<<

Mathematical Surveys and Monographs Volume 158

Mathematical

Analytic Theory

D. R. Yafaev

American Mathematical Society

surv-158-yafaev-cov.indd 1 2/4/10 3:47 PM http://dx.doi.org/10.1090/surv/158

Mathematical Analytic Theory

Mathematical Surveys and Monographs Volume 158

Mathematical Scattering Theory Analytic Theory

D. R. Yafaev

American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen, Chair J. T. Stafford Benjamin Sudakov

2000 Subject Classification. Primary 34L25, 35-02, 35P10, 35P25, 47A40, 81U05.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-158

Library of Congress Cataloging-in-Publication Data ´IA`faev,D.R.(Dmitri˘ıRauelevich), 1948– Mathematical scattering theory : analytic theory / D.R. Yafaev. p. cm. – (Mathematical surveys and monographs ; v. 158) Includes bibliographical references and index. ISBN 978-0-8218-0331-8 (alk. paper) 1. Scattering (Mathematics) I. Title.

QA329.I24 2009 515.724–dc22 2009027382

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 To the memory of my parents

Contents

Preface xi Basic Notation 1 Introduction 5 Chapter 0. Basic Concepts 17 1. Classification of the 17 2. Classes of compact operators 20 3. The resolvent equation. Conditions for self-adjointness 23 4. operators (WO) 26 5. The smooth method 29 6. The stationary scheme 33 7. The scattering and the scattering matrix (SM) 38 8. The trace class method 42 9. The spectral shift function (SSF) and the perturbation determinant (PD) 45 10. Differential operators 52 11. Function spaces and embedding theorems 56 12. Pseudodifferential operators 58 13. Miscellaneous analytic facts 67 Chapter 1. Smooth Theory. The Schr¨odinger Operator 71 1. Trace theorems 71 2. The free Hamiltonian 75 3. The Schr¨odinger operator 79 4. Existence of wave operators 82 5. Wave operators for long-range potentials 86 6. Completeness of wave operators 93 7. The limiting absorption principle (LAP) 95 8. The scattering matrix 96 9. Absence of the singular 98 10. General differential operators of second order 101 11. The perturbed polyharmonic operator 103 12. The Pauli and Dirac operators 104 Chapter 2. Smooth Theory. General Differential Operators 109 1. Spectral analysis of differential operators with constant coefficients 109 2. Scalar differential operators 116 3. Nonelliptic differential operators 118 4. Matrix differential operators 122

vii viii CONTENTS

5. Scattering problems for perturbations of a medium 124 6. Strongly propagative systems. Maxwell’s equations 128

Chapter 3. Scattering for Perturbations of Trace Class Type 133 1. Conditions on an integral operator to be trace class 133 2. Perturbations of differential operators with constant coefficients 136 3. The Schr¨odinger operator 139 4. The perturbed polyharmonic operator 145 5. General differential operators of second order 147 6. Scattering problems for perturbations of a medium 154 7. 157 8. The scattering matrix and the spectral shift function 159

Chapter 4. Scattering on the Half-line 161 1. Jost solutions. Volterra equations 161 2. Generalized Fourier transform and WO 170 3. Low-energy asymptotics 178 4. High-energy asymptotics 188 5. The SSF for the radial Schr¨odinger operator 191 6. Trace identities 198 7. Perturbation by a boundary condition. Point interaction 203

Chapter 5. One-Dimensional Scattering 209 1. A direct approach 209 2. Low- and high-energy asymptotics 216 3. The SSF and trace identities 221 4. Potentials with different limits at “ + ” and “ − ” infinities 223

Chapter 6. The Limiting Absorption Principle (LAP), the Radiation Conditions and the Expansion Theorem 231 1. Absence of positive eigenvalues and radiation conditions 231 2. Boundary values of the resolvent 233 3. A sharp form of the limiting absorption principle 235 4. Nonhomogeneous Schr¨odinger equation 239 5. Homogeneous Schr¨odinger equation 241 6. Expansion theorem 245 7. The . The scattering amplitude 251 8. A generalized Fourier integral 255 9. The Mourre method 259

Chapter 7. High- and Low-Energy Asymptotics 267 1. High-energy and uniform resolvent estimates 267 2. Asymptotic expansion of the Green function for large values of the spectral parameter 275 3. Small asymptotics of the heat kernel 280 4. Low-energy behavior of the resolvent 285 5. Low-energy behavior of the resolvent. Slowly decreasing potentials 291

Chapter 8. The Scattering Matrix (SM) and the Scattering 297 1. Basic properties of the SM 297 CONTENTS ix

2. The spectrum of the SM. The modified SM 302 3. The scattering cross section 306 4. High-energy asymptotics of the SM. The ray expansion 311 5. The eikonal approximation 319 6. The averaged scattering cross section. Singular potentials 328 7. The semiclassical limit 337

Chapter 9. The Spectral Shift Function and Trace Formulas 341 1. The regularized PD and SSF for the multidimensional Schr¨odinger operator 341 2. High-energy asymptotics of the SSF 353 3. Trace identities for the multidimensional Schr¨odinger operator 365 Chapter 10. The Schr¨odinger Operator with a Long-Range Potential 369 1. Propagation estimates 369 2. Long-range scattering 374 3. The eikonal and transport equations 380 4. Scattering matrix for long-range potentials 384 Chapter 11. The LAP and Radiation Estimates Revisited 399 1. The efficient form of the LAP 399 2. Absence of positive eigenvalues and uniqueness theorem 403 3. Nonhomogeneous Schr¨odinger equation with a long-range potential 408 Review of the Literature 415 Bibliography 429 Index 441

Preface

This book can be considered as the second volume of the author’s monograph “Mathematical Scattering Theory (General Theory)” [I]. It is oriented to applica- tions to differential operators, primarily to the Schr¨odinger operator. A necessary background from [I] is collected (but the proofs are of course not repeated) in Chapter 0. Therefore it is presumably possible to read this book independently of [I]. Everything said in the preface to [I] pertains also to this book. In particular, we proceed again from the stationary approach. Its main advantage is that, si- multaneously with proofs of various facts, the stationary approach gives formula representations for the basic objects of the theory. Along with wave operators, we also consider properties of the scattering matrix, the spectral shift function, the scattering cross section, etc. A consistent use of the stationary approach as well as the choice of concrete material distinguishes this book from others such as the third volume of the course of M. Reed and B. Simon [43]. The latter course has become a desktop copy for many, in particular, for the author of the present book. However, in view of the broad compass of material, the course [43] was necessarily written in encyclopedic style and apparently cannot replace a systematic exposition of the theory. Hopefully, vol. 3 of [43] and this book can be considered as complementary to one another. There are two different trends in scattering theory for differential operators. The first one relies on the abstract scattering theory. The second one is almost independent of it. In this approach the abstract theory is replaced by a concrete investigation of the corresponding differential equation. In this book we present both of these trends. The first of them illustrates basic theorems of [I]. Thus, Chapters 1 and 2 are devoted to applications of the smooth method. Of course the abstract results of [I] should be supplemented by some analytic tools, such as the Sobolev trace theorem. The smooth method works well for perturbations of differential operators with constant coefficients. In Chapter 3 applications of the trace class method are discussed. The main advantage of this method is that it does not require an explicit spectral analysis of an “unperturbed” operator. Other chapters are much less dependent on [I]. Chapters 4 and 5 are devoted to the one-dimensional problem (on the half-axis and the entire axis, respectively) which is a touchstone for the multidimensional case because specific methods of ordinary differential equations can be used here. In the following chapters we return to the multidimensional problem and discuss different analytic methods appropriate to differential operators. In particular, in Chapter 6 scattering theory is formulated in terms of solutions of the Schr¨odinger equation satisfying some “boundary conditions” (radiation conditions) at infinity.

xi xii PREFACE

High- and low-energy asymptotics of the Green function (the resolvent kernel) and of related objects are discussed in Chapter 7. Chapter 8 is devoted to a study of the scattering matrix and of the scattering cross section. Here some asymptotic methods, such as the ray expansion and eikonal expansion, are also discussed. As an example of a useful interaction of abstract and analytic methods, we mention the theory of the spectral shift function. Abstract results are illustrated in §3.8. However, specific properties of this function are studied by concrete methods in §4.5, §5.3 and in Chapter 9. Here perturbation determinants are also discussed and trace identities are derived. Note that Chapters 1 and 3 and large parts of Chapters 4 and 5 contain essen- tially a “necessary minimum” on scattering theory, whereas the other chapters are of a slightly more special nature. The book is mainly devoted to a study of perturbations by differential operators with short-range coefficients. Nevertheless, basic results on long-range scattering, in particular, properties of the scattering matrix, can be found in Chapter 10. We mention that the recent progress in scattering theory is to a large extent related to multiparticle systems. This very interesting and difficult problem is discussed in [16]and[61]. Similarly to [I], in working on the book the author has tried to resolve two opposite problems. The first of them is a systematic exposition of the material starting from the general background of [I]. The second problem is the exposition of a number of topics to a degree of completeness which might possibly be of interest to experts in spectral theory. We have also tried to fill in numerous gaps present in monographic literature. This pertains especially to the exposition of works of Russian and, in particular, Saint Petersburg mathematicians. Compared to [I], the author’s tastes are also more thoroughly represented here. As a whole the book is oriented toward a reader (for example, a graduate student in mathematical ) interested in a deeper study of scattering theory. In references we use the “three-stage” enumeration of formulas and theorems and the “two-stage” enumeration of sections. However, the first number is omitted within a chapter. This book is based on the graduate courses taught by the author several in Saint-Petersburg and Rennes Universities. The concept and structure of the entire book, as well as many specific ques- tions, were discussed with the author’s teacher M. Sh. Birman. To a large extent, mathematical tastes of the author were influenced by L. D. Faddeev. The author is deeply grateful to M. Sh. Birman and L. D. Faddeev. Numerous discussions with P. Deift, A. B. Pushnitski, G. Raikov and M. Z. Solomyak are also gratefully acknowledged. PREFACE xiii

Interdependence of chapters

Chapter 0 H  H  H ) ? HH X Hj - Chapter 4 XXX Chapter 3 Chapter 1 Chapter 2 XXX XXX ? XXXz ? Chapter 5 - Chapter 6 - Chapter 10 PiPP PP ? PPq Chapter 7 Chapter 11

? ? Chapter 9 Chapter 8

Bibliography

[I]D.R.Yafaev,Mathematical scattering theory: General theory, Amer. Math. Soc., Provi- dence, Rhode Island, 1992.

