The S-Matrix Formulation of Quantum Statistical Mechanics, with Application to Cold Quantum Gas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solving the Quantum Scattering Problem for Systems of Two and Three Charged Particles
Solving the quantum scattering problem for systems of two and three charged particles Solving the quantum scattering problem for systems of two and three charged particles Mikhail Volkov c Mikhail Volkov, Stockholm 2011 ISBN 978-91-7447-213-4 Printed in Sweden by Universitetsservice US-AB, Stockholm 2011 Distributor: Department of Physics, Stockholm University In memory of Professor Valentin Ostrovsky Abstract A rigorous formalism for solving the Coulomb scattering problem is presented in this thesis. The approach is based on splitting the interaction potential into a finite-range part and a long-range tail part. In this representation the scattering problem can be reformulated to one which is suitable for applying exterior complex scaling. The scaled problem has zero boundary conditions at infinity and can be implemented numerically for finding scattering amplitudes. The systems under consideration may consist of two or three charged particles. The technique presented in this thesis is first developed for the case of a two body single channel Coulomb scattering problem. The method is mathe- matically validated for the partial wave formulation of the scattering problem. Integral and local representations for the partial wave scattering amplitudes have been derived. The partial wave results are summed up to obtain the scat- tering amplitude for the three dimensional scattering problem. The approach is generalized to allow the two body multichannel scattering problem to be solved. The theoretical results are illustrated with numerical calculations for a number of models. Finally, the potential splitting technique is further developed and validated for the three body Coulomb scattering problem. It is shown that only a part of the total interaction potential should be split to obtain the inhomogeneous equation required such that the method of exterior complex scaling can be applied. -
Statistics of a Free Single Quantum Particle at a Finite
STATISTICS OF A FREE SINGLE QUANTUM PARTICLE AT A FINITE TEMPERATURE JIAN-PING PENG Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China Abstract We present a model to study the statistics of a single structureless quantum particle freely moving in a space at a finite temperature. It is shown that the quantum particle feels the temperature and can exchange energy with its environment in the form of heat transfer. The underlying mechanism is diffraction at the edge of the wave front of its matter wave. Expressions of energy and entropy of the particle are obtained for the irreversible process. Keywords: Quantum particle at a finite temperature, Thermodynamics of a single quantum particle PACS: 05.30.-d, 02.70.Rr 1 Quantum mechanics is the theoretical framework that describes phenomena on the microscopic level and is exact at zero temperature. The fundamental statistical character in quantum mechanics, due to the Heisenberg uncertainty relation, is unrelated to temperature. On the other hand, temperature is generally believed to have no microscopic meaning and can only be conceived at the macroscopic level. For instance, one can define the energy of a single quantum particle, but one can not ascribe a temperature to it. However, it is physically meaningful to place a single quantum particle in a box or let it move in a space where temperature is well-defined. This raises the well-known question: How a single quantum particle feels the temperature and what is the consequence? The question is particular important and interesting, since experimental techniques in recent years have improved to such an extent that direct measurement of electron dynamics is possible.1,2,3 It should also closely related to the question on the applicability of the thermodynamics to small systems on the nanometer scale.4 We present here a model to study the behavior of a structureless quantum particle moving freely in a space at a nonzero temperature. -
Zero-Point Energy of Ultracold Atoms
