27, 2021 2 https://www.prosci-inc.com/gnai1-antibody-26-905.html Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules.
    [Show full text]
  • Supporting Information
    Supporting Information Jin et al. 10.1073/pnas.1418629112 SI Materials and Methods Santa Cruz Biotechnology, 1:100), anti–neural-specific β-tubulin − − − − Animals. Mice carrying the Gas1 (1), Shh (2), Cdo , Boc (3), (Tuj1, mouse, Millipore, 1:800), anti-Neurotrophin receptor P75 f − Smo (4), Gnaz (5), and transgenic Wnt1:Cre (6) alleles were (Rabbit, Millipore, 1:200), anti-GFP (rabbit, Invitrogen, 1:100), − − − previously described. For simplicity, Gas1 , Cdo ,andBoc were anti-mouse Gas1 (goat, R&D Systems, 1:200), and anti-HuC/D used for the Lac-Z knock-in allele of Gas1 and β-geo–internal (mouse, Molecular Probes, 1:100). Alexa Fluor 488- and Alexa ribosomal entry site (IRES) human placental alkaline phosphatase Fluor 568-conjugated secondary antibodies (Invitrogen) against (hPLAP) gene-trapped alleles of Cdo and Boc, respectively. Ap- specific species (goat, mouse, and rabbit) were used for detection propriate mating schemes were designed to generate embryos of (Molecular Probes, all at 1:1,000). DAPI (Sigma) was used at desired genotypes, including controls. Embryo stages are specified 1 μg/mL for staining of DNA. in the text. The vaginal plug date is designated as embryonic day 0.5 (E0.5), following convention. For genotyping, tail or embryo Neurosphere Culture. Neurosphere-like bodies were generated −/− sac DNAs were used. Oligonucleotide primers and conditions using whole guts dissected from E11.5 wild-type or Gas1 for PCR are described in corresponding publications and on the embryos as previously described (7–9). They were dissociated in f Jackson Laboratory (JAX) website. The Gas1 allele was gener- basal media by mechanical pipetting, then plated into culture ated for this work, and its characterization is detailed in Fig.
    [Show full text]