Monographs

[1] Z. S. Agranovich and V. A. Marchenko, The inverse problem of scattering theory,Gordon and Breach, New York, 1963. [2]N.I.AkhieserandI.M.Glasman,The theory of linear operators in ,vols.I, II, Ungar, New York, 1961. [3] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in me- chanics, Springer-Verlag, New York, 1988. [4]W.O.Amrein,Nonrelativistic quantum , Reidel, Doldrecht, 1981. [5] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, C0-groups, commutator methods and spectral theory for N-body Hamiltonians, Progress in Math. Physics. Press, 135,Birkh¨auser, 1996. [6] W. O. Amrein, J. M. Jauch and K. B. Sinha, Scattering theory in , Benjamin, New York, 1977. [7] H. Bateman, A. Erd´elyi, Higher transcendental functions, vols. 1, 2, McGraw-Hill, New York, 1953. [8] H. Baumg¨artel and M. Wollenberg, Mathematical scattering theory, Akademie-Verlag, Berlin, 1983. [9] M. Ben-Artzi and A. Devinatz, The limiting absorption principle for partial differential operators,MemoirsAMS.N 364, 1987. [10] F. A. Berezin and M. A. Shubin, The Schr¨odinger equation, Kluwer Academic Pub., 1991. [11] M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une vari´et´e riemannienne, Lecture Notes Math. 194, Springer-Verlag, 1971. [12] M. Sh. Birman and M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, Reidel, Doldrecht, 1987. [13] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. [14] H. Cycon, R. Froese, W. Kirsch and B. Simon, Schr¨odinger operators, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1987. [15] P. Deift, Classical scattering theory with a trace class condition, PhD thesis, Princeton, New Jersey, 1979. [16] J. Derezi´nski and C. G´erard, Scattering theory of classical and quantum N particle systems, Springer-Verlag, 1997. [17] N. Dunford and J. T. Schwartz, Linear operators, parts 1, 2, Interscience Publishers, New York, London, Sydney, 1963. [18] L. D. Faddeev, Mathematical aspects of the three body problem in quantum scattering theory, Trudy Mat. Inst. Steklov 69, 1963 (Russian); English transl.: Israel Program of Sci. Transl., 1965. [19] L. D. Faddeev and S. P. Merkur’ev, Quantum scattering theory for several particles systems, MPAM No. 11, Kluwer Academic Press Publishers, 1993. [20] L. D. Faddeev and O. A. Yakubovski, Lectures on quantum mechanics for mathematics students, Izdat. Leningrad. Univ., Leningrad, 1980 (Russian). [21] K. Friedrichs, Perturbation of spectra in Hilbert space, Amer. Math. Soc., Providence, Rhode Island, 1965.

429 430 BIBLIOGRAPHY

[22] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential oper- ators, Moscow, Fizmatgiz, 1963 (Russian); English transl.: Israel Program of Sci. Transl., 1965. [23] I. C. Gokhberg and M. G. Kre˘ın, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Amer. Math. Soc., Providence, Rhode Island, 1970. [24] A. Grigis and J. Sjostrand Microlocal analysis for differential operators, Cambridge Univ. Press, 1994. [25] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Inc., Englewood Cliffs, New York, 1962. [26] L. H¨ormander, The analysis of linear partial differential operators,vols.I,II,III,IV, Springer-Verlag, Berlin, Heidelberg, New York, 1985. [27] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1984. [28] S. G. Kre˘ın (editor), Functional analysis, Nauka, 1972 (Russian). [29] S. T. Kuroda, An introduction to scattering theory, Lect. Notes Series No. 51, Aarhus University, 1978. [30] L. D. Landau and E. M. Lifshitz, , Pergamon Press, 1960. [31] L. D. Landau and E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1965. [32] V. A. Marchenko, Sturm-Liouville operators and applications,Birkh¨auser, Basel, 1986. [33] V. G. Maz’ya, S. L. Sobolev spaces, Leningrad State University, 1965 (Russian). [34] J. Milnor, Topology from the differential viewpoint, The University Press of Virginia, Char- lottesville, 1965. [35] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies 61, Princeton Univ. Press, 1968. [36] I. P. Natanson, Theory of functions of a real variable, Ungar, New York, vols. 1,2, 1955, 1961. [37] R. Newton, Scattering theory of and particles, Springer-Verlag, 1982. [38] R. Newton, Inverse Schr¨odinger scattering in three dimensions, Springer-Verlag, 1989. [39] D. Pearson, Quantum scattering and spectral theory, Academic Press, London, 1988. [40] P. A. Perry, Scattering theory by the Enss method, Harwood: Math. Reports, vol. 1, 1983. [41] I. I. Privalov, Boundary values of analytic functions, GITTL, Moscow, A950; German transl., VEB Deutscher Verlag Wiss., Berlin, 1956. [42] C. R. Putnam, Commutator properties of Hilbert space operators and related topics, Springer-Verlag, Berlin, Heidelberg, New York, 1967. [43] M. Reed and B. Simon, Methods of modern , vols. 1, 2, 3, 4, Academic Press, San Diego, CA, 1972, 1975, 1979, 1978. [44] F. Rellich and J. Berkowitz, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969. [45] F. Riesz and B. Sz.-Nagy, Functional analysis, Unger, New York, 1955. [46] D. Robert, Autour de l’approximation semi-classique, Progress in Math. 68,Birkh¨auser, 1987. [47] Y. Sait¯o, Spectral representation for Schr¨odinger operators with long-range potentials, Lec- ture Notes in Math. 727, Springer-Verlag, 1979. [48] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer-Verlag, 1987. [49] B. Simon, Trace ideal methods, London Math. Soc. Lecture Notes, Cambridge Univ. Press, London and New York, 1979. [50] V. I. Smirnov, A course of higher mathematics, vol. 5, Pergamon Press, Oxford and Addison- Wesley, Reading, Ma., 1964. [51] A. Sommerfeld, Partial differential equations in physics, Cambridge, New York, 1949. [52] M. Spivak, Calculus on , W. A. Benjamin, Inc., New York, 1965. [53] M. H. Stone, Linear transformations in Hilbert space, Amer. Math. Soc. Colloq. Publ., vol. 15, 1932. [54] B. Sz.-Nagy and Foia¸s, analysis of operators on Hilbert space, North-Holland, Amsterdam, 1971. [55] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equa- tions, vol. 1, Oxford, 1946. [56] H. Triebel, Interpolation theory, functional spaces, differential operators, North-Holland, 1978. [57] B. R. Va˘ınberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach Sci. Publ, New York, 1988. BIBLIOGRAPHY 431

[58] S. V˜u Ngog, Syst`emes int´egrables semi-classique: du local au global, Panoramas et Synth`eses 22, SMF, 2006. [59] R. Weder, Spectral and scattering theory for in perturbed stratified media, Appl. Math. Sci. 87, Springer-Verlag, 1991. [60] C. H. Wilcox, propagation in stratified fluids, Springer-Verlag, 1984. [61] D. R. Yafaev, Scattering theory: some old and new problems, Lecture Notes Math. 1735, Springer-Verlag, 2000. [62] K. Yosida, Functional analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1966.

Papers

[63] D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa (III) 25 no. 1 (1971), 203-217. [64] S. Agmon, Spectral properties of Schr¨odinger operators, In: Proc. Intern. Cong. Math. of 1970, Nice, vol. 2, 679-684, Gauthier-Villars, Paris, 1971. [65] S. Agmon, Spectral properties of Schr¨odinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa (IV) 2 no. 4 (1975), 151-218. [66] S. Agmon, Some new results in spectral and scattering theory of differential operators in Rn, Seminaire Goulaouic Schwartz, Ecole Polytechnique, 1978. [67] S. Agmon and H. H¨ormander, Asymptotic properties of solutions of differential equations with simple characteristics,J.Anal.Math.30 (1976), 1-38. [68] S. Agmon and Y. Kannai, On the asymptotic bahavior of spectral functions and resolvent kernels of elliptic operators,IsraelJ.Math.5 (1967), 1-30. [69] P. Alsholm and G. Schmidt, Spectral and scattering theory for Schr¨odinger operators,Arch. Rat. Mech. Anal. 40 (1971), 281-311. [70] W. O. Amrein and D. B. Pearson, A time-dependent approach to the total cross section,J. Phys. A.: Math. Gen. 12 (1979), 1469-1492. [71] G. S. S. Avila, Spectral resolution of differential operators associated with symmetric hyper- bolic systems, Applicable Analysis 1 (1972), 283-299. [72] J. Avron, I. Herbst and B. Simon, Schr¨odinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883. [73] V. M. Babich and Yu. O. Rapoport, The short-time asymptotic of the fundamental solution of Cauchy problem for parabolic equation of second order, Problemy Mat. Fiz. 7 (1974), 21-38, Izdatel’stvo LGU (Russian). [74] V. Bargmann, On the connection between phase shifts and the scattering potential,Rev. Modern Phys. 21 (1949), 488-493. [75] A. L. Belopolskii, M. Sh. Birman, Existence of wave operators in scattering theory for a pair of spaces, Math. USSR-Izv. 2 (1968), 1117-1130. [76] M. Ben-Artzi and S. Klainerman, Decay and regilarity for the Schr¨odinger equation,J.Anal. Math. 58 (1992), 25-37. [77] F. A. Berezin and L. D. Faddeev, A remark on Schr¨odinger’s equation with a singular potential,SovietMath.Dokl.2 (1961), 372-375. [78] M. Sh. Birman, On the spectrum of singular boundary-value problems, Matem. Sb. 55,no. 2 (1961), 125-174 (Russian); English transl.: Eleven Papers on Analysis, Amer. Math. Soc. Transl. (2), vol. 53, Amer. Math. Soc., Providence, Rhode Island, 1966, 23-60. [79] M. Sh. Birman, Perturbation of the continuous spectrum of a singular elliptic operator under the change of the boundary and boundary conditions, Vestnik Leningrad Univ. Math. 1 (1962), 22-55 (Russian); English transl.: Adv. Math. Sci. ser. 2, AMS 225 (2008), 19-53. [80] M. Sh. Birman, Existence conditions for wave operators, Izv. Akad. Nauk SSSR, Ser. Mat. 27 no. 4 (1963), 883-906 (Russian). [81] M. Sh. Birman, A local criterion for the existence of wave operators,SovietMath.Dokl.5 no. 2 (1965), 1505-1509. [82] M. Sh. Birman, A local test for the existence of wave operators, Math. USSR-Izv. 2 no. 2 (1968), 879-906. [83] M. Sh. Birman, Scattering problems for differential operators with constant coefficients, Funct. Anal. Appl. 3 no. 3 (1969), 167-180. [84] M. Sh. Birman, Some applications of a local condition for the existence of wave operators, Soviet Math. Dokl. 10 (1969), 393-397. [85] M. Sh. Birman, A test of the existence of complete wave operators in scattering theory for apairofspaces, Topics in Math. Phys. 4 (1971), 17-21, Consultants Bureau, New York- London. 432 BIBLIOGRAPHY