Zero-point energy of ultracold atoms Luca Salasnich1,2 and Flavio Toigo1 1Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`adi Padova, via Marzolo 8, 35131 Padova, Italy 2CNR-INO, via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy Abstract We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regular- ization approaches: dimensional regularization, momentum-cutoff regular- ization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equa- tion of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS- BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regu- larization gives remarkable analytical results in the BEC regime of compos- ite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultra- cold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures. -
Discrete Variable Representations and Sudden Models in Quantum
Volume 89. number 6 CHLMICAL PHYSICS LEITERS 9 July 1981 DISCRETEVARlABLE REPRESENTATIONS AND SUDDEN MODELS IN QUANTUM SCATTERING THEORY * J.V. LILL, G.A. PARKER * and J.C. LIGHT l7re JarrresFranc/t insrihrre and The Depwrmcnr ofC7temtsrry. Tire llm~crsrry of Chrcago. Otrcago. l7lrrrors60637. USA Received 26 September 1981;m fin11 form 29 May 1982 An c\act fOrmhSm In which rhe scarrcnng problem may be descnbcd by smsor coupled cqumons hbclcd CIIIW bb bans iuncltons or quadrature pomts ISpresented USCof each frame and the srnrplyculuatcd unitary wmsformatlon which connects them resulis III an cfliclcnt procedure ror pcrrormrnpqu~nrum scxrcrrn~ ca~cubr~ons TWO ~ppro~mac~~~ arc compxcd wrh ihe IOS. 1. Introduction “ergenvalue-like” expressions, rcspcctnely. In each case the potential is represented by the potcntud Quantum-mechamcal scattering calculations are function Itself evahrated at a set of pomts. most often performed in the close-coupled representa- Whjle these models have been shown to be cffcc- tion (CCR) in which the internal degrees of freedom tive III many problems,there are numerousambiguities are expanded in an appropnate set of basis functions in their apphcation,especially wtth regardto the resulting in a set of coupled diiierentral equations UI choice of constants. Further, some models possess the scattering distance R [ 1,2] _The method is exact formal difficulties such as loss of time reversal sym- IO w&in a truncation error and convergence is ob- metry, non-physical coupling, and non-conservation tained by increasing the size of the basis and hence the of energy and momentum [ 1S-191. In fact, it has number of coupled equations (NJ While considerable never been demonstrated that sudden models fit into progress has been madein the developmentof efficient any exactframework for solutionof the scattering algonthmsfor the solunonof theseequations [3-71, problem. -
The Heisenberg Uncertainty Principle*
OpenStax-CNX module: m58578 1 The Heisenberg Uncertainty Principle* OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to: • Describe the physical meaning of the position-momentum uncertainty relation • Explain the origins of the uncertainty principle in quantum theory • Describe the physical meaning of the energy-time uncertainty relation Heisenberg's uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately. 1 Momentum and Position To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x- direction. The particle moves with a constant velocity u and momentum p = mu. According to de Broglie's relations, p = }k and E = }!. As discussed in the previous section, the wave function for this particle is given by −i(! t−k x) −i ! t i k x k (x; t) = A [cos (! t − k x) − i sin (! t − k x)] = Ae = Ae e (1) 2 2 and the probability density j k (x; t) j = A is uniform and independent of time. The particle is equally likely to be found anywhere along the x-axis but has denite values of wavelength and wave number, and therefore momentum. -
(2021) Transmon in a Semi-Infinite High-Impedance Transmission Line
