Mathematical Scattering Theory

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Scattering Theory Mathematical Surveys and Monographs Volume 158 Mathematical Scattering Theory Analytic Theory D. R. Yafaev American Mathematical Society surv-158-yafaev-cov.indd 1 2/4/10 3:47 PM http://dx.doi.org/10.1090/surv/158 Mathematical Scattering Theory Analytic Theory Mathematical Surveys and Monographs Volume 158 Mathematical Scattering Theory Analytic Theory D. R. Yafaev American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen, Chair J. T. Stafford Benjamin Sudakov 2000 Mathematics Subject Classification. Primary 34L25, 35-02, 35P10, 35P25, 47A40, 81U05. For additional information and updates on this book, visit www.ams.org/bookpages/surv-158 Library of Congress Cataloging-in-Publication Data ´IA`faev,D.R.(Dmitri˘ıRauelevich), 1948– Mathematical scattering theory : analytic theory / D.R. Yafaev. p. cm. – (Mathematical surveys and monographs ; v. 158) Includes bibliographical references and index. ISBN 978-0-8218-0331-8 (alk. paper) 1. Scattering (Mathematics) I. Title. QA329.I24 2009 515.724–dc22 2009027382 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 To the memory of my parents Contents Preface xi Basic Notation 1 Introduction 5 Chapter 0. Basic Concepts 17 1. Classification of the spectrum 17 2. Classes of compact operators 20 3. The resolvent equation. Conditions for self-adjointness 23 4. Wave operators (WO) 26 5. The smooth method 29 6. The stationary scheme 33 7. The scattering operator and the scattering matrix (SM) 38 8. The trace class method 42 9. The spectral shift function (SSF) and the perturbation determinant (PD) 45 10. Differential operators 52 11. Function spaces and embedding theorems 56 12. Pseudodifferential operators 58 13. Miscellaneous analytic facts 67 Chapter 1. Smooth Theory. The Schr¨odinger Operator 71 1. Trace theorems 71 2. The free Hamiltonian 75 3. The Schr¨odinger operator 79 4. Existence of wave operators 82 5. Wave operators for long-range potentials 86 6. Completeness of wave operators 93 7. The limiting absorption principle (LAP) 95 8. The scattering matrix 96 9. Absence of the singular continuous spectrum 98 10. General differential operators of second order 101 11. The perturbed polyharmonic operator 103 12. The Pauli and Dirac operators 104 Chapter 2. Smooth Theory. General Differential Operators 109 1. Spectral analysis of differential operators with constant coefficients 109 2. Scalar differential operators 116 3. Nonelliptic differential operators 118 4. Matrix differential operators 122 vii viii CONTENTS 5. Scattering problems for perturbations of a medium 124 6. Strongly propagative systems. Maxwell’s equations 128 Chapter 3. Scattering for Perturbations of Trace Class Type 133 1. Conditions on an integral operator to be trace class 133 2. Perturbations of differential operators with constant coefficients 136 3. The Schr¨odinger operator 139 4. The perturbed polyharmonic operator 145 5. General differential operators of second order 147 6. Scattering problems for perturbations of a medium 154 7. Wave equation 157 8. The scattering matrix and the spectral shift function 159 Chapter 4. Scattering on the Half-line 161 1. Jost solutions. Volterra equations 161 2. Generalized Fourier transform and WO 170 3. Low-energy asymptotics 178 4. High-energy asymptotics 188 5. The SSF for the radial Schr¨odinger operator 191 6. Trace identities 198 7. Perturbation by a boundary condition. Point interaction 203 Chapter 5. One-Dimensional Scattering 209 1. A direct approach 209 2. Low- and high-energy asymptotics 216 3. The SSF and trace identities 221 4. Potentials with different limits at “ + ” and “ − ” infinities 223 Chapter 6. The Limiting Absorption Principle (LAP), the Radiation Conditions and the Expansion Theorem 231 1. Absence of positive eigenvalues and radiation conditions 231 2. Boundary values of the resolvent 233 3. A sharp form of the limiting absorption principle 235 4. Nonhomogeneous Schr¨odinger equation 239 5. Homogeneous Schr¨odinger equation 241 6. Expansion theorem 245 7. The wave function. The scattering amplitude 251 8. A generalized Fourier integral 255 9. The Mourre method 259 Chapter 7. High- and Low-Energy Asymptotics 267 1. High-energy and uniform resolvent estimates 267 2. Asymptotic expansion of the Green function for large values of the spectral parameter 275 3. Small time asymptotics of the heat kernel 280 4. Low-energy behavior of the resolvent 285 5. Low-energy behavior of the resolvent. Slowly decreasing