[86] M. Sh. Birman, Scattering problems for differential operators with perturbation of the space, Math. USSR-Izv. 5 (1971), 459-474. [87] M. Sh. Birman and S. B. Entina, Stationary approach in abstract scattering theory,Math. USSR-Izv. 1 no. 1 (1967), 391-420. [88] M. Sh. Birman and M. G. Kre˘ın, On the theory of wave operators and scattering operators, Soviet Math. Dokl. 3 (1962), 740-744. [89] M. Sh. Birman and M. G. Kre˘ın, Some topics of the theory of wave and scattering operators, Outlines Joint Soviet-Amer. Sympos. Part. Diff. Equations, Novosibirsk, 1963, 39-45. [90] M. Sh. Birman and A. B. Pushnitski, Spectral shift function, amazing and multifaceted,Int. Eq. Op. Theory 30 (1998), 191-199. [91] M. Sh. Birman and M. Z. Solomyak, Remarks on the spectral shift function,Zap.Nauchn. Sem. LOMI 27 (1972), 33-46; English. transl.: J. Soviet Math., 3:4 (1975). [92] M. Sh. Birman and M. Z. Solomyak, Estimates for the singular numbers of integral operators, Russian Math. Surveys 32 (1977), 15-89. [93] M. Sh. Birman and M. Z. Solomyak, Asymptotic behavior of the spectrum of pseudodiffer- ential operators with anisotropically homogeneous symbols, I, II, Vestnik Leningrad Univ. Math. 10 (1980), 237-247 and 12 (1982), 155-161. [94] M. Sh. Birman and D. R. Yafaev, The asymptotic behavior of the spectrum of the scattering matrix,J.SovietMath.25 (1984), 793-814. [95] M. Sh. Birman and D. R. Yafaev, A general scheme in the stationary theory of scattering, Problemy Mat. Fiz. 12 (1987), 89-117. English trasl., Amer. Math. Soc. Transl. (Ser.2) 157 (1993), 87-112. [96] M. Sh. Birman and D. R. Yafaev, On the trace-class method in potential scattering theory, J. Soviet Math. 56 no. 2 (1991), 2285-2299. [97] M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kre˘ın and their further development, St. Petersburg Math. J. 4, no. 5 (1993), 833-870. [98] M. Sh. Birman and D. R. Yafaev, Spectral properties of the scattering matrix, St. Petersburg Math. J. 4, no. 6 (1993), 1055-1079. [99] M. Sh. Birman and D. R. Yafaev, The scattering matrix for a perturbation of a periodic Schr¨odinger operator by decreasing potential, St. Petersburg Math. J. 6, no. 3 (1995), 453- 474. [100] D. Boll´e, F. Gesztesy and W. Schweiger, Scattering theory for long-range systems at thresh- old,J.Math.Phys.26 (1985), 1661-1674. [101] D. Boll´e, F. Gesztesy and S. Wilk, A complete treatment of low-energy scattering in one dimension,J.OperatorTheory13 (1985), 3-31. [102] D. Boll´e, F. Gesztesy, C. Danneels and S. Wilk, Threshold behavior and Levinson’s theorem for two-dimension scattering systems: a surprise, Phys. Rev. Letters 56 N 9 (1986), 900-903. [103] M. Born, Quantenmechanik des Stossvorg¨ange,Z.Phys.38 (1926), 803-827. [104] J.-M. Bouclet, Trace formulae for relatively Hilbert-Schmidt perturbations,Asympt.Anal. 32 (2002), 1-27. [105] L. de Branges, Perturbations of self-adjoint transformations,AmericanJ.Math.84 (1962), 543-560. [106] Ph. Briet, J. M. Combes, P. Duclos, Spectral stability under tunneling, Comm. Math. Phys. 126 (1989), 133-156. [107] V. S. Buslaev, Trace formulas and some asymptotic estimates of the resolvent kernel of the Schr¨odinger operator in dimension three, Topics in Math. Physics 1 (1966), Plenum Press, New York. [108] V. S. Buslaev, On the asymptotic behavior of the spectral characteristics of exterior problems for the Schr¨odinger operator, Math. USSR-Izv. 9, no. 1, (1975), 139-223. [109] V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville differ- ential operator,SovietMath.Dokl.1 (1960), 451-454. [110] V. S. Buslaev and V. B. Matveev, Wave operators for the Schr¨odinger equation with a slowly decreasing potential,Theor.Math.Phys.2 (1970), 266-274. [111] A. P. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. [112] R. W. Carey and J. D. Pincus, Commutators, symbols and determining functions, J. Funct. Anal. 19 (1975), 50-80. [113] Y. Colin de Verdi`ere, Une formule de traces pour l’op´erateur de Schr¨odinger dans R3, Ann. Scient. Ec. Norm. Sup. 14 (1981), 27-39. BIBLIOGRAPHY 433

[114] J. M. Combes, P. D. Hislop and Shu Nakamura, The Lp-theory of the spectral shift func- tion, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys. 44 (2001), 113-130. [115] J. M. Combes and R. Weder, New criteria for existence and completeness of wave operators and applications to scattering by unbounded obstacles, Comm. PDE 6 (1981), 1179-1223. [116] P. Constantin, Scattering for Schr¨odinger operators in a class of domains with noncompact boundaries, J. Funct. Anal. 44 (1981), 87-119. [117] J. M. Cook, Convergence to the Møller wave matrix,J.Math.Phys.36 (1957), 82-87. [118] E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right,Comm.Math.Phys.63 (1978), 277-301. [119] V. G. Deich, Applications of the method of trace-class perturbations in scattering theory in a couple of spaces, Izvestiya VUZOV, matem., 109 (1971), no. 6, 33-42 (Russian). [120] V. G. Deich, Completeness of wave operators for systems with uniform propagation,Zapiski Nauchn. Seminarov LOMI, 22 (1971), 36-46 (Russian). [121] V. G. Deich, E. L. Korotyaev and D. R. Yafaev, Potential scattering with spatial anisotropy taken into account,SovietMath.Dokl.235 (1977), 749-752. [122] V. G. Deich, E. L. Korotyaev and D. R. Yafaev, Theory of potential scattering taking into account spatial anisotropy,J.SovietMath.34 (1986), 2040-2050. [123] P. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267-310. [124] P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schr¨o- dinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), 341-347. [125] P. Deift and B. Simon, On the decoupling of finite singularities from the question of asymp- totoc completeness in two-body quantum systems, J. Funct. Anal. 23 (1976), 218-238. [126] J. Dollard, Asymptotic convergence and Coulomb interaction,J.Math.Phys.5 (1964), 723-738. [127] V. N. Efimov, Weakly coupled states of three resonant interacting particles,NuclearPhys. 12 (1970), 1080-1091 (Russian). [128] D. M. Eidus, On the principle of limiting absorption, Mat. Sb. 57 (1962), 13-44; Engl. transl.: Amer. Math. Soc. transl. (2) 47 (1965), 157-191. [129] D. M. Eidus, The principle of limit amplitude, Russian Math. Surveys 24, no. 3 (1969), 97-169. [130] D. M. Eidus and A. A. Vinnik, The radiation conditions for domains with infinite bound- aries, Dokl. Akad. Nauk SSSR 214, no. 2 (1974), 19-21 (Russian). [131] V. Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range,In: Schr¨odinger operators, S. Graffi, ed., Springer Lecture Notes in Math. 1159 (1985), 39-176. [132] V. Enss, Long-range scattering of two- and three-body quantum systems,In: Journ´ees EDP, Saint Jean de Monts (1989), 1-31. [133] V. Enss and B. Simon, Finite total cross sections in nonrelativistic quantum mechanics, Comm. Math. Phys. 76 (1980), 177-209. [134] L. D. Faddeev, An expression for the trace of the difference between two singular differential operators of Sturm-Liouville type, Dokl. AN SSSR 115 N 5 (1957), 878-881 (Russian). [135] L. D. Faddeev, On the Friedrichs model in the theory of perturbations of the continuous spectrum, Amer. Math. Soc. Transl. (Ser. 2) 62 (1967), 177-203. [136] L. D. Faddeev, Properties of the S-matrix of the one-dimensional Schr¨odinger equation, Amer. Math. Soc. Transl. (Ser. 2) 65 (1967), 139-166. [137] L. D. Faddeev, Inverse problem of quantum scattering theory. II,J.Soviet.Math.5, 1976, 334-396. [138] L. D. Faddeev and V. E. Zakharov, Korteweg-de Vries equation is a fully integrable Hamil- tonian system, Funct. Anal. Appl. 5 (1972), 280-287. [139] K. Friedrichs, Uber¨ die Spektralzerlegung eines Integral-operators, Math. Ann. 115 (1938), 249-272. [140] K. Friedrichs, On the perturbation of the continuous spectra, Comm. Pure Appl. Math. 1 (1948), 361-406. [141] K. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-393. [142] R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), 1075-1085. 434 BIBLIOGRAPHY