PHYSICAL REVIEW RESEARCH 3, 023003 (2021) Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations E. Wiegand ,1,* B. Rousseaux ,2 and G. Johansson 1 1Applied Quantum Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden 2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France (Received 8 December 2020; accepted 11 March 2021; published 1 April 2021) In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom’s transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes. DOI: 10.1103/PhysRevResearch.3.023003 I. INTRODUCTION [43]. Furthermore, high-impedance resonators make it pos- sible for light-matter interaction to reach strong-coupling In the past two decades, circuit quantum electrodynamics regimes due to strong coupling to vacuum fluctuations [44]. (circuit QED) has become a field of growing interest for quan- In this article, we investigate the spontaneous emission tum information processing and also to realize new regimes of a transmon [45] capacitively coupled to a 1D TL that is in quantum optics [1–11]. -
Class 6: the Free Particle
Class 6: The free particle A free particle is one on which no forces act, i.e. the potential energy can be taken to be zero everywhere. The time independent Schrödinger equation for the free particle is ℏ2d 2 ψ − = Eψ . (6.1) 2m dx 2 Since the potential is zero everywhere, physically meaningful solutions exist only for E ≥ 0. For each value of E > 0, there are two linearly independent solutions ψ ( x) = e ±ikx , (6.2) where 2mE k = . (6.3) ℏ Putting in the time dependence, the solution for energy E is Ψ( x, t) = Aei( kx−ω t) + Be i( − kx − ω t ) , (6.4) where A and B are complex constants, and Eℏ k 2 ω = = . (6.5) ℏ 2m The first term on the right hand side of equation (6.4) describes a wave moving in the direction of x increasing, and the second term describes a wave moving in the opposite direction. By applying the momentum operator to each of the travelling wave functions, we see that they have momenta p= ℏ k and p= − ℏ k , which is consistent with the de Broglie relation. So far we have taken k to be positive. Both waves can be encompassed by the same expression if we allow k to take negative values, Ψ( x, t) = Ae i( kx−ω t ) . (6.6) From the dispersion relation in equation (6.5), we see that the phase velocity of the waves is ω ℏk v = = , (6.7) p k2 m which differs from the classical particle velocity, 1 pℏ k v = = , (6.8) c m m by a factor of 2. -
Problem: Evolution of a Free Gaussian Wavepacket Consider a Free Particle
Problem: Evolution of a free Gaussian wavepacket Consider a free particle which is described at t = 0 by the normalized Gaussian wave function µ ¶1=4 2a 2 ª(x; 0) = e¡ax : ¼ The normalization factor is easy to obtain. We wish to ¯nd its time evolution. How does one do this ? Remember the recipe in quantum mechanics. We expand the given wave func- tion in terms of the energy eigenfunctions and we know how individual energy eigenfunctions evolve. We then reconstruct the wave function at a later time t by superposing the parts with appropriate phase factors. For a free particle H = p2=(2m) and therefore, momentum eigenfunctions are also energy eigenfunctions. So it is the mathematics of Fourier transforms! It is straightforward to ¯nd ©(k; 0) the Fourier transform of ª(x; 0): Z 1 dk ª(x; 0) = p ©(k; 0) eikx : ¡1 2¼ Recall that the Fourier transform of a Gaussian is a Gaussian. Z 1 dx Á(k) ´ ©(k; 0) = p ª(x; 0) e¡ikx (1.1) ¡1 2¼ µ ¶ µ ¶ 1=4 Z 1 1=4 2 1 2a ¡ikx ¡ax2 1 ¡ k = p dx e e = e 4a (1.2) 2¼ ¼ ¡1 2¼a What this says is that the Gaussian spatial wave function is a superposition of di®erent momenta with the probability of ¯nding the momentum between k1 and k1 + dk being pro- 2 portional to exp(¡k1=(2a)) dk. So the initial wave function is a superposition of di®erent plane waves with di®erent coef- ¯cients (usually called amplitudes). -
3 Scattering Theory
3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves. -
Chapter 3 Wave Properties of Particles
Chapter 3 Wave Properties of Particles Overview of Chapter 3 Einstein introduced us to the particle properties of waves in 1905 (photoelectric effect). Compton scattering of x-rays by electrons (which we skipped in Chapter 2) confirmed Einstein's theories. You ought to ask "Is there a converse?" Do particles have wave properties? De Broglie postulated wave properties of particles in his thesis in 1924, based partly on the idea that if waves can behave like particles, then particles should be able to behave like waves. Werner Heisenberg and a little later Erwin Schrödinger developed theories based on the wave properties of particles. In 1927, Davisson and Germer confirmed the wave properties of particles by diffracting electrons from a nickel single crystal. 