potentials 291 Chapter 8. The Scattering Matrix (SM) and the Scattering Cross Section 297 1. Basic properties of the SM 297 CONTENTS ix 2. The spectrum of the SM. The modified SM 302 3. The scattering cross section 306 4. High-energy asymptotics of the SM. The ray expansion 311 5. The eikonal approximation 319 6. The averaged scattering cross section. Singular potentials 328 7. The semiclassical limit 337 Chapter 9. The Spectral Shift Function and Trace Formulas 341 1. The regularized PD and SSF for the multidimensional Schr¨odinger operator 341 2. High-energy asymptotics of the SSF 353 3. Trace identities for the multidimensional Schr¨odinger operator 365 Chapter 10. The Schr¨odinger Operator with a Long-Range Potential 369 1. Propagation estimates 369 2. Long-range scattering 374 3. The eikonal and transport equations 380 4. Scattering matrix for long-range potentials 384 Chapter 11. The LAP and Radiation Estimates Revisited 399 1. The efficient form of the LAP 399 2. Absence of positive eigenvalues and uniqueness theorem 403 3. Nonhomogeneous Schr¨odinger equation with a long-range potential 408 Review of the Literature 415 Bibliography 429 Index 441 Preface This book can be considered as the second volume of the author’s monograph “Mathematical Scattering Theory (General Theory)” [I]. It is oriented to applica- tions to differential operators, primarily to the Schr¨odinger operator. A necessary background from [I] is collected (but the proofs are of course not repeated) in Chapter 0. Therefore it is presumably possible to read this book independently of [I]. Everything said in the preface to [I] pertains also to this book. In particular, we proceed again from the stationary approach. Its main advantage is that, si- multaneously with proofs of various facts, the stationary approach gives formula representations for the basic objects of the theory. Along with wave operators, we also consider properties of the scattering matrix, the spectral shift function, the scattering cross section, etc. A consistent use of the stationary approach as well as the choice of concrete material distinguishes this book from others such as the third volume of the course of M. Reed and B. Simon [43]. The latter course has become a desktop copy for many, in particular, for the author of the present book. However, in view of the broad compass of material, the course [43] was necessarily written in encyclopedic style and apparently cannot replace a systematic exposition of the theory. Hopefully, vol. 3 of [43] and this book can be considered as complementary to one another. There are two different trends in scattering theory for differential operators. The first one relies on the abstract scattering theory. The second one is almost independent of it. In this approach the abstract theory is replaced by a concrete investigation of the corresponding differential equation. In this book we present both of these trends. The first of them illustrates basic theorems of [I]. Thus, Chapters 1 and 2 are devoted to applications of the smooth method. Of course the abstract results of [I] should be supplemented by some analytic tools, such as the Sobolev trace theorem. The smooth method works well for perturbations of differential operators with constant coefficients. In Chapter 3 applications of the trace class method are discussed. The main advantage of this method is that it does not require an explicit spectral analysis of an “unperturbed” operator. Other chapters are much less dependent on [I]. Chapters 4 and 5 are devoted to the one-dimensional problem (on the half-axis and the entire axis, respectively) which is a touchstone for the multidimensional case because specific methods of ordinary differential equations can be used here. In the following chapters we return to the multidimensional problem and discuss different analytic methods appropriate to differential operators. In particular, in Chapter 6 scattering theory is formulated in terms of solutions of the Schr¨odinger equation satisfying some “boundary conditions” (radiation conditions) at infinity. xi xii PREFACE High- and low-energy asymptotics of the Green function (the resolvent kernel) and of related objects are discussed in Chapter 7. Chapter 8 is devoted to a study of the scattering matrix and of the scattering cross section. Here some asymptotic methods, such as the ray expansion and eikonal expansion, are also discussed. As an example of a useful interaction of abstract and analytic methods, we mention the theory of the spectral shift function.
