Internal and External Invariance of Abstract Polytopes

Total Page:16

File Type:pdf, Size:1020Kb

Internal and External Invariance of Abstract Polytopes Internal and External Invariance of Abstract Polytopes A dissertation presented by Gabe Cunningham to The Department of Mathematics In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Mathematics Northeastern University Boston, Massachusetts May, 2012 1 Internal and External Invariance of Abstract Polytopes by Gabe Cunningham ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate School of Science of Northeastern University, May 2012 2 Abstract In addition to the usual symmetries by reflections and rotations, abstract polytopes can have external symmetries such as self-duality and self-Petriality. In this dissertation, we describe and study a way of measuring the invariance of abstract polytopes under such external operations. We then present methods for constructing abstract polytopes with specified external symmetries. In particular, we describe how to construct polyhedra that are self-dual and self-Petrie, and how to construct polytopes that are self-dual and chiral. 3 Acknowledgements I would like to thank the members of my committee for their time and attention. I would like to thank Professor Schulte for all of the help he has given me over the years. He has helped proofread my papers, given me many interesting articles to read, and invited me to rewarding seminars and conferences. He has been instrumental in getting my career started. Finally, I would like to thank my wife, Nomeda. She inspires me to work hard, not only by her words, but by her example. Furthermore, if it hadn’t been for her urging, there is a good chance I would never have even applied to graduate school and found out how rewarding it could be. 4 Contents Abstract 2 Acknowledgements 4 Contents 5 1 Background 7 1.1 Introduction . 7 1.2 Abstract polytopes . 9 1.3 Regularity . 17 1.4 Direct regularity . 28 1.5 Chirality . 30 1.6 Duality . 34 1.7 Petrie duality . 36 2 The mixing operation 39 2.1 Mixing finitely generated groups . 39 5 2.2 Variance groups and the structure of the mix . 45 2.3 Mixing polytopes . 51 2.4 Polytopality of the mix . 55 3 Measuring invariance 66 3.1 External and internal invariance . 66 3.2 Variance of the mix . 71 4 Constructing self-dual and self-Petrie polytopes 80 4.1 Self-dual polytopes . 81 4.2 Self-dual, self-Petrie polyhedra . 83 4.3 Self-dual, self-Petrie covers of universal polyhedra . 87 5 Constructing chiral polytopes 92 5.1 Building chiral polytopes of high rank . 92 5.2 Self-dual chiral polytopes . 96 6 Appendix 103 Bibliography 105 6 Chapter 1 Background 1.1 Introduction The study of abstract polytopes is a growing field, uniting combinatorics with geometry and group theory. Abstract polytopes are combinatorial structures with a distinctly geometric flavor, generalizing the face-lattices of convex polytopes. The result is a rich theory that encompasses not only polytopes, but also face-to-face tilings of the plane, tessellations of space-forms, and other fascinating structures. As in the classical theory, the abstract polytopes that have been most extensively stud- ies are the regular polytopes: those whose automorphism group acts transitively on the set of their flags. These polytopes possess maximal symmetry by abstract reflections. Closely related are the chiral polytopes, which possess two flag-orbits under the action of the auto- morphism group. Intuitively, a chiral polytope has full rotational symmetry, but it occurs in two mirror-image forms. Compared to regular polytopes, relatively little is known about chiral polytopes. In particular, we know very few examples of chiral polytopes of high rank (dimension). 7 In addition to the study of polytopes with a high degree of internal symmetry – that is, polytopes with a large number of polytope automorphisms – the study of external symmetries of polytopes and maps on surfaces has been gaining attention; for example, see [15, 32]. The idea is to consider operations that transform one polytope into another, and to then look for (or construct) polytopes that are invariant under this transformation. The classic example is self-duality, but there are many others. In this dissertation, we focus on external symmetries arising from certain outer auto- morphisms of groups. In particular, we consider outer automorphisms of the automorphism group of the universal polytope of rank n, a polytope that covers all others of the same rank. There are three principal external symmetries this gives rise to: duality, Petrie duality, and mirror symmetry. Our goal is then to measure to what extent a polytope is invariant under these symmetries. Our main tool for constructing new polytopes is the mixing construction, which creates the minimal common cover of two polytopes [24]. The mix of a polytope with its dual is self-dual, and in general, the mix of a polytope with all of its images under a group of transformations is invariant under that group of transformations. The result, however, is not always a polytope; we must check that separately. We start by giving background on (abstract) polytopes, including regularity, chirality, duality, and Petrie duality, in Chapter 1. In Chapter 2, we describe the mixing construction for groups and for polytopes, and we examine in detail the structure of the mix of two polytopes. In particular, we describe several circumstances that guarantee that the mix of two polytopes will again be a polytope. Next, we describe how to use mixing to measure the invariance of a polytope under external symmetries in Chapter 3. In Chapter 4, we focus on duality and Petrie duality, and we explicitly describe many self-dual, self-Petrie polyhedra. Finally, in Chapter 5, we construct chiral polytopes that are self-dual – in other 8 words, self-dual polytopes that lack mirror symmetry. 1.2 Abstract polytopes Abstract polytopes are essentially generalizations of the face-lattice of a convex polytope, and they retain much of the geometric flavor of convex polytopes. As we build up the definition, given in [23], we will give some geometric justification for the properties we require. Some of our later constructions produce objects that are not quite polytopes, and so we start with these more general definitions. Definition 1.1. A flagged poset of rank n is a partially ordered set P such that there is a unique maximal element, a unique minimal element, and such that each maximal chain of P has n + 2 elements. We use Fn to denote the maximal element, and F−1 to denote the minimal element. We call the elements of a flagged poset faces, and we call the maximal chains flags. Since each flag of a flagged poset contains the same number of faces, every flagged poset has a natural rank function. In particular, we define the rank of F−1 to be −1 and the rank of Fn to be n, with the rank of any other face obtained in the natural way from its position in any flag. A face of rank j is called a j-face. The faces F−1 and Fn are called the improper faces of P; the remaining faces are the proper faces. If F and G are faces of a flagged poset P such that F ≤ G, then we define the section G/F to be the poset consisting of those faces H such that F ≤ H ≤ G. In fact, if F is a j-face and G is a k-face, then the section G/F is a flagged poset of rank k − j − 1, where G plays the role of the maximal face, and F plays the role of the minimal face. We think of the rank of a face as its dimension, informally speaking. Thus, in analogy with convex polytopes, we refer to 0-faces as vertices and 1-faces as edges. Faces of rank 9 n−1 are called facets. The requirement that a flagged poset of rank n must contain a unique n-face and a unique (−1)-face is analogous to the fact that a convex n-polytope is viewed to have a single face of dimension n (namely, the whole polytope) and a single face of dimension −1 (namely, the empty set). There is a natural identification between each j-face F and its section F/F−1, and we occasionally blur the distinction between these two concepts. If F is a k-face, then the co- k-face at F (or sometimes simply the co-face at F ) is the section Fn/F . In particular, if F is a vertex, then we call the co-face at F a vertex-figure. If G is a facet and F is a vertex, then the section G/F is called a medial section. Note that a medial section is a facet of the vertex-figure Fn/F and also a vertex-figure of the facet G/F−1. The requirement that all flags of a flagged poset have the same length ensures that we get no “holes” and that all maximal proper faces have the same rank. Essentially, we are forcing the set of proper faces to form a polytopal complex [13] where the maximal polytopes have the same dimension (except, of course, our polytopes will be abstract instead of convex). We note that there is one flagged poset of rank −1 (where the minimal and maximal element coincide), and one flagged poset of rank 0 (where the only two elements are the minimal and maximal elements). In rank 1, there are already infinitely many flagged posets. Flagged posets are really too general to have much geometric flavor.