[143] Y. Gˆatel and D. R. Yafaev, On solutions of the Schr¨odinger equation with radiation condi- tions at infinity: the long-range case, Ann. Institut Fourier 49, no. 5 (1999), 1581-1602. [144] I. M. Gel’fand, On identities for eigenvalues of a second order diffferential operator,Usp. Mat. Nauk 11, N 1 (1956), 191-198 (Russian); English transl.: In: Izrail M. Gelfand, Collected Papers vol. I (S. G. Gindikin, V. W. Guillemin, A. A. Kirillov, B. Kostant, S. Sternberg, eds.) Springer-Verlag, Berlin, 1987, 510-517. [145] I. M. Gel’fand and B. M. Levitan, On a simple identity for eigenvalues of a second order diffferential operator, Dokl. Akad. Nauk SSSR 88 (1953), 593-596 (Russian); English transl.: In: Izrail M. Gelfand, Collected Papers Vol I (S. G. Gindikin, V. W. Guillemin, A. A. Kirillov, B. Kostant, S. Sternberg, eds.) Springer-Verlag, Berlin, 1987, 457-461. [146] M. Gell-Mann and M. L. Goldberger, The formal theory of scattering,Phys.Rev.91 (1953), 398-408. [147] C. G´erard and A. Martinez, Principe d’absorption limite pour des op´erateurs de Schr¨odinger `a longue port´ee,C.R.Acad.Sci.Paris306,s´er. I (1988), 121-123. [148] C. G´erard and F. Nier, Scattering theory for the perturbations of periodic Schr¨odinger op- erators, J. Math. Kyoto Univ. 38 (1998), 595-634. [149] F. Gesztesy and K. Makarov, The Ξ operator and its relation to Krein’s spectral shift func- tion, J. Anal. Math. 81 (2000), 139-183. [150] F. Gesztesy and B. Simon, The xi function,ActaMath.176 (1996), 49-71. [151] I. Ya. Goldsheid, S. A. Molchanov and L. A. Pastur, A typical one-dimensional Schr¨odinger operator has a purely point spectrum, Funct. Anal. Appl. 11, no. 1 (1977), 1-10. [152] A. Grossman and T. T. Wu, Schr¨odinger scattering amplitude.I,J.Math.Phys.3 (1961), 710-713. [153] M. N. Hack, On the convergence of the Møller wave operators,NuovoCimento9 (1958), 731-733. [154] W. Heisenberg, Die “beobachtbaren Gr¨ossen” in der Theorie der Elementarteilchen,Z.Phys. 120 (1943), 513-538. [155] B. Helffer and D. Robert, Calcul fonctionnel par la transform´ee de Mellin. J. Funct. Anal. 53 (1990), 246-268. [156] R. Hempel and R. Weder, On the completeness of wave operators under loss of local com- pactness, J. Funct. Anal. 113 (1993), 391-412. [157] I. Herbst, On the connectedness structure of the Coulomb S-matrix, Comm. Math. Phys. 35 (1974), 181-191. 2 2 1/2 − Ze2 [158] I. Herbst, Spectral theory of the operator (p +m ) r , Comm. Math. Phys. 53 (1977), 285-294. [159] P. Hislop and S. Nakamura, Semiclassical resolvent estimates, Ann. Inst. H. Poincar´e, Phys. Th´eor. 51 (1989), 283-299. [160] M. Hitrik and I. Polterovich, Resolvent expansions and trace regularizations for Schr¨odinger operators,Contemp.Math.327 (2003), 161-173. [161] M. Hitrik and I. Polterovich, Regularized traces and Taylor expansions for the heat semi- group, J. London Math. Soc. 68 (2003), 402-418. [162] L. H¨ormander, Lower bounds at infinity for solutions of differential equations with constant coefficients, Israel J. Math. 16 no.1 (1973), 103-116. [163] L. H¨ormander, The existence of wave operators in scattering theory,Math.Z.146 (1976), 69-91. [164] J. S. Howland, Spectral theory of self-adjoint Hankel type matrices,MichiganMath.J.33 (1986), 145-153. [165] J. S. Howland, Spectral theory of operators of Hankel type. I, II, Indiana Univ. Math. J. 41 (1992), no. 2, 409-426 and 427-434. [166] J. S. Howland and T. Kato, On a theorem of Ismagilov, J. Funct. Anal. 41 (1981), 37-39. [167] D. Hundertmark and B. Simon, An optimal Lp-bound on the Krein spectral shift function, J. Anal. Math., 87 (2002), 199-208. [168] W. Hunziker, Potential scattering at high energies, Helv. Phys. Acta 36 (1963), 838-856. [169] W. Hunziker, The S-matrix in classical mechanics, Comm. Math. Phys. 8 (1968), 282-289. [170] T. Ikebe, Eigenfunction expansions associated with the Schr¨odinger operators and their ap- plication to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1-34; Erratum, Remarks on the orthogonality of eigenfunctions for the Schr¨odinger operator on Rn,J.Fac.Sci.Univ. Tokyo, sect. I, 17 (1970), 355-361. BIBLIOGRAPHY 435

[171] T. Ikebe, On the eigenfunction expansion connected with the exterior problem for the Schr¨odinger equation, Japan. J. Math. 36 (1967), 33-55. [172] T. Ikebe, Spectral representation for Schr¨odinger operators with long-range potentials,J. Funct. Anal. 20 (1975), 158-177. [173] T. Ikebe and H. Isozaki, Completeness of modified wave operators for long range potentials, Publ. RIMS Kyoto 15 (1979), 679-718. [174] T. Ikebe and H. Isozaki, A stationary approach to the existence and completeness of long- rangewaveoperators,Int.Eq.Op.Theory5 (1982), 18-49. [175] T. Ikebe and Y. Sait¯o, Limiting absorption method and absolute continuity for the Schr¨odinger operator, J. Math. Kyoto Univ. 12 (1972), 513-542. [176] E. M. Il’in, Scattering by unbounded obstacles for elliptic operators of second order,Proc. of the Steklov Inst. of Math. 179 (1989), 85-107. [177] R. S. Ismagilov, On the spectrum of Toeplitz matrices,Sov.Math.Dokl.4 (1963), 462-465. [178] H. Isozaki, On the long range potentials wave operators, Publ. RIMS Kyoto 13 (1977), 589-626. [179] H. Isozaki and H. Kitada, Micro-local resolvent estimates for 2-body Schr¨odinger operators, J. Funct. Anal. 57 (1984), 270-300. [180] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifies,J.Fac. Sci, Univ. Tokyo, 32 (1985), 77-104. [181] H. Isozaki and H. Kitada, Scattering matrices for two-body Schr¨odinger operators,Sci. Papers College Arts and Sci., Univ. Tokyo, 35 (1985), 81-107. [182] H. Isozaki and H. Kitada, A remark on the micro-local resolvent estimates for two-body Schr¨odinger operators, Publ. RIMS, Kyoto Univ., 21 (1986), 889-910. [183] W. J¨ager, Ein gew¨ohnliher Differentialoperator zweiter Ordnung f¨ur Funktionen mit Werten in einem Hilbertraum,Math.Z.113 (1970), 68-98. [184] J. M. Jauch, Theory of the scattering operator,I,II,Helv.Phys.Acta31 (1958), 127-158, 661-684. [185] A. Jensen, Spectral properties of Schr¨odinger operators and time decay of the wave functions. Results in L2(Rn) n ≥ 5, Duke Math. J. 47 (1980), 57-80. [186] A. Jensen, Time delay in potential scattering: Some “geometric” results, Comm. Math. Phys. 82 (1981), 436-456. [187] A. Jensen, Spectral properties of Schr¨odinger operators and time decay of the wave functions. Results in L2(R4), J. Math. Anal. Appl. 101 (1984), 491-513. [188] A. Jensen, Propagation estimates for Schr¨odinger-type operators, Trans. Amer. Math. Soc. 291 (1985), 129-144. [189] A. Jensen and T. Kato, Asymptotic behavior of the scattering phase for exterior domains, Comm. Partial Diff. Eq. 32, no. 12 (1978), 1165-1195. [190] A. Jensen and T. Kato, Spectral properties of Schr¨odinger operators and time decay of the wave functions, Duke Math. J. 46 (1979), 583-611. [191] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory,Ann.Inst.H.Poincar´e, Phys. Th´eor. 41 (1984), 207-225. [192] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds,Rev. Math. Phys. 13 (2001), 717-754. [193] A. Jensen and P. Perry, Commutator Methods and Besov Space estimates for Schr¨odinger operators, J. Operator Theory 14 (1985), 181-188. [194] R. Jost, Uber¨ die falschen Nullstellen der Eigenwerte des S-matrix, Helv. Phys. Acta 20 (1947), 250-266. [195] R. Jost and W. Kohn, Construction of a potential from a phase shift,Phys.Rev.(2)87 (1952), 977-992. [196] S. Kantorovitz, Cn-operational calculus, noncommutative Taylor formula and perturbation of semigroups, J. Funct. Anal. 113 (1993), 139-152. [197] T. Kato, On finite-dimensional perturbations of self-adjoint operators, J. Math. Soc. Japan. 9 (1957), 239-249. [198] T. Kato, Perturbations of the continuous spectra by trace class operators, Proc. Japan. Acad.ser.A.Math.Sci.33 (1957), 260-264. [199] T. Kato, Growth properties of solutions of the reduced wave equation with variable coeffi- cients, Comm. Pure Appl. Math. 12 (1959), 403-425. [200] T. Kato, Wave operators and unitary equivalence, Pacific J. Math. 15 (1965), 171-180. 436 BIBLIOGRAPHY

