Chapter 6 Gravitation and Central-Force Motion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Rotational Motion (The Dynamics of a Rigid Body)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates. -
Classical Mechanics
Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation . -
The Celestial Mechanics of Newton
GENERAL I ARTICLE The Celestial Mechanics of Newton Dipankar Bhattacharya Newton's law of universal gravitation laid the physical foundation of celestial mechanics. This article reviews the steps towards the law of gravi tation, and highlights some applications to celes tial mechanics found in Newton's Principia. 1. Introduction Newton's Principia consists of three books; the third Dipankar Bhattacharya is at the Astrophysics Group dealing with the The System of the World puts forth of the Raman Research Newton's views on celestial mechanics. This third book Institute. His research is indeed the heart of Newton's "natural philosophy" interests cover all types of which draws heavily on the mathematical results derived cosmic explosions and in the first two books. Here he systematises his math their remnants. ematical findings and confronts them against a variety of observed phenomena culminating in a powerful and compelling development of the universal law of gravita tion. Newton lived in an era of exciting developments in Nat ural Philosophy. Some three decades before his birth J 0- hannes Kepler had announced his first two laws of plan etary motion (AD 1609), to be followed by the third law after a decade (AD 1619). These were empirical laws derived from accurate astronomical observations, and stirred the imagination of philosophers regarding their underlying cause. Mechanics of terrestrial bodies was also being developed around this time. Galileo's experiments were conducted in the early 17th century leading to the discovery of the Keywords laws of free fall and projectile motion. Galileo's Dialogue Celestial mechanics, astronomy, about the system of the world was published in 1632. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
The Astronomers Tycho Brahe and Johannes Kepler
Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose). -
Central Forces Notes
Central Forces Corinne A. Manogue with Tevian Dray, Kenneth S. Krane, Jason Janesky Department of Physics Oregon State University Corvallis, OR 97331, USA [email protected] c 2007 Corinne Manogue March 1999, last revised February 2009 Abstract The two body problem is treated classically. The reduced mass is used to reduce the two body problem to an equivalent one body prob- lem. Conservation of angular momentum is derived and exploited to simplify the problem. Spherical coordinates are chosen to respect this symmetry. The equations of motion are obtained in two different ways: using Newton’s second law, and using energy conservation. Kepler’s laws are derived. The concept of an effective potential is introduced. The equations of motion are solved for the orbits in the case that the force obeys an inverse square law. The equations of motion are also solved, up to quadrature (i.e. in terms of definite integrals) and numerical integration is used to explore the solutions. 1 2 INTRODUCTION In the Central Forces paradigm, we will examine a mathematically tractable and physically useful problem - that of two bodies interacting with each other through a force that has two characteristics: (a) it depends only on the separation between the two bodies, and (b) it points along the line con- necting the two bodies. Such a force is called a central force. Perhaps the 1 most common examples of this type of force are those that follow the r2 behavior, specifically the Newtonian gravitational force between two point masses or spherically symmetric bodies and the Coulomb force between two point or spherically symmetric electric charges. -
Linear and Angular Velocity Examples
Linear and Angular Velocity Examples Example 1 Determine the angular displacement in radians of 6.5 revolutions. Round to the nearest tenth. Each revolution equals 2 radians. For 6.5 revolutions, the number of radians is 6.5 2 or 13 . 13 radians equals about 40.8 radians. Example 2 Determine the angular velocity if 4.8 revolutions are completed in 4 seconds. Round to the nearest tenth. The angular displacement is 4.8 2 or 9.6 radians. = t 9.6 = = 9.6 , t = 4 4 7.539822369 Use a calculator. The angular velocity is about 7.5 radians per second. Example 3 AMUSEMENT PARK Jack climbs on a horse that is 12 feet from the center of a merry-go-round. 1 The merry-go-round makes 3 rotations per minute. Determine Jack’s angular velocity in radians 4 per second. Round to the nearest hundredth. 1 The merry-go-round makes 3 or 3.25 revolutions per minute. Convert revolutions per minute to radians 4 per second. 3.25 revolutions 1 minute 2 radians 0.3403392041 radian per second 1 minute 60 seconds 1 revolution Jack has an angular velocity of about 0.34 radian per second. Example 4 Determine the linear velocity of a point rotating at an angular velocity of 12 radians per second at a distance of 8 centimeters from the center of the rotating object. Round to the nearest tenth. v = r v = (8)(12 ) r = 8, = 12 v 301.5928947 Use a calculator. The linear velocity is about 301.6 centimeters per second. -
