Universidad Carlos Iii De Madrid Signal Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EVALUATION of HIDDEN MARKOV MODEL for MALWARE BEHAVIORAL CLASSIFICATION By
EVALUATION OF HIDDEN MARKOV MODEL FOR MALWARE BEHAVIORAL CLASSIFICATION By Mohammad Imran A research thesis submitted to the Department of Computer Science, Capital University of Science & Technology, Islamabad in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER SCIENCE CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY ISLAMABAD October 2016 Copyright© 2016 by Mr. Mohammad Imran All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the permission from the author. To my parents and family Contents List of Figures iv List of Tablesv Abbreviations vi Publications vii Acknowledgements viii Abstractx 1 Introduction1 1.1 What is malware?............................1 1.2 Types of malware............................3 1.2.1 Virus...............................3 1.2.2 Worm..............................3 1.2.3 Trojan horse...........................3 1.2.4 Rootkit.............................4 1.2.5 Spyware.............................4 1.2.6 Adware.............................4 1.2.7 Bot................................4 1.3 Malware attack vectors.........................5 1.3.1 Use of vulnerabilities......................5 1.3.2 Drive-by downloads.......................5 1.3.3 Social engineering........................5 1.4 Combating malware: Malware analysis................5 1.4.1 Static analysis..........................6 1.4.2 Dynamic analysis........................9 1.4.3 Hybrid analysis......................... 12 1.5 Combating malware: Malware detection and classification...... 12 1.6 Observations from the literature.................... 13 1.7 Problem statement........................... 15 1.8 Motivation................................ 15 1.8.1 Why malware analysis?..................... 16 1.8.2 Why Hidden Markov Model?................ -
A Case Study in DNS Poisoning
A wrinkle in time: A case study in DNS poisoning Harel Berger Amit Z. Dvir Moti Geva Abstract—The Domain Name System (DNS) provides a trans- lation between readable domain names and IP addresses. The DNS is a key infrastructure component of the Internet and a prime target for a variety of attacks. One of the most significant threat to the DNS’s wellbeing is a DNS poisoning attack, in which the DNS responses are maliciously replaced, or poisoned, by an attacker. To identify this kind of attack, we start by an analysis of different kinds of response times. We present an analysis of typical and atypical response times, while differentiating between the different levels of DNS servers’ response times, from root servers down to internal caching servers. We successfully identify empirical DNS poisoning attacks based on a novel method for DNS response timing analysis. We then present a system we developed to validate our technique that does not require any changes to the DNS protocol or any existing network equipment. Our validation system tested data from different architectures including LAN and cloud environments and real data from an Internet Service Provider (ISP). Our method and system differ from most other DNS poisoning detection methods and achieved high detection rates exceeding 99%. These findings suggest that when used in conjunction with other methods, they can considerably enhance the accuracy of these methods. I. INTRODUCTION Fig. 1. DNS hierarchy example The Domain Name System (DNS) [1], [2] is one of the best known protocols in the Internet. Its main function is to trans- late human-readable domain names into their corresponding following steps. -
Éric FREYSSINET Lutte Contre Les Botnets
THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Éric FREYSSINET Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Lutte contre les botnets : analyse et stratégie Présentée et soutenue publiquement le 12 novembre 2015 devant le jury composé de : Rapporteurs : M. Jean-Yves Marion Professeur, Université de Lorraine M. Ludovic Mé Enseignant-chercheur, CentraleSupélec Directeurs : M. David Naccache Professeur, École normale supérieure de thèse M. Matthieu Latapy Directeur de recherche, UPMC, LIP6 Examinateurs : Mme Clémence Magnien Directrice de recherche, UPMC, LIP6 Mme Solange Ghernaouti-Hélie Professeure, Université de Lausanne M. Vincent Nicomette Professeur, INSA Toulouse Cette thèse est dédiée à M. Celui qui n’empêche pas un crime alors qu’il le pourrait s’en rend complice. — Sénèque Remerciements Je tiens à remercier mes deux directeurs de thèse. David Naccache, officier de réserve de la gendarmerie, contribue au développement de la recherche au sein de notre institution en poussant des personnels jeunes et un peu moins jeunes à poursuivre leur passion dans le cadre académique qui s’impose. Matthieu Latapy, du LIP6, avec qui nous avions pu échanger autour d’une thèse qu’il encadrait dans le domaine difficile des atteintes aux mineurs sur Internet et qui a accepté de m’accueillir dans son équipe. Je voudrais remercier aussi, l’ensemble de l’équipe Réseaux Complexes du LIP6 et sa responsable d’équipe actuelle, Clémence Magnien, qui m’ont accueilli à bras ouverts, accom- pagné à chaque étape et dont j’ai pu découvrir les thématiques et les méthodes de travail au fil des rencontres et des discussions. -