[201] T. Kato, Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162 (1966), 258-279. [202] T. Kato, Scattering theory with two Hilbert spaces,J.Funct.Anal.1 (1967), 342-369. [203] T. Kato, Smooth operators and commutators, Studia Math. 31(1968), 535-546. [204] T. Kato, Some results on potential scattering, In: Proc. Intern. Conf. on Funct. Anal. and Related Topics, 1969, Univ. of Tokyo Press, Tokyo, 206-215. [205] T. Kato, Monotonicity theorems in scattering theory, Hadronic J. 1(1978), 134-154. [206] T. Kato and S. T. Kuroda, Theory of simple scattering and eigenfunctions expansions, Funct. Anal. and Related Fields (F. F. Browder, ed.), Springer, Berlin, Heidelberg, New York, 1970, 99-131. [207] T. Kato and K. Masuda, Trotter’s product formula for nonlinear semigroups generated by subdifferentials of convex functionals, J. Math. Soc. Japan. 30 (1978), 169-178. [208] T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect,Rev.Math.Phys.1 (1989), 481-496. [209] H. Kitada, Scattering theory for Schr¨odinger operators with long-range potentials, I, II,J. Math. Soc. Japan 4 (1988), 505-512. [210] M. Klaus, Exact behavior of Jost functions at low energy,J.Math.Phys.29 (1988), 148-154. [211] M. Klaus, Low-energy behavior of the scattering matrix for the Schr¨odinger equation on the line,InverseProblems4 (1988), 502-512. [212] K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices, Amer. J. Math. 71 (1949), 921-945. [213] L. S. Koplienko, On the spectrum of the scattering matrix, Izv. Vyssh. Uchebn. Zaved. no. 5 (1971), 54-61 (Russian). [214] L. S. Koplienko, On the theory of the spectral shift function,ProblemyMat.Fiz.5 (1971) 62-79 (Russian); Topics in Math. Phys. 5 (1972), Plenum Press, New York. [215] L. S. Koplienko, Local criteria for the existence of the spectral shift function, Zap. Nauchn. Sem. LOMI Steklov 73, (1977) 102-117 (Russian). [216] L. S. Koplienko, The trace formula for non trace-class perturbations,Sib.Math.J.25 (1984) 735-743. [217] E. Korotyaev and A. Pushnitski, On the high-energy asymptotics of the integrated density of states, Bull. London Math. Soc. 35 (2003), 770-776. [218] E. L. Korotyaev and D. R. Yafaev, Traces on surfaces for function classes with dominant mixed derivatives,J.SovietMath.8, no. 1 (1978), 73-86. [219] M. G. Kre˘ın, On the trace formula in perturbation theory, Mat. Sb. 33 (1953), 597-626 (Russian). [220] M. G. Kre˘ın, On perturbation determinants and the trace formula for unitary and selfadjoint operators,SovietMath.Dokl.3 (1962), 707-710. [221] M. G. Kre˘ın, Some new studies in the theory of perturbations of selfadjoint operators, First Math. Summer School (Kanev, 1963) “Naukova Dumka”, Kiev, 1964, 103-187; English transl.: In: M. G. Kre˘ın, Topics in differential and integral equations and operator theory, Birkh¨aser, Basel, 1983, 107-172. [222] M. G. Kre˘ınandV.A.Yavryan,On spectral shift function arising in the perturbation of a positive operator, J. Operator Theory 6 (1981), 155-191. [223] J. Kupsh and W. Sandhas, Møller operators for scattering on singular potentials, Comm. Math. Phys. 2 (1966), 147-154. [224] S. T. Kuroda, On the existence and the unitarity of the scattering operator,NuovoCimento 12 (1959), 431-454. [225] S. T. Kuroda, Perturbation of continuous spectra by unbounded operators.I,J.Math.Soc. Japan 11 (1959), 247-262; II, J. Math. Soc. Japan 12 (1960), 243-257. [226] S. T. Kuroda, An abstract stationary approach to the perturbation of continuous spectra and scattering theory,J.Anal.Math.20 (1967), 57-117. [227] S. T. Kuroda, On the H¨older continuity of an integral involving Bessel functions, Quart. J. Math. Oxford 21, no. 2 (1970), 71-81. [228] S. T. Kuroda, Some remarks on scattering theory for Schr¨odinger operators,J.Fac.Sci., Univ.Tokyo,ser.I,17 (1970), 315-329. [229] S. T. Kuroda, Scattering theory for differential operators, J. Math. Soc. Japan 25, no. 1,2 (1973), 75-104, 222-234. [230] A. A. Kvitsinskii, Scattering by long-range potentials at low energies, Theor. Math. Phys. 59 (1984), 629-633. BIBLIOGRAPHY 437

[231] O. A. Ladyzhenskaya, On the limiting amplitude principle, Uspekhi Mat. Nauk 12,no.3 (1957), 161-164 (Russian). [232] O. A. Ladyzhenskaya and L. D. Faddeev, On the theory of perturbations of the continuous spectrum, Dokl. Akad. Nauk SSSR 120, no. 6 (1958), 1187-1190 (Russian). [233] R. Lavine, Absolute continuity of Hamiltonian operators with repulsive potentials,Proc. Amer. Math. Soc. 22 (1969), 55-60. [234] R. Lavine, Commutators and scattering theory I: Repulsive interactions, Comm. Math. Phys. 20 (1971), 301-323; II: A class of one-body problems, Indiana Univ. Math. J. 21 (1972), 643-656. [235] R. Lavine, Completeness of the wave operators in the repulsive N-body problem,J.Math. Phys. 14 (1973), 376-379. [236] N. Lerner and D. Yafaev, Trace theorems for pseudo-differential operators,J.Anal.Math. 74 (1998), 113-164. [237] N. Levinson, On the uniqueness of the potential in a Schr¨odinger equation for a given asymptotic phase, Danske Videnskab. Selskab, Mat.-Fyz. Medd. 25, no. 9 (1949), 29 pp. [238] N. Levinson, A simplified proof of the expansion theorem for singular second order differ- ential equations, Duke Math. J., 18 (1951), 57-71, 719-722. [239] I. M. Lifshits, On a problem in perturbation theory, Uspehi Mat. Nauk 7, no. 1 (1952), 171-180 (Russian). [240] B. A. Lippmann and J. Schwinger, Variational principles for scattering processes,Phys. Rev. 79 (1950), 469-480. [241] A. Melin, Trace distributions associted to the Schr¨odinger operator.J.AnalyseMath.59 (1992), 133-160. [242] C. Møller, General properties of the characteristic matrix in the theory of elementary par- ticles. Danske Videnskab. Selskab, Mat.-Fyz. Medd. I: 23, no. 1 (1945), 1-48; II: 22, no. 19 (1946), 26 pp. [243] E. Mourre, Absence of singular spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981), 391-400. [244] E. Mourre, Op´erateurs conjugu´es et propri´et´es de propagation, Comm. Math. Phys. 91 (1983), 279-300. [245] M. Murata, High energy resolvent estimates I, first order operators, and II, higher order operators, J. Math. Soc. Japan 35 (1983), 711-733 and 36 (1984), 1-10. [246] S. Nakamura, Low energy asymptotics for Schr¨odinger operators with slowly decreasing potentials, Comm. Math. Phys. 161 (1994), 63-76. [247] R. Newton, Noncentral potentials: The generalized Levinson theorem and the structure of the spectrum,J.Math.Phys.18 (1977), 1348-1357. [248] D. Pearson, An example in potential scattering illustrating the breakdown of asymptotic completeness, Comm. Math. Phys. 40 (1975), 125-146. [249] D. Pearson, A generalization of the Birman trace theorem, J. Funct. Anal. 28 (1978), 182- 186. [250] P. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schr¨odinger operators, Ann. Math. 144 (1981), 519-567. [251] I. Polterovich, Heat invariants of Riemannian manifolds,IsraelJ.Math.119 (2000), 239- 252. [252] A. Ya. Povzner, On the expansion of arbitrary functions in the eigenfunctions of the operator −∆u+qu, Mat. Sb. 32, no. 1 (1953), 109-156 (Russian); AMS Translations, ser. 2, 60 (1967), 1-49. [253] A. Ya. Povzner, On expansion in eigenfunctions of the Schr¨odinger equation, Dokl. Akad. Nauk SSSR 104, no. 3 (1955), 360-363 (Russian). [254] Yu. N. Protas, Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium, Math. USSR Sbornik, 45 (1983), 487-506. [255] A. Pushnitski, Representation for the spectral shift function for perturbations of definite sign, St. Petersburg Math. J. 9 (1998), 1181-1194. [256] A. Pushnitski, The scattering matrix and the differences of spectral projections, Bulletin London Math. Soc., 40 (2008), 227-238. [257] A. Pushnitski and D. Yafaev, Spectral theory of discontinuous functions of self-adjoint op- erators and scattering theory, ArXiv: 0907.1518, 21 pp. [258] M. Reed and B. Simon, The scattering of classical waves from inhomogeneous media,Math. Z. 155 (1977), 163-180. [259] P. Rejto, On partly gentle perturbation. III, J. Math. Anal. Appl. 27 (1969), 21-67. 438 BIBLIOGRAPHY