3.1 de Broglie Waves Recall that a photon has energy E=hf, momentum p=hf/c=h/, and a wavelength =h/p. De Broglie postulated that these equations also apply to particles. In particular, a particle of mass m moving with velocity v has a de Broglie wavelength of h λ = . mv where m is the relativistic mass m m = 0 . 1-v22/ c In other words, it may be necessary to use the relativistic momentum in =h/mv=h/p. In order for us to observe a particle's wave properties, the de Broglie wavelength must be comparable to something the particle interacts with; e.g. the spacing of a slit or a double slit, or the spacing between periodic arrays of atoms in crystals. The example on page 92 shows how it is "appropriate" to describe an electron in an atom by its wavelength, but not a golf ball in flight. -
Informal Introduction to QM: Free Particle
Chapter 2 Informal Introduction to QM: Free Particle Remember that in case of light, the probability of nding a photon at a location is given by the square of the square of electric eld at that point. And if there are no sources present in the region, the components of the electric eld are governed by the wave equation (1D case only) ∂2u 1 ∂2u − =0 (2.1) ∂x2 c2 ∂t2 Note the features of the solutions of this dierential equation: 1. The simplest solutions are harmonic, that is u ∼ exp [i (kx − ωt)] where ω = c |k|. This function represents the probability amplitude of photons with energy ω and momentum k. 2. Superposition principle holds, that is if u1 = exp [i (k1x − ω1t)] and u2 = exp [i (k2x − ω2t)] are two solutions of equation 2.1 then c1u1 + c2u2 is also a solution of the equation 2.1. 3. A general solution of the equation 2.1 is given by ˆ ∞ u = A(k) exp [i (kx − ωt)] dk. −∞ Now, by analogy, the rules for matter particles may be found. The functions representing matter waves will be called wave functions. £ First, the wave function ψ(x, t)=A exp [i(px − Et)/] 8 represents a particle with momentum p and energy E = p2/2m. Then, the probability density function P (x, t) for nding the particle at x at time t is given by P (x, t)=|ψ(x, t)|2 = |A|2 . Note that the probability distribution function is independent of both x and t. £ Assume that superposition of the waves hold. -
Path Integral in Quantum Field Theory Alexander Belyaev (Course Based on Lectures by Steven King) Contents
Path Integral in Quantum Field Theory Alexander Belyaev (course based on Lectures by Steven King) Contents 1 Preliminaries 5 1.1 Review of Classical Mechanics of Finite System . 5 1.2 Review of Non-Relativistic Quantum Mechanics . 7 1.3 Relativistic Quantum Mechanics . 14 1.3.1 Relativistic Conventions and Notation . 14 1.3.2 TheKlein-GordonEquation . 15 1.4 ProblemsSet1 ........................... 18 2 The Klein-Gordon Field 19 2.1 Introduction............................. 19 2.2 ClassicalScalarFieldTheory . 20 2.3 QuantumScalarFieldTheory . 28 2.4 ProblemsSet2 ........................... 35 3 Interacting Klein-Gordon Fields 37 3.1 Introduction............................. 37 3.2 PerturbationandScatteringTheory. 37 3.3 TheInteractionHamiltonian. 43 3.4 Example: K π+π− ....................... 45 S → 3.5 Wick’s Theorem, Feynman Propagator, Feynman Diagrams . .. 47 3.6 TheLSZReductionFormula. 52 3.7 ProblemsSet3 ........................... 58 4 Transition Rates and Cross-Sections 61 4.1 TransitionRates .......................... 61 4.2 TheNumberofFinalStates . 63 4.3 Lorentz Invariant Phase Space (LIPS) . 63 4.4 CrossSections............................ 64 4.5 Two-bodyScattering . 65 4.6 DecayRates............................. 66 4.7 OpticalTheorem .......................... 66 4.8 ProblemsSet4 ........................... 68 1 2 CONTENTS 5 Path Integrals in Quantum Mechanics 69 5.1 Introduction............................. 69 5.2 The Point to Point Transition Amplitude . 70 5.3 ImaginaryTime........................... 74 5.4 Transition Amplitudes With an External Driving Force . ... 77 5.5 Expectation Values of Heisenberg Position Operators . .... 81 5.6 Appendix .............................. 83 5.6.1 GaussianIntegration . 83 5.6.2 Functionals ......................... 85 5.7 ProblemsSet5 ........................... 87 6 Path Integral Quantisation of the Klein-Gordon Field 89 6.1 Introduction............................. 89 6.2 TheFeynmanPropagator(again) . 91 6.3 Green’s Functions in Free Field Theory .