Recommended publications
  • Discrete-Continuous and Classical-Quantum
    Under consideration for publication in Math. Struct. in Comp. Science Discrete-continuous and classical-quantum T. Paul C.N.R.S., D.M.A., Ecole Normale Sup´erieure Received 21 November 2006 Abstract A discussion concerning the opposition between discretness and continuum in quantum mechanics is presented. In particular this duality is shown to be present not only in the early days of the theory, but remains actual, featuring different aspects of discretization. In particular discreteness of quantum mechanics is a key-stone for quantum information and quantum computation. A conclusion involving a concept of completeness linking dis- creteness and continuum is proposed. 1. Discrete-continuous in the old quantum theory Discretness is obviously a fundamental aspect of Quantum Mechanics. When you send white light, that is a continuous spectrum of colors, on a mono-atomic gas, you get back precise line spectra and only Quantum Mechanics can explain this phenomenon. In fact the birth of quantum physics involves more discretization than discretness : in the famous Max Planck’s paper of 1900, and even more explicitly in the 1905 paper by Einstein about the photo-electric effect, what is really done is what a computer does: an integral is replaced by a discrete sum. And the discretization length is given by the Planck’s constant. This idea will be later on applied by Niels Bohr during the years 1910’s to the atomic model. Already one has to notice that during that time another form of discretization had appeared : the atomic model. It is astonishing to notice how long it took to accept the atomic hypothesis (Perrin 1905).
    [Show full text]
  • Solving the Quantum Scattering Problem for Systems of Two and Three Charged Particles
    Solving the quantum scattering problem for systems of two and three charged particles Solving the quantum scattering problem for systems of two and three charged particles Mikhail Volkov c Mikhail Volkov, Stockholm 2011 ISBN 978-91-7447-213-4 Printed in Sweden by Universitetsservice US-AB, Stockholm 2011 Distributor: Department of Physics, Stockholm University In memory of Professor Valentin Ostrovsky Abstract A rigorous formalism for solving the Coulomb scattering problem is presented in this thesis. The approach is based on splitting the interaction potential into a finite-range part and a long-range tail part. In this representation the scattering problem can be reformulated to one which is suitable for applying exterior complex scaling. The scaled problem has zero boundary conditions at infinity and can be implemented numerically for finding scattering amplitudes. The systems under consideration may consist of two or three charged particles. The technique presented in this thesis is first developed for the case of a two body single channel Coulomb scattering problem. The method is mathe- matically validated for the partial wave formulation of the scattering problem. Integral and local representations for the partial wave scattering amplitudes have been derived. The partial wave results are summed up to obtain the scat- tering amplitude for the three dimensional scattering problem. The approach is generalized to allow the two body multichannel scattering problem to be solved. The theoretical results are illustrated with numerical calculations for a number of models. Finally, the potential splitting technique is further developed and validated for the three body Coulomb scattering problem. It is shown that only a part of the total interaction potential should be split to obtain the inhomogeneous equation required such that the method of exterior complex scaling can be applied.
    [Show full text]
  • A 2-Ghz Discrete-Spectrum Waveband-Division Microscopic Imaging System
    Optics Communications 338 (2015) 22–26 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom A 2-GHz discrete-spectrum waveband-division microscopic imaging system Fangjian Xing, Hongwei Chen n, Cheng Lei, Minghua Chen, Sigang Yang, Shizhong Xie Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China article info abstract Article history: Limited by dispersion-induced pulse overlap, the frame rate of serial time-encoded amplified microscopy Received 26 June 2014 is confined to the megahertz range. Replacing the ultra-short mode-locked pulse laser by a multi-wa- Received in revised form velength source, based on waveband-division technique, a serial time stretch microscopic imaging sys- 1 September 2014 tem with a line scan rate of in the gigahertz range is proposed and experimentally demonstrated. In this Accepted 4 September 2014 study, we present a surface scanning imaging system with a record line scan rate of 2 GHz and 15 pixels. Available online 22 October 2014 Using a rectangular spectrum and a sufficiently large wavelength spacing for waveband-division, the Keywords: resulting 2D image is achieved with good quality. Such a superfast imaging system increases the single- Real-time imaging shot temporal resolution towards the sub-nanosecond regime. Ultrafast & 2014 Elsevier B.V. All rights reserved. Discrete spectrum Wavelength-to-space-to-time mapping GHz imaging 1. Introduction elements with a broadband mode-locked laser to achieve ultrafast single pixel imaging. An important feature of STEAM is the spec- Most of the current research in optical microscopic imaging trum of the broadband laser source.