[260] P. Rejto, Some potential perturbations of the Laplacian, Helv. Phys. Acta 44 (1971), 708- 736. [261] F. Rellich, Uber¨ das asymptotische Verhalten der L¨osungen von ∆u+λu =0in unendlichen Gebieten, Jahresbericht der Deutsch. Math. Ver. 5 (1943), 57-63. [262] D. Robert, Asymptotiqueagrande´ ` energie de la phase de diffusion pour un potentiel, Asympt. Anal. 3 (1991), 301-320. [263] D. Robert, Semi-classical approximation in quantum mechanics. A survey of old and recent mathematical results., Helv. Phys. Acta 71, no. 1 (1998), 44-116. [264] D. Robert, Semiclassical asymptotics for the spectral shift function, Adv. Math. Sci. ser. 2, AMS 189 (1999), 187-203. [265] D. Robert and H. Tamura, Semiclassical estimates for resolvents of Schr¨odinger operators and asymptotics for scattering phases, Comm. PDE 9/10 (1984), 1017-1058. [266] D. Robert and H. Tamura, Semi-classical bounds for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincar´e, Phys. Th´eor. 46 (1987), 415-442. [267] D. Robert and H. Tamura, Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits,Ann.Inst.Fourier39 (1989), 155-192. [268] H. Rollnik, Streumaxima und gebundene Zustande,Z.Phys.145 (1956), 639-653. [269] M. Rosenblum, Perturbation of the continuous spectrum and unitary equivalence,PacificJ. Math. 7 (1957), 997-1010. [270] S. Yu. Rotfel’d, On spectral proprties of the scattering matrix, I. Izv. Vyssh. Uchebn. Zaved. no. 3 (1972), 52-60; II. Problemy Mat. Fiz. 7 (1974), 135-149, Izdatel’stvo LGU (Russian). [271] Ph. Roux and D. Yafaev, The scattering matrix for the Schr¨odinger operator with a long- range electromagnetic potential,J.Math.Phys.44 (2003), 2762-2786. [272] Y. Sait¯o, Eigenfunction expansions of the Schr¨odinger operator with long-range potentials, Q(y)=O(|y|−ε,ε>0, Osaka J. Math. 14 (1977), 37-53. [273] L. A. Sakhnovich, On the Ritz formula and quantum defects of the spectrum of the radial Schr¨odinger equation, Amer. Math. Soc. Transl. (2) 68 (1968). [274] J. R. Schulenberger, A local compactness theorem for wave propagation problems of classical physics, Indiana Univ. Math. J. 22 (1972), 429-432. [275] J. R. Schulenberger and C. H. Wilcox, Completeness of the wave operators for perturbations of uniformly propagative systems,J.Funct.Anal.7 (1971), 447-474. [276] J. R. Schulenberger and C. H. Wilcox, Coerciveness inequalities for nonelliptic systems of partial differential equations, Ann. Mat. Pura Appl. 88 (1971), 229-305. [277] J. R. Schulenberger and C. H. Wilcox, Eigenfunction expansions and scattering theory for wave propagation problems of classical physics, Arch. Rat. Mech. Anal. 46 (1972), 280-320. [278] R. T. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math. 10 (1967), 288-307. [279] N. Shenk, Eigenfunction expansions and scattering theory for the wave equation in an exterior domain, Arch. Rat. Mech. Anal. 21 (1966), 120-150. [280] N. Shenk and D. Thoe, Outgoing solutions of (−∆+q − k2)u = f in an exterior domain, J. Math. Anal. Appl. 31 (1970), 81-116. [281] Yu. M. Shirokov, Strongly singular potentials in the three-dimensional quantum mechanics, Theor. Math. Phys. 42, no. 1 (1980), 28-31. [282] Yu. M. Shirokov, Representation of free solutions for Schr¨odinger equations with strongly singular concentrated potentials, Theor. Math. Phys. 46, no. 3 (1981), 191-196. [283] Y. Shizuta, Eigenfunction expansion associated with the operator −∆ in the exterior do- main, Proc. Japan Acad. 39 (1963), 656-660. [284] B. Simon, Wave operators for classical particle scattering, Comm. Math. Phys. 23 (1971), 37-48. [285] B. Simon, The of weakly coupled Schr¨odinger operator in one and two dimen- sions, Ann. Phys. 97 (1976), 279-288. [286] B. Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), 119-168. [287] M. M. Skriganov, Uniform coordinate and spectral asymptotics for solutions of the scattering problem for the Schr¨odinger equation,J.SovietMath.8 (1978), 120-141. [288] A. V. Sobolev, Quasiclassical asymptotics of the scattering cross-section for asymptotically homogeneous potentials, J. Soviet. Math. 40 (1988), 652-672. BIBLIOGRAPHY 439

[289] A. V. Sobolev, Efficient bounds for the spectral shift function, Ann. Inst. H. Poincar´e, Phys. Th´eor., 58 (1993), 55-83. [290] A. V. Sobolev and D. R. Yafaev, Phase analysis in the problem of scattering by a radial potential, J. Soviet. Math.37 (1987), 888-902. [291] A. V. Sobolev and D. R. Yafaev, On the quasiclassical limit of the total scattering cross section in nonrelativistic quantum mechanics, Ann. Inst. H. Poincar´e, Phys. Th´eor. 44 (1986), 195-210. [292] A. V. Sobolev and D. R. Yafaev, Spectral properties of the abstract scattering matrix,Proc. Steklov Inst. Math. 188, no. 3 (1991), 159-189. [293] A. Sommerfeld, Die Greensche Funktion der Schwingungsgleichung, Jhrber. Deutsch. Math.- Verein 21 (1912), 309-353. [294] W. Stinespring, A sufficient condition for an integral operator to have a trace,J.Reine Angew. Math. 200 (1958), 200-207. [295] A. V. Suslov, About one Ismagilov’s theorem,ProblemyMat.Fiz.9 (1979), 142-144, Izda- tel’stvo LGU (Russian); Selecta Math. Sov. 5, no. 2 (1986),137-139. [296] D. Thoe, Eigenfunction expansions associated with Schr¨odinger operators in Rn, n ≥ 4, Arch.Rat.Mech.Anal.26 (1967), 335-356. [297] A. N. Tikhonov, A. A. Samarskii, On the radiation principle, Zh. Eksper. Teoret. Fiz. 18, no. 2 (1948), 243-248 (Russian). [298] B. R. Va˘ınberg, On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t →∞of solutions of non-stationary problems, Russian Math. Surveys 30 (1975), 1-58. [299] B. R. Va˘ınberg, Quasi-classical approximation in stationary scattering problems, Funct. Anal. Appl. 11 (1977), 247-257. [300] A. F. Vakulenko, A variant of commutator estimates in spectral theory, J. Soviet. Math. 49 (1988), 1136-1139. [301] V. Vogelsang, Das Ausstrahlungsproblem f¨ur elliptische Differentialgleichungen in Gebieten mit unbeschr¨ankten Rand,Math.Z.144 (1975), 101-125. [302] D. Voiculescu, OnatraceformulaofM.G.Kre˘ın, Operator theory: Adv. and Appl. 24 (1987), 329-332. [303] X. P. Wang, Time decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincar´e, Phys. Th´eor. 47 (1987), 25-37. [304] R. Weder, Spectral analysis of strongly propagative systems, J. Reine und Angewandte Math- ematik 354 (1984), 95-122. [305] R. Weder, Analyticity of the scattering matrix for wave propagation in crystals,J.Math. Pures and Appl. 64 (1985), 121-148. [306] P. Werner, Randwertprobleme de mathematischen Akustik, Arch. Rat. Mech. Anal. 10 (1962), 29-66. [307] H. Weyl, Uber¨ gew¨ohnliche lineare Differentialgleichungen mit singul¨aren Stellen und ihre Eigenfunktionen, Nachr. Ges. Wiss. G¨ottingen (1909), 37-64. [308] H. Weyl, Uber¨ gew¨ohnliche Differentialgleichungen mit Singularitatten und die zugeh¨origen Entwicklungen willk¨urlicher Funktionen, Math. Ann. 68 (1910), 220-269. [309] J. A. Wheeler, On the mathematical description of nuclei by the method of resonating group structure,Phys.Rev.52 (1937), 1107-1122. [310] C. H. Wilcox, Wave operators and asymptotic solutions of wave propagation problems in classical physics,Arch.Rat.Mech.Anal.22 (1966), 37-78. [311] D. R. Yafaev, Trace formulas for charged particles in nonrelativistic quantum mechanics, Teor. Mat. Fiz. 11 (1972), 78-92 (Russian). [312] D. R. Yafaev, Remark on scattering theory for a perturbed polyharmonic operator,Math. Notes 15 (1974), 260-265. [313] D. R. Yafaev, On the theorie of the of the three-particle Schr¨odinger operator, Math. USSR Sbornik 23 (1974), 535-559. [314] D. R. Yafaev, The virtual level of the Schr¨odinger equation,Zap.Nauˇchn. Sem. LOMI 51 (1975), 203-216; English transl.: J. Sov. Math. 11 (1979), 501-510. [315] D. R. Yafaev, On the break-down of completeness of wave operators in potential scattering, Comm. Math. Phys. 65 (1979), 167-179. [316] D. R. Yafaev, Wave operators for the Schr¨odinger equation,Theor.Math.Phys.45,no.2 (1981), 992-998. [317] D. R. Yafaev, Spectral properties of the Schr¨odinger operator with a potential having a slow falloff, Funct. Anal. Appl. 16 (1982), 280-286. 440 BIBLIOGRAPHY