Recommended publications
  • Contractions of Polygons in Abstract Polytopes
    Contractions of Polygons in Abstract Polytopes by Ilya Scheidwasser B.S. in Computer Science, University of Massachusetts Amherst M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 31, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Acknowledgements First, I would like to thank my advisor, Professor Egon Schulte. From the first class I took with him in the first semester of my Masters program, Professor Schulte was an engaging, clear, and kind lecturer, deepening my appreciation for mathematics and always more than happy to provide feedback and answer extra questions about the material. Every class with him was a sincere pleasure, and his classes helped lead me to the study of abstract polytopes. As my advisor, Professor Schulte provided me with invaluable assistance in the creation of this thesis, as well as career advice. For all the time and effort Professor Schulte has put in to my endeavors, I am greatly appreciative. I would also like to thank my dissertation committee for taking time out of their sched- ules to provide me with feedback on this thesis. In addition, I would like to thank the various instructors I've had at Northeastern over the years for nurturing my knowledge of and interest in mathematics. I would like to thank my peers and classmates at Northeastern for their company and their assistance with my studies, and the math department's Teaching Committee for the privilege of lecturing classes these past several years.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Regular Polyhedra Through Time
    Fields Institute I. Hubard Polytopes, Maps and their Symmetries September 2011 Regular polyhedra through time The greeks were the first to study the symmetries of polyhedra. Euclid, in his Elements showed that there are only five regular solids (that can be seen in Figure 1). In this context, a polyhe- dron is regular if all its polygons are regular and equal, and you can find the same number of them at each vertex. Figure 1: Platonic Solids. It is until 1619 that Kepler finds other two regular polyhedra: the great dodecahedron and the great icosahedron (on Figure 2. To do so, he allows \false" vertices and intersection of the (convex) faces of the polyhedra at points that are not vertices of the polyhedron, just as the I. Hubard Polytopes, Maps and their Symmetries Page 1 Figure 2: Kepler polyhedra. 1619. pentagram allows intersection of edges at points that are not vertices of the polygon. In this way, the vertex-figure of these two polyhedra are pentagrams (see Figure 3). Figure 3: A regular convex pentagon and a pentagram, also regular! In 1809 Poinsot re-discover Kepler's polyhedra, and discovers its duals: the small stellated dodecahedron and the great stellated dodecahedron (that are shown in Figure 4). The faces of such duals are pentagrams, and are organized on a \convex" way around each vertex. Figure 4: The other two Kepler-Poinsot polyhedra. 1809. A couple of years later Cauchy showed that these are the only four regular \star" polyhedra. We note that the convex hull of the great dodecahedron, great icosahedron and small stellated dodecahedron is the icosahedron, while the convex hull of the great stellated dodecahedron is the dodecahedron.
    [Show full text]
  • Convex Polytopes and Tilings with Few Flag Orbits
    Convex Polytopes and Tilings with Few Flag Orbits by Nicholas Matteo B.A. in Mathematics, Miami University M.A. in Mathematics, Miami University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Abstract of Dissertation The amount of symmetry possessed by a convex polytope, or a tiling by convex polytopes, is reflected by the number of orbits of its flags under the action of the Euclidean isometries preserving the polytope. The convex polytopes with only one flag orbit have been classified since the work of Schläfli in the 19th century. In this dissertation, convex polytopes with up to three flag orbits are classified. Two-orbit convex polytopes exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, the rhombic dodecahedron, and the rhombic triacontahedron. Two-orbit face-to-face tilings by convex polytopes exist on E1, E2, and E3; the only ones which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral-octahedral honeycomb, and the rhombic dodecahedral honeycomb. Moreover, any combinatorially two-orbit convex polytope or tiling is isomorphic to one on the above list. Three-orbit convex polytopes exist in two through eight dimensions. There are infinitely many in three dimensions, including prisms over regular polygons, truncated Platonic solids, and their dual bipyramids and Kleetopes. There are infinitely many in four dimensions, comprising the rectified regular 4-polytopes, the p; p-duoprisms, the bitruncated 4-simplex, the bitruncated 24-cell, and their duals.