    [Show full text]
  • Zero-Point Energy of Ultracold Atoms
    Zero-point energy of ultracold atoms Luca Salasnich1,2 and Flavio Toigo1 1Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`adi Padova, via Marzolo 8, 35131 Padova, Italy 2CNR-INO, via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy Abstract We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regular- ization approaches: dimensional regularization, momentum-cutoff regular- ization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equa- tion of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS- BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regu- larization gives remarkable analytical results in the BEC regime of compos- ite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultra- cold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures.
    [Show full text]
  • Discrete Variable Representations and Sudden Models in Quantum
    Volume 89. number 6 CHLMICAL PHYSICS LEITERS 9 July 1981 DISCRETEVARlABLE REPRESENTATIONS AND SUDDEN MODELS IN QUANTUM SCATTERING THEORY * J.V. LILL, G.A. PARKER * and J.C. LIGHT l7re JarrresFranc/t insrihrre and The Depwrmcnr ofC7temtsrry. Tire llm~crsrry of Chrcago. Otrcago. l7lrrrors60637. USA Received 26 September 1981;m fin11 form 29 May 1982 An c\act fOrmhSm In which rhe scarrcnng problem may be descnbcd by smsor coupled cqumons hbclcd CIIIW bb bans iuncltons or quadrature pomts ISpresented USCof each frame and the srnrplyculuatcd unitary wmsformatlon which connects them resulis III an cfliclcnt procedure ror pcrrormrnpqu~nrum scxrcrrn~ ca~cubr~ons TWO ~ppro~mac~~~ arc compxcd wrh ihe IOS. 1. Introduction “ergenvalue-like” expressions, rcspcctnely. In each case the potential is represented by the potcntud Quantum-mechamcal scattering calculations are function Itself evahrated at a set of pomts. most often performed in the close-coupled representa- Whjle these models have been shown to be cffcc- tion (CCR) in which the internal degrees of freedom tive III many problems,there are numerousambiguities are expanded in an appropnate set of basis functions in their apphcation,especially wtth regardto the resulting in a set of coupled diiierentral equations UI choice of constants. Further, some models possess the scattering distance R [ 1,2] _The method is exact formal difficulties such as loss of time reversal sym- IO w&in a truncation error and convergence is ob- metry, non-physical coupling, and non-conservation tained by increasing the size of the basis and hence the of energy and momentum [ 1S-191. In fact, it has number of coupled equations (NJ While considerable never been demonstrated that sudden models fit into progress has been madein the developmentof efficient any exactframework for solutionof the scattering algonthmsfor the solunonof theseequations [3-71, problem.
    [Show full text]
  • The S-Matrix Formulation of Quantum Statistical Mechanics, with Application to Cold Quantum Gas
    THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Pye Ton How August 2011 c 2011 Pye Ton How ALL RIGHTS RESERVED THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS Pye Ton How, Ph.D. Cornell University 2011 A novel formalism of quantum statistical mechanics, based on the zero-temperature S-matrix of the quantum system, is presented in this thesis. In our new formalism, the lowest order approximation (“two-body approximation”) corresponds to the ex- act resummation of all binary collision terms, and can be expressed as an integral equation reminiscent of the thermodynamic Bethe Ansatz (TBA). Two applica- tions of this formalism are explored: the critical point of a weakly-interacting Bose gas in two dimensions, and the scaling behavior of quantum gases at the unitary limit in two and three spatial dimensions. We found that a weakly-interacting 2D Bose gas undergoes a superfluid transition at T 2πn/[m log(2π/mg)], where n c ≈ is the number density, m the mass of a particle, and g the coupling. In the unitary limit where the coupling g diverges, the two-body kernel of our integral equation has simple forms in both two and three spatial dimensions, and we were able to solve the integral equation numerically. Various scaling functions in the unitary limit are defined (as functions of µ/T ) and computed from the numerical solutions.