[318] D. R. Yafaev, The low energy scattering for slowly decreasing potentials, Comm. Math. Phys. 85 (1982), 177-196. [319] D. R. Yafaev, Scattering theory for time-dependent zero-range potentials, Ann. Inst. H. Poincar´e, Phys. Th´eor. 40 (1984), 343-359. [320] D. R. Yafaev, Remarks on the spectral theory for the multiparticle type Schr¨odinger operator, J. Soviet Math. 31 (1985), 3445-3459. [321] D. R. Yafaev, On a resonant scattering on a negative potential,J.SovietMath.32 (1986), 549-556. [322] D. R. Yafaev, The eikonal approximation and the asymptotics of the total scattering cross section for the Schr¨odinger equation, Ann. Inst. H. Poincar´e, Phys. Th´eor. 44 (1986), 397- 425. [323] D. R. Yafaev, The eikonal approximation for the Schr¨odinger equation, Proc. Steklov Inst. Math. 179, no. 2 (1988), 251-266. [324] D. R. Yafaev, The quasiclassical asymptotics of the scattering cross section for the Schr¨odinger equation, Math. USSR-Izv. 32 (1989). [325] D. R. Yafaev, Eikonal approximation for fast-decreasing potentials,J.SovietMath.49 (1990), 1225-1236. [326] D. R. Yafaev, On the asymptotics of the scattering phases for the Schr¨odinger equation, Ann. Inst. H. Poincar´e, Phys. Th´eor. 53 (1990), 283-299. [327] D. R. Yafaev, On solutions of the Schr¨odinger equation with radiation conditions at infinity, Adv. Sov. Math., AMS 7 (1991), 179-204. [328] D. R. Yafaev, On the scattering matrix for perturbations of constant sign, Ann. Inst. H. Poincar´e, Phys. Th´eor. 57 (1992), 361-384. [329] D. R. Yafaev, On a zero-range interaction of a quantum particle with the vacuum,J.Phys. A: Math. Gen. 25 (1992), 963-978. [330] D. R. Yafaev, Radiation conditions and scattering theory for N-particle Hamiltonians, Comm. Math. Phys. 154 (1993), 523-554. [331] D. R. Yafaev, New channels in the two-body long-range scattering, St. Petersburg Math. J. 8 (1997), 165-182. [332] D. R. Yafaev, On the classical and quantum Coulomb scattering,J.Phys.A:Math.Gen. 30 (1997), 6981-6992. [333] D. R. Yafaev, The scattering amplitude for the Schr¨odinger equation with a long-range potential,Comm.Math.Phys.191 (1998), 183-218. [334] D. R. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121-144. [335] D. R. Yafaev, A class of pseudo-differential operators with oscillating symbols, St. Peters- burg Math. J. 11 (2000), 375-403. [336] D. R. Yafaev, High energy asymptotics of the scattering amplitude for the Schr¨odinger equation, Proc. Indian Acad. Sci., Math. Sci., 112 (2002), 245-255. [337] D. R. Yafaev, High energy and smoothness asymptotic expansion of the scattering amplitude, J. Funct. Anal., 202 (2003), 526-570. [338] D. R. Yafaev, Trace-class approach in scattering problems for perturbations of media,Proc. of the conference on spectral theory in Sinaya, Roumanie, Adv. in operator algebras and math. physics, 275-285, Theta, 2005. [339] D. R. Yafaev, A trace formula for the Dirac operator, Bulletin London Math. Soc., 37 (2005), 908-918. [340] D. R. Yafaev, Perturbation determinants, the spectral shift function, trace identities, and all that, Funct. Anal. and Appl., 41 (2007), 217-236. [341] D. R. Yafaev, Spectral and scattering theory of fourth order differential operators, Advances in the Math. Sciences, ser. 2, 225 (2008) AMS, 265-299. [342] K. Yajima, The quasi-classical limit of scattering amplitude - finite range potentials, Lecture Notes in Math. 1159, Springer-Verlag (1984), 242-263. [343] K. Yajima, The quasi-classical limit of scattering amplitude. L2-approach for short range potentials, Japan J. Math. 13 (1987), 77-126. [344] V. A. Yavryan, On some perturbations of self-adjoint operators, Dokl. Akad. Nauk Arm. SSR 38, no. 1 (1964), 3-7 (Russian). [345] C. Zemach and A. Klein, The Born approximation in nonrelativistic quantum theory. I, Nuovo Cimento 10 (1958), 1078-1087. Index

Absence of positive eigenvalues, 231, 399 a generalized Fourier integral, 255 Absolutely continuous subspace, 19 relation to the wave operators, 248 Admissible functions, 28 standing waves, 250 Agmon-H¨ormander spaces, 235 the diagonalization of the Hamiltonian, Analytic Fredholm alternative, 33 245 Asymptotic completeness, see also Wave op- erators Free Hamiltonian, 75 Averaged scattering cross section, 331 resolvent, 78 high-energy asymptotics, 337 spectral representation, 75 semiclassical asymptotics, 336 unitary group, 76 universal upper bounds, 331 Friedrichs’ extension, 25

Birman-Kato-Kre˘ın theorem, 42 Generalized Fourier transform, 170 Birman-Kre˘ın formula, 47 in the one-dimensional problem, 214 Boundary values of the resolvent of a self- relation with wave operators, 215 adjoint operator, 44 on half-line, 170 Boundedness of integral operators, 68 relation with wave operators, 175 Break-down of completeness, 91 Hamiltonian of a relativistic spinless parti- additional channels of scattering, 91 cle, 104 Cauchy integral, 358 Hardy-Rellich inequalities, 68 Compact operators, 20 High-energy asymptotic expansion of the re- singular numbers, 20 solvent, 277 Completeness of wave operators, see also away from the spectrum, 277 Asymptotic completeness in the whole complex plane, 361 Complex interpolation, 22 High-energy asymptotics of scattering data, Hadamard three-line theorem, 22 188 three-line theorem for operator-valued in the one-dimensional problem, 219 on half-line, 188 functions in Sp,22 Conditions of self-adjointness, 24 High-energy asymptotics of the spectral Cook’s criterion, 29 shift function, see also spectral shift function Determinant, 21 High-energy estimates of the resolvent, 268 regularized determinant, 21 the free case, 268 Diagonalization of a self-adjoint operator, 20 Hilbert identity, 17 Differential operators, 53, 136 Homogeneous Schr¨odinger equation, 241 with constant coefficients, 53, 136 an exhaustive description of all solutions, perturbations, 54, 136 241 spectral analysis, 54, 109 Dirac operator, 106 Integral operators, 133 Direct integral, 19 from Schatten-von Neumann classes, 133 from trace class, 133 Eikonal approximation, 319 Intertwining property, 173 Exceptional set N ,33 Invariance principle, 29 Expansion theorem, 248 for perturbations of trace class type, 43

441 442 INDEX

Jost function, 165, 210 wave operators, 145 in the one-dimensional problem, 210 completeness, 145 regularity properties, 165 existence, 145 Jost solution, 165 Phase shift, 166 regularity properties, 163 Point interaction, 203 with the vacuum, 207 Kato-Rosenblum theorem, 42 Propagation of classical waves, 129 Propagation or microlocal estimates, 372 Laplace transform, 18 Propagative systems, 109 Large time local decay of solutions of the of first order, 129 Schr¨odinger equation, 290 strongly, 109 Levinson’s formulas, 198, 222, 348 uniformly, 109 Limit amplitude, 166 Pseudodifferential operators, 58 Limit phase, 166 action on the exponential function, 61 Limiting absorption principle, 236, 400 boundedness and compactness, 58 efficient form, 400 elementary calculus, 59 commutator method, 400 of negative order, 65 in Schatten-von Neumann classes, 271 asymptotics of eigenvalues, 66 the sharp form, 238 on manifolds, 63 the free case, 236 oscillating symbols, 62 Lippmann-Schwinger equation, 252 essential spectrum, 62 Local asymptotic expansion of the parabolic principal symbol, 61 Green function, 280 strongly Carleman, 54 Laplace transform, 283 symbols and amplitudes, 60 Local theory of trace class perturbations, 43 with constant coefficients, 53 Long-range potentials, 380 perturbations, 54 diagonal singularity of the scattering am- spectral analysis, 54, 109 plitude, 395 with homogeneous symbols, 115 eikonal and transport equations, 380 scattering matrix, 394 Quadratic forms, 25 spectrum, 394 Long-range scattering, 86 Radiation conditions, 233, 399 existence of modified wave operators, 86 Radiation estimates, 373 Low-energy asymptotics, 178 Ray expansion, 312 in the one-dimensional problem, 216 Reflection coefficients, 166 on half-line Regular points, 17 for slowly decaying potentials, 186 Regular solution, 165 on the half-line, 178 Regularized perturbation determinant, 341 Low-energy behavior of the resolvent, 285 Resolvent, 17 Cauchy-Stieltjes integral, 17 Maxwell’s equations, 129 on half-line, 170 Mourre estimate, 261 Resolvent identity, 23 Mourre method, 259 modified, 275 limiting absorption principle, 259 propagation or microlocal estimates, 372 Scattering amplitude, 253 for long-range potentials, 385 Nonhomogeneous Schr¨odinger equation, 408 high-energy and smoothness asymp- existence and uniqueness of solutions, 239 totics, 385 with a long-range potential, 408 for potentials of compact support, 314 existence and unicity of solutions, 408 high-energy asymptotics, 314 for potentials with power-like decay, 318 Pauli operator, 104 high-energy and smoothness asymp- Pearson theorem, 43 totics, 318 Perturbation determinant, 45 Scattering cross section, 307 for the radial Schr¨odinger operator, 192 universal upper bounds, 310 in the one-dimensional problem, 221 Scattering matrix, 38, 159, 297 modified, 51 asymptotics of scattering phases, 302 regularized, 52 Born series, 301 Perturbed polyharmonic operator, 103, 145 eigenvalues, 39 INDEX 443