A Study on Advanced Botnets Detection in Various Computing Systems Using Machine Learning Techniques
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal A STUDY ON ADVANCED BOTNETS DETECTION IN VARIOUS COMPUTING SYSTEMS USING MACHINE LEARNING TECHNIQUES K. Vamshi Krishna Assistant Professor, Department of Computer Science and Engineering, Narasaraopet Engineering College, Narasaraopet, Guntur, India Article DOI: https://doi.org/10.36713/epra5902 ABSTRACT Due to the rapid growth and use of Emerging technologies such as Artificial Intelligence, Machine Learning and Internet of Things, Information industry became so popular, meanwhile these Emerging technologies have brought lot of impact on human lives and internet network equipment has increased. This increment of internet network equipment may bring some serious security issues. A botnet is a number of Internet-connected devices, each of which is running one or more bots.The main aim of botnet is to infect connected devices and use their resource for automated tasks and generally they remain hidden. Botnets can be used to perform Distributed Denial-of-Service (DDoS) attacks, steal data, send spam, and allow the attacker to access the device and its connection. In this paper we are going to address the advanced Botnet detection techniques using Machine Learning. Traditional botnet detection uses manual analysis and blacklist, and the efficiency is very low. Applying machine learning to batch automatic detection of botnets can greatly improve the efficiency of detection. Using machine learning to detect botnets, we need to collect network traffic and extract traffic characteristics, and then use X-Means, SVM algorithm to detect botnets. -
Open Sisko Final__Thesis.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF INFORMATION SCIENCE AND TECHNOLOGY THE WAKE OF CYBER-WAREFARE STUDENT NAME JACOB SISKO SPRING 2015 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Security and Risk Analysis with honors in Security and Risk Analysis Reviewed and approved* by the following: Gerald Santoro Senior Lecturer Professor Information Sciences and Technology Thesis Supervisor Edward Glantz Senior Lecturer Professor Information Sciences and Technology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The purpose of my thesis paper is to explain the significance and inter-relationship of cyber-crime and cyber-warfare. To give my reader a full understanding of the issue, I will begin by explaining the history of the Internet, give a definition of both cyber-crime and cyber-warfare, and then explain how they have impacted the Internet. I will also give examples of a few Chinese hacker groups, and what kind of attacks they have successfully carried out. Then I will talk about how recent attacks have become more sophisticated which are capable of causing more damage. I would also like to discuss how the cyber-warfare has impacted Chinese-US relations, and how it has an impact on the economic ties. Because of the currently capability and potential threat, I will explain why cyber-crime and cyber-warfare are so important to monitor because of the potential damage current and future attacks can cause. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... iii Chapter 1 Introduction ................................................................................................. 1 History of the Internet ...................................................................................................... 1 Chapter 2 Cyber-crime – Functions and Capabilities ................................................. -
Definition of Bot in Computer Terms
Definition Of Bot In Computer Terms Crippen.Hearsay BenjieEmil crease Russianising gratifyingly uppishly. as kutcha Kin isHy ironfisted: blue-pencilled she ingenerates her frog wholesale boiling and crazily. wadsets her What bots of bot definition in computer terms chatbot interacts with Refers to a connection between networked computers in below the services of one computer the server are requested by trout other the client Information. The definitions of software that in many users to refer to be used to learn. Is Apex legends Dead 2020? Bot Meaning Best 24 Definitions of Bot YourDictionary. Frequently used in computing definitions of bots designed specifically for words