    [Show full text]
  • (2021) Transmon in a Semi-Infinite High-Impedance Transmission Line
    PHYSICAL REVIEW RESEARCH 3, 023003 (2021) Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations E. Wiegand ,1,* B. Rousseaux ,2 and G. Johansson 1 1Applied Quantum Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden 2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France (Received 8 December 2020; accepted 11 March 2021; published 1 April 2021) In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom’s transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes. DOI: 10.1103/PhysRevResearch.3.023003 I. INTRODUCTION [43]. Furthermore, high-impedance resonators make it pos- sible for light-matter interaction to reach strong-coupling In the past two decades, circuit quantum electrodynamics regimes due to strong coupling to vacuum fluctuations [44]. (circuit QED) has become a field of growing interest for quan- In this article, we investigate the spontaneous emission tum information processing and also to realize new regimes of a transmon [45] capacitively coupled to a 1D TL that is in quantum optics [1–11].
    [Show full text]
  • 3 Scattering Theory
    3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves.
    [Show full text]
  • Improving Frequency Resolution of Discrete Spectra
    AGH University of Science and Technology, Kraków, Poland Faculty of Electrical Engineering, Automatics, Computer Science and Electronics Marek GĄSIOR Improving Frequency Resolution of Discrete Spectra A doctoral dissertation done under guidance of Professor Mariusz ZIÓŁKO Kraków 2006 - II - Marek Gąsior, Improving frequency resolution of discrete spectra Akademia Górniczo-Hutnicza w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Marek GĄSIOR Poprawa rozdzielczości częstotliwościowej widm dyskretnych Rozprawa doktorska wykonana pod kierunkiem prof. dra hab. inż. Mariusza ZIÓŁKO Kraków 2006 Marek Gąsior, Improving frequency resolution of discrete spectra - III - - IV - Marek Gąsior, Improving frequency resolution of discrete spectra To my Parents Moim Rodzicom Acknowledgements I would like to thank all those who influenced this work. They were in particular the Promotor, Professor Mariusz Ziółko, who also triggered my interest in digital signal processing already during mastership studies; my CERN colleagues, especially Jeroen Belleman and José Luis González, from whose experience I profited so much. I am also indebted to Jean Pierre Potier, Uli Raich and Rhodri Jones for supporting these studies. Separately I would like to thank my wife Agata for her patience, understanding and sacrifice without which this work would never have been done, as well as my parents, Krystyna and Jan, for my education. To them I dedicate this doctoral dissertation. Podziękowania Pragnę podziękować wszystkim, którzy mieli wpływ na kształt niniejszej pracy. W szczególności byli to Promotor, Pan profesor Mariusz Ziółko, który także zaszczepił u mnie zainteresowanie cyfrowym przetwarzaniem sygnałów jeszcze w czasie studiów magisterskich; moi koledzy z CERNu, przede wszystkim Jeroen Belleman i José Luis González, z których doświadczenia skorzystałem tak wiele.