    [Show full text]
  • Representing the Sporadic Archimedean Polyhedra As Abstract Polytopes$
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Discrete Mathematics 310 (2010) 1835–1844 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Representing the sporadic Archimedean polyhedra as abstract polytopesI Michael I. Hartley a, Gordon I. Williams b,∗ a DownUnder GeoSolutions, 80 Churchill Ave, Subiaco, 6008, Western Australia, Australia b Department of Mathematics and Statistics, University of Alaska Fairbanks, PO Box 756660, Fairbanks, AK 99775-6660, United States article info a b s t r a c t Article history: We present the results of an investigation into the representations of Archimedean Received 29 August 2007 polyhedra (those polyhedra containing only one type of vertex figure) as quotients of Accepted 26 January 2010 regular abstract polytopes. Two methods of generating these presentations are discussed, Available online 13 February 2010 one of which may be applied in a general setting, and another which makes use of a regular polytope with the same automorphism group as the desired quotient. Representations Keywords: of the 14 sporadic Archimedean polyhedra (including the pseudorhombicuboctahedron) Abstract polytope as quotients of regular abstract polyhedra are obtained, and summarised in a table. The Archimedean polyhedron Uniform polyhedron information is used to characterize which of these polyhedra have acoptic Petrie schemes Quotient polytope (that is, have well-defined Petrie duals). Regular cover ' 2010 Elsevier B.V. All rights reserved. Flag action Exchange map 1. Introduction Much of the focus in the study of abstract polytopes has been on the regular abstract polytopes. A publication of the first author [6] introduced a method for representing any abstract polytope as a quotient of regular polytopes.
    [Show full text]
  • Regular Incidence Complexes, Polytopes, and C-Groups
    Regular Incidence Complexes, Polytopes, and C-Groups Egon Schulte∗ Department of Mathematics Northeastern University, Boston, MA 02115, USA March 13, 2018 Abstract Regular incidence complexes are combinatorial incidence structures generalizing regu- lar convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular poly- topes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated. Key words. abstract polytope, regular polytope, C-group, incidence geometries MSC 2010. Primary: 51M20. Secondary: 52B15; 51E24. arXiv:1711.02297v1 [math.CO] 7 Nov 2017 1 Introduction Regular incidence complexes are combinatorial incidence structures with very high combina- torial symmetry. The concept was introduced by Danzer [12, 13] building on Gr¨unbaum’s [17] notion of a polystroma. Regular incidence complexes generalize regular convex polytopes [7], regular complex polytopes [8, 42], various types of incidence geometries [4, 5, 21, 44], and many other highly symmetric objects. The terminology and notation is patterned after con- vex polytopes [16] and was ultimately inspired by Coxeter’s work on regular figures [7, 8]. ∗Email: [email protected] 1 The first systematic study of incidence complexes from the discrete geometry perspective occurred in [33] and the related publications [13, 34, 35, 36].
    [Show full text]
  • Locally Spherical Hypertopes from Generalized Cubes
    LOCALLY SPHERICAL HYPERTOPES FROM GENERLISED CUBES ANTONIO MONTERO AND ASIA IVIĆ WEISS Abstract. We show that every non-degenerate regular polytope can be used to construct a thin, residually-connected, chamber-transitive incidence geome- try, i.e. a regular hypertope, with a tail-triangle Coxeter diagram. We discuss several interesting examples derived when this construction is applied to gen- eralised cubes. In particular, we produce an example of a rank 5 finite locally spherical proper hypertope of hyperbolic type. 1. Introduction Hypertopes are particular kind of incidence geometries that generalise the no- tions of abstract polytopes and of hypermaps. The concept was introduced in [7] with particular emphasis on regular hypertopes (that is, the ones with highest de- gree of symmetry). Although in [6, 9, 8] a number of interesting examples had been constructed, within the theory of abstract regular polytopes much more work has been done. Notably, [20] and [22] deal with the universal constructions of polytopes, while in [3, 17, 18] the constructions with prescribed combinatorial conditions are explored. In another direction, in [2, 5, 11, 16] the questions of existence of poly- topes with prescribed (interesting) groups are investigated. Much of the impetus to the development of the theory of abstract polytopes, as well as the inspiration with the choice of problems, was based on work of Branko Grünbaum [10] from 1970s. In this paper we generalise the halving operation on polyhedra (see 7B in [13]) on a certain class of regular abstract polytopes to construct regular hypertopes. More precisely, given a regular non-degenerate n-polytope P, we construct a reg- ular hypertope H(P) related to semi-regular polytopes with tail-triangle Coxeter diagram.