for differential operators, 159 continuity, 351 for long-range potentials, 385 for a trace class perturbation, 46 for perturbations of a definite sign, 301 for differential operators, 160 in the one-dimensional problem, 213 for general perturbations of trace class modified, 304 type, 47 on the half-line, 176 for perturbations of definite sign, 51 spectral properties, 297 for semibounded operators, 50 stationary representation, 38, 297 for the radial Schr¨odinger operator, 194 with identifications, 40 high-energy expansion, 356 Scattering operator, 38 asymptotic coefficients, 362, 364 for long-range potentials, 385 in the one-dimensional problem, 222 Scattering solutions, wave functions or Spectrum, 17 eigenfunctions of the continuous spec- absolutely continuous, 19 trum, 251 essential, 24 Schatten-von Neumann classes, 20 singular continuous, 19 Hilbert-Schmidt class, 21 conditions for its absence, 36 trace class, 21 Spherical waves, 242 Schr¨odinger operator, 79, 139 outgoing and incoming, 242 absence of the singular continuous spec- Strong smoothness, 31 trum, 98 Subordination of operators, 43 complex conjugation, 81 essential spectrum, 81 Time reversal invariance, 97 limiting absorption principle, 95 Time-delay, 346 magnetic, 101 Total scattering cross section, 255 perturbations of second order, 102 Trace, 21 scattering matrix, 96 Trace formula, 45 modified, 97 Trace identities, 199 spectrum, 97 for the radial Schr¨odinger operator, 199 stationary representations, 97 in the multidimensional problem, 365 self-adjointness, 80 in the one-dimensional problem, 222 wave operators, 82, 139 Transmission coefficients, 213 completeness, 93, 139 Uniform estimates of the spectral family, 270 completeness for anisotropic potentials, Uniqueness theorem under radiation condi- 94 tions, 233 existence, 82, 139 existence for anisotropic potentials, 84 Volterra equations, 162 zero-energy resonance, 287 the resolvent singularity, 288 Wave equation in inhomogeneous media, 157 Slowly decreasing positive potentials, 291 scattering theory, 157 a virtual shift of the continuous spectrum, Wave function, 166 291 asymptotic behavior, 253 quasiregularity of the spectral point zero, in the one-dimensional problem, 213 293 pointwise asymptotics, 257 superpower local decay of solutions of the Wave operators, 27 time-dependent Schr¨odinger equation, completeness, 27 295 for long-range potentials, 379 Smoothness in the Kato sense, 29 for magnetic potentials, 152 local, 30 for matrix differential operators, 122 sufficient conditions of a commutator for nonelliptic differential operators, 118 type, 32 for perturbations of a medium, 124, 154 Sobolev spaces, 56 for scalar differential operators, 116 embedding theorems, 57 for second order differential operators, 147 invariance with respect to diffeomor- for singular potentials, 154 phisms, 57 for strongly propagative systems, 128 trace theorem, 73 for the Maxwell operators, 129 H¨older continuity of traces, 74 in different spaces, 27 Spectral measure, 17 intertwining property, 27 Spectral shift function, 45, 160 local, 28 444 INDEX

multiplication theorem, 28 perturbations of boundary conditions, 154 stationary representations, 36 with identifications, 41 weak, 27 Abelian, 27 Weyl’s theorem on preservation of power asymptotics of eigenvalues, 22 Weyl’s theorem on preservation of the essen- tial spectrum, 25

Zero-energy resonance, 287 in multidimensional problem, 287 in the one-dimensional problem, 217 on half-line, 180 Titles in This Series

158 D. R. Yafaev, Mathematical scattering theory: Analytic theory, 2010 157 Xia Chen, Random walk intersections: Large deviations and related topics, 2010 156 Jaime Angulo Pava, Nonlinear dispersive equations: Existence and stability of solitary and periodic travelling wave solutions, 2009 155 Yiannis N. Moschovakis, Descriptive set theory, 2009 154 Andreas Capˇ and Jan Slov´ak, Parabolic geometries I: Background and general theory, 2009 153 Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, 2009 152 J´anos Pach and Micha Sharir, Combinatorial geometry and its algorithmic applications: The Alc´ala lectures, 2009 151 Ernst Binz and Sonja Pods, The geometry of Heisenberg groups: With applications in signal theory, optics, quantization, and field quantization, 2008 150 Bangming Deng, Jie Du, Brian Parshall, and Jianpan Wang, Finite dimensional algebras and quantum groups, 2008 149 Gerald B. Folland, Quantum field theory: A tourist guide for mathematicians, 2008 148 Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, 2008 147 David J. Benson and Stephen D. Smith, Classifying spaces of sporadic groups, 2008 146 Murray Marshall, Positive polynomials and sums of squares, 2008 145 Tuna Altinel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, 2008 144 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part II: Analytic aspects, 2008 143 Alexander Molev, Yangians and classical Lie algebras, 2007 142 Joseph A. Wolf, Harmonic analysis on commutative spaces, 2007 141 Vladimir Mazya and Gunther Schmidt, Approximate approximations, 2007 140 Elisabetta Barletta, Sorin Dragomir, and Krishan L. Duggal, Foliations in Cauchy-Riemann geometry, 2007 139 Michael Tsfasman, Serge Vlˇadut¸, and Dmitry Nogin, Algebraic geometric codes: Basic notions, 2007 138 Kehe Zhu, Operator theory in function spaces, 2007 137 MikhailG.Katz, Systolic geometry and topology, 2007 136 Jean-Michel Coron, Control and nonlinearity, 2007 135 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: Techniques and applications, Part I: Geometric aspects, 2007 134 Dana P. Williams, Crossed products of C∗-algebras, 2007 133 Andrew Knightly and Charles Li, Traces of Hecke operators, 2006 132 J. P. May and J. Sigurdsson, Parametrized homotopy theory, 2006 131 Jin Feng and Thomas G. Kurtz, Large deviations for stochastic processes, 2006 130 Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, 2006 129 William M. Singer, Steenrod squares in spectral sequences, 2006 128 Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlev´e transcendents, 2006 127 Nikolai Chernov and Roberto Markarian, Chaotic billiards, 2006 126 Sen-Zhong Huang, Gradient inequalities, 2006 125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform, 2006 124 Ido Efrat, Editor, Valuations, orderings, and Milnor K-Theory, 2006 TITLES IN THIS SERIES

123 Barbara Fantechi, Lothar G¨ottsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck’s FGA explained, 2005 122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial identities and asymptotic methods, 2005 121 Anton Zettl, Sturm-Liouville theory, 2005 120 Barry Simon, Trace ideals and their applications, 2005 119 Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, 2005 118 Alexandru Buium, Arithmetic differential equations, 2005 117 Volodymyr Nekrashevych, Self-similar groups, 2005 116 Alexander Koldobsky, Fourier analysis in convex geometry, 2005 115 Carlos Julio Moreno, Advanced analytic number theory: L-functions, 2005 114 Gregory F. Lawler, Conformally invariant processes in the plane, 2005 113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, 2004 112 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups II. Main theorems: The classification of simple QTKE-groups, 2004 111 Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups I. Structure of strongly quasithin K-groups, 2004 110 Bennett Chow and Dan Knopf, The Ricci flow: An introduction, 2004 109 Goro Shimura, Arithmetic and analytic of quadratic forms and Clifford groups, 2004 108 Michael Farber, Topology of closed one-forms, 2004 107 Jens Carsten Jantzen, Representations of algebraic groups, 2003 106 Hiroyuki Yoshida, Absolute CM-periods, 2003 105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces with applications to economics, second edition, 2003 104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003 103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanr´e, Lusternik-Schnirelmann category, 2003 102 Linda Rass and John Radcliffe, Spatial deterministic epidemics, 2003 101 Eli Glasner, Ergodic theory via joinings, 2003 100 Peter Duren and Alexander Schuster, Bergman spaces, 2004 99 Philip S. Hirschhorn, Model categories and their localizations, 2003 98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 2002 97 V. A. Vassiliev, Applied Picard-Lefschetz theory, 2002 96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, 2002 95 Seiichi Kamada, Braid and knot theory in dimension four, 2002 94 Mara D. Neusel and Larry Smith, Invariant theory of finite groups, 2002 93 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 2: Model operators and systems, 2002 92 Nikolai K. Nikolski, Operators, functions, and systems: An easy reading. Volume 1: Hardy, Hankel, and Toeplitz, 2002

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

The main subject of this book is applications of methods of scat- tering theory to differential operators, primarily the Schrödinger operator. There are two different trends in scattering theory for differential operators. The first one relies on the abstract scattering theory. The second one is almost independent of it. In this approach the abstract theory is replaced by a concrete investigation of the corresponding . In this book both of these trends are presented. The first half of this book begins with the summary of the main results of the general scattering theory of the previous book by the author, Mathematical Scattering Theory: General Theory, American Mathematical Society, 1992. The next three chapters illustrate basic theorems of abstract scattering theory, presenting, in particular, their applications to scattering theory of perturbations of differential operators with constant coefficients and to the analysis of the trace class method. In the second half of the book direct methods of scattering theory for differential opera- tors are presented. After considering the one-dimensional case, the author returns to the multi-dimensional problem and discusses various analytical methods and tools appro- priate for the analysis of differential operators, including, among others, high- and low-energy asymptotics of the Green function, the scattering matrix, ray and eikonal expansions. The book is based on graduate courses taught by the author at Saint-Petersburg (Russia) and Rennes (France) Universities and is oriented towards a reader interested in studying deep aspects of scattering theory (for example, a graduate student in math- ematical physics).

For additional information and updates on this book, visit AMS on the Web www.ams.org/bookpages/surv-158 www.ams.org

SURV/158

surv-158-yafaev-cov.indd 1 2/4/10 3:47 PM