    [Show full text]
  • Path Integral in Quantum Field Theory Alexander Belyaev (Course Based on Lectures by Steven King) Contents
    Path Integral in Quantum Field Theory Alexander Belyaev (course based on Lectures by Steven King) Contents 1 Preliminaries 5 1.1 Review of Classical Mechanics of Finite System . 5 1.2 Review of Non-Relativistic Quantum Mechanics . 7 1.3 Relativistic Quantum Mechanics . 14 1.3.1 Relativistic Conventions and Notation . 14 1.3.2 TheKlein-GordonEquation . 15 1.4 ProblemsSet1 ........................... 18 2 The Klein-Gordon Field 19 2.1 Introduction............................. 19 2.2 ClassicalScalarFieldTheory . 20 2.3 QuantumScalarFieldTheory . 28 2.4 ProblemsSet2 ........................... 35 3 Interacting Klein-Gordon Fields 37 3.1 Introduction............................. 37 3.2 PerturbationandScatteringTheory. 37 3.3 TheInteractionHamiltonian. 43 3.4 Example: K π+π− ....................... 45 S → 3.5 Wick’s Theorem, Feynman Propagator, Feynman Diagrams . .. 47 3.6 TheLSZReductionFormula. 52 3.7 ProblemsSet3 ........................... 58 4 Transition Rates and Cross-Sections 61 4.1 TransitionRates .......................... 61 4.2 TheNumberofFinalStates . 63 4.3 Lorentz Invariant Phase Space (LIPS) . 63 4.4 CrossSections............................ 64 4.5 Two-bodyScattering . 65 4.6 DecayRates............................. 66 4.7 OpticalTheorem .......................... 66 4.8 ProblemsSet4 ........................... 68 1 2 CONTENTS 5 Path Integrals in Quantum Mechanics 69 5.1 Introduction............................. 69 5.2 The Point to Point Transition Amplitude . 70 5.3 ImaginaryTime........................... 74 5.4 Transition Amplitudes With an External Driving Force . ... 77 5.5 Expectation Values of Heisenberg Position Operators . .... 81 5.6 Appendix .............................. 83 5.6.1 GaussianIntegration . 83 5.6.2 Functionals ......................... 85 5.7 ProblemsSet5 ........................... 87 6 Path Integral Quantisation of the Klein-Gordon Field 89 6.1 Introduction............................. 89 6.2 TheFeynmanPropagator(again) . 91 6.3 Green’s Functions in Free Field Theory .
    [Show full text]
  • Path-Integral Formulation of Scattering Theory
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Finkler Papers Research Papers in Physics and Astronomy 10-15-1975 Path-integral formulation of scattering theory Paul Finkler University of Nebraska-Lincoln, [email protected] C. Edward Jones University of Nebraska-Lincoln M. Misheloff University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/physicsfinkler Part of the Physics Commons Finkler, Paul; Jones, C. Edward; and Misheloff, M., "Path-integral formulation of scattering theory" (1975). Paul Finkler Papers. 11. https://digitalcommons.unl.edu/physicsfinkler/11 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Finkler Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYSIC AL REVIE% D VOLUME 12, NUMBER 8 15 OCTOBER 1975 Path-integral formulation of scattering theory W. B. Campbell~~ Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 P. Finkler, C. E. Jones, ~ and M. N. Misheloff Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508 (Received 14 July 1975} A new formulation of nonrelativistic scattering theory is developed which expresses the S matrix as a path integral. This formulation appears to have at least two advantages: (1) A closed formula is obtained for the 8 matrix in terms of the potential, not involving a series expansion; (2) the energy-conserving 8 function can be explicitly extracted using a technique analogous to that of Faddeev and Popov, thereby yielding a closed path- integral expression for the T matrix.
    [Show full text]
  • Relativistic Dynamics for Spin-Zero and Spin-Half Particles
    Pramana- J. Phys., Vol. 27, No. 6, December 1986, pp. 731-745. © Printed in India. Relativistic dynamics for spin-zero and spin-half particles J THAKUR Department of Physics, Patna University, Patna 800005, India MS received 17 May 1986; revised 28 August 1986 Abstract. The classical and quantum mechanics of a system o f directly interacting relativistic particles is discussed. We first discuss the spin-zero case, where we basically follow Rohrlich in introducing a set of covariant centre of mass (CM) and relative variables. The relation of these to the classic formulation of Bakamjian and Thomas is also discussed. We also discuss the important case of relativistic potentials which may depend on total four-momentum squared. We then consider the quantum mechanical case of spin-half particles. The negative energy difficulty is solved by introducing a number of first class constraints which fix the spinor structure of physical solutions and ensure the existence of proper CM and relative variables. We derive the form of interactions consistent with Lorentz invariance, space inversion, time reversal and charge conjugation and with the above mentioned first class constraints and find that it is analogous to that for the non-relativistic case. Finally the relationship of the present work with some previous work is briefly discussed. Keywords. Direct interactions; spin zero; spin half; covariant centre of mass; first class constraints. PACS Nos 03-20;, 03-65; 11-30 1. Introduction There has been considerable progress recently in formulating a Hamiltonian theory of directly interacting relativistic particles. By direct interaction we mean an interaction between particles which does not require, for its description, the aid of an intervening field.
    [Show full text]