    [Show full text]
  • Representing the Sporadic Archimedean Polyhedra As Abstract Polytopes
    REPRESENTING THE SPORADIC ARCHIMEDEAN POLYHEDRA AS ABSTRACT POLYTOPES MICHAEL I. HARTLEY AND GORDON I. WILLIAMS Abstract. We present the results of an investigation into the representations of Archimedean polyhedra (those polyhedra containing only one type of vertex gure) as quotients of regu- lar abstract polytopes. Two methods of generating these presentations are discussed, one of which may be applied in a general setting, and another which makes use of a regular poly- tope with the same automorphism group as the desired quotient. Representations of the 14 sporadic Archimedean polyhedra (including the pseudorhombicuboctahedron) as quotients of regular abstract polyhedra are obtained, and summarised in a table. The information is used to characterise which of these polyhedra have acoptic Petrie schemes (that is, have well-dened Petrie duals). 1. Introduction Much of the focus in the study of abstract polytopes has been on the study of the regular abstract polytopes. A publication of the rst author [Har99a] introduced a method for rep- resenting any abstract polytope as a quotient of regular polytopes. In the current work we present the application of this technique to the familiar, but still interesting, Archimedean polyhedra and discuss implications for the general theory of such representations that arose in trying to systematically develop these representations. We discuss the theory and presen- tations of the thirteen classical (uniform) Archimedean polyhedra as well as the pseudorhom- bicuboctahedron, which we will refer to as the fourteen sporadic Archimedean polyhedra. In a separate study, we will present and discuss the presentations for the two innite families of uniform convex polyhedra, the prisms and antiprisms.
    [Show full text]
  • Constructions of Chiral Polytopes of Small Rank
    Constructions of Chiral Polytopes of Small Rank Antonio Breda D’Azevedo Departamento de Matem´atica Universidade de Aveiro P 3800 Aveiro, Portugal and Gareth A. Jones School of Mathematics University of Southampton Southampton SO17 1BJ, United Kingdom and Egon Schulte∗ Department of Mathematics Northeastern University Boston, Massachusetts, USA, 02115 December 26, 2009 Abstract An abstract polytope of rank n is said to be chiral if its automorphism group has precisely two orbits on the flags, such that adjacent flags belong to distinct orbits. The present paper describes a general method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In particular, the technique is used to construct many new examples in ranks 3, 4 and 5. Key Words: abstract regular polytope, chiral polytope, chiral maps. AMS Subject Classification (2000): Primary: 51M20. Secondary: 52B15, 05C25. 1 Introduction Abstract polytopes are combinatorial structures with distinctive geometric, algebraic, or topological properties, in many ways more fascinating than convex polytopes and tessella- ∗Supported by NSA-grant H98230-07-1-0005 and NSF-grant DMS–0856675 1 tions. The most symmetric structures, the abstract regular polytopes, generalize the tra- ditional regular polytopes and regular tessellations and have been investigated extensively (see Coxeter [14] and McMullen & Schulte [41]). The abstract regular polytopes of rank 3 are (essentially) the maps on closed surfaces and have a long history of study across many areas of mathematics (see Coxeter & Moser [17] and Jones & Singerman [35]). By contrast, relatively little is known about (abstract) chiral polytopes, which form the most important class of nearly regular polytopes (see Schulte & Weiss [55]).