Gravitational Potential Energy
An easy way for numerical calculations • How long does it take for the Sun to go around the galaxy? • The Sun is travelling at v=220 km/s in a mostly circular orbit, of radius r=8 kpc REVISION Use another system of Units: u Assume G=1 Somak Raychaudhury u Unit of distance = 1kpc www.sr.bham.ac.uk/~somak/Y3FEG/ u Unit of velocity= 1 km/s u Then Unit of time becomes 109 yr •Course resources 5 • Website u And Unit of Mass becomes 2.3 × 10 M¤ • Books: nd • Sparke and Gallagher, 2 Edition So the time taken is 2πr/v = 2π × 8 /220 time units • Carroll and Ostlie, 2nd Edition Gravitational potential energy 1 Measuring the mass of a galaxy cluster The Virial theorem 2 T + V = 0 Virial theorem Newton’s shell theorems 2 Potential-density pairs Potential-density pairs Effective potential Bertrand’s theorem 3 Spiral arms To establish the existence of SMBHs are caused by density waves • Stellar kinematics in the core of the galaxy that sweep • Optical spectra: the width of the spectral line from around the broad emission lines Galaxy. • X-ray spectra: The iron Kα line is seen is clearly seen in some AGN spectra • The bolometric luminosities of the central regions of The Winding some galaxies is much larger than the Eddington Paradox (dilemma) luminosity is that if galaxies • Variability in X-rays: Causality demands that the rotated like this, the spiral structure scale of variability corresponds to an upper limit to would be quickly the light-travel time erased. -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
General Relativity Fall 2019 Lecture 20: Geodesics of Schwarzschild
General Relativity Fall 2019 Lecture 20: Geodesics of Schwarzschild Yacine Ali-Ha¨ımoud November 7, 2019 In this lecture we study geodesics in the vacuum Schwarzschild metric, at r > 2M. Last lecture we derived the following equations for timelike geodesics in the equatorial plane (θ = π=2): d' L 1 dr 2 M L2 ML2 = ; + Veff (r) = ;Veff (r) + ; (1) dτ r2 2 dτ E ≡ − r 2r2 − r3 where (E2 1)=2 can be interpreted as a kinetic + potential energy per unit mass. The radial equation can also be rewrittenE ≡ as− d2r M 3 h i = V 0 (r) = r~2 L~2r~ + 3L~2 ; r~ r=M; L~ = L=M: (2) dτ 2 − eff − r4 − ≡ CIRCULAR ORBITS AND THE ISCO We show the effective potential in Fig. 1. In contrast to the Newtonian effective potential for orbits around a central 2 2 2 3 2 mass (i.e. Veff M=r + L =2r , without the last term ML =r ), which always has a minimum at rNewt = L =M, ≡ − − the relativistic effective potential has both a maximum and a minimun for L > p12 M, an inflection point for L = p12 M, and is strictly monotonic for L < p12 M. 0 Circular orbits (with r = constant) are such that Veff (r) = 0. Solving this equation, one finds that such orbits exist only for L > p12 M. When this condition is satisfied, the radii of circular orbits are L2 p r± = 1 1 12M 2=L2 : (3) c 2M ± − The Newtonian limit is obtained for L M, in which case r+ L2=M. -
Rotational Motion of Electric Machines
Rotational Motion of Electric Machines • An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension. • Relative to a given end of the machine’s shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive. • Therefore, for rotation about a fixed shaft, all the concepts are scalars. 17 Angular Position, Velocity and Acceleration • Angular position – The angle at which an object is oriented, measured from some arbitrary reference point – Unit: rad or deg – Analogy of the linear concept • Angular acceleration =d/dt of distance along a line. – The rate of change in angular • Angular velocity =d/dt velocity with respect to time – The rate of change in angular – Unit: rad/s2 position with respect to time • and >0 if the rotation is CCW – Unit: rad/s or r/min (revolutions • >0 if the absolute angular per minute or rpm for short) velocity is increasing in the CCW – Analogy of the concept of direction or decreasing in the velocity on a straight line. CW direction 18 Moment of Inertia (or Inertia) • Inertia depends on the mass and shape of the object (unit: kgm2) • A complex shape can be broken up into 2 or more of simple shapes Definition Two useful formulas mL2 m J J() RRRR22 12 3 1212 m 22 JRR()12 2 19 Torque and Change in Speed • Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force. T=Fr (Nm) T=0 T T=Fr • Newton’s Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.