    [Show full text]
  • A New Petrie-Like Construction for Abstract Polytopes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Combinatorial Theory, Series A 115 (2008) 997–1007 www.elsevier.com/locate/jcta A new Petrie-like construction for abstract polytopes Michael I. Hartley a,1, Dimitri Leemans b a University of Nottingham (Malaysia Campus), Jalan Broga, Semenyih, 43500 Selangor, Malaysia b Département de Mathématiques, Université Libre de Bruxelles, C.P. 216, Géométrie, Boulevard du Triomphe, B-1050 Bruxelles, Belgium Received 12 June 2007 Available online 15 January 2008 Communicated by Francis Buekenhout Abstract This article introduces a new construction for polytopes, that may be seen as a generalisation of the Petrie dual to higher ranks. Some theoretical results are derived regarding when the construction can be expected to work, and the construction is applied to some special cases. In particular, the generalised Petrie duals of the hypercubes are enumerated. © 2008 Elsevier Inc. All rights reserved. Keywords: Abstract regular polytopes; Petrial 1. Introduction The history of the study of regular polyhedra and regular polytopes began an important turning point when Coxeter popularised, in Section 2 of [1], the concept of the “Petrie polygon” of a polyhedron. Loosely, a Petrie polygon of a polyhedron P is a polygon whose vertices and edges are selected from those of P in such a way that any pair of successive edges, but no three consecutive edges, lie on the same face of P. Clearly, a Petrie polygon of a convex polyhedron is not planar. By way of example, the Petrie polygons of the cube are skew hexagons.
    [Show full text]
  • Download Paper
    Hyperseeing the Regular Hendecachoron Carlo H. Séquin Jaron Lanier EECS, UC Berkeley CET, UC Berkeley E-mail: [email protected] E-mail: [email protected] Abstract The hendecachoron is an abstract 4-dimensional polytope composed of eleven cells in the form of hemi-icosahedra. This paper tries to foster an understanding of this intriguing object of high symmetry by discussing its construction in bottom-up and top down ways and providing visualization by computer graphics models. 1. Introduction The hendecachoron (11-cell) is a regular self-dual 4-dimensional polytope [3] composed from eleven non-orientable, self-intersecting hemi-icosahedra. This intriguing object of high combinatorial symmetry was discovered in 1976 by Branko Grünbaum [3] and later rediscovered and analyzed from a group theoretic point of view by H.S.M. Coxeter [2]. Freeman Dyson, the renowned physicist, was also much intrigued by this shape and remarked in an essay: “Plato would have been delighted to know about it.” Figure 1: Symmetrical arrangement of five hemi-icosahedra, forming a partial Hendecachoron. For most people it is hopeless to try to understand this highly self-intersecting, single-sided polytope as an integral object. In the 1990s Nat Friedman introduced the term hyper-seeing for gaining a deeper understanding of an object by viewing it from many different angles. Thus to explain the convoluted geometry of the 11-cell, we start by looking at a step-wise, bottom-up construction (Fig.1) of this 4- dimensional polytope from its eleven boundary cells in the form of hemi-icosahedra. But even the structure of these single-sided, non-orientable boundary cells takes some effort to understand; so we start by looking at one of the simplest abstract polytopes of this type: the hemicube.
    [Show full text]
  • Arxiv:Math/0503389V1
    Fields Institute Communications Volume 00, 0000 Regular and chiral polytopes in low dimensions Peter McMullen University College London Gower Street London WC1E 6BT, England [email protected] Egon Schulte Northeastern University Boston, MA 02115, USA [email protected] Abstract. There are two main thrusts in the theory of regular and chi- ral polytopes: the abstract, purely combinatorial aspect, and the geo- metric one of realizations. This brief survey concentrates on the latter. The dimension of a faithful realization of a finite abstract regular poly- tope in some euclidean space is no smaller than its rank, while that of a chiral polytope must strictly exceed the rank. There are similar restric- tions on the dimensions of realizations of regular and chiral apeirotopes. From the viewpoint of realizations in a fixed dimension, the problems are now completely solved in up to three dimensions, while considerable progress has been made on the classification in four dimensions, the fi- nite regular case again having been solved. This article reports on what has been done already, and what might be expected in the near future. 1 Introduction Donald Coxeter’s work on regular polytopes and groups of reflexions is often viewed as his most important contribution. At its heart lies a dialogue between geometry and algebra which was so characteristic for his mathematics (see, for example, [4, 5, 7]). This paper is yet more evidence for his lasting influence on arXiv:math/0503389v1 [math.MG] 18 Mar 2005 generations of geometers. In [16] (see also [17, Sections 7E, 7F]), we classified completely all the faith- fully realized regular polytopes and discrete regular apeirotopes in dimensions up to three.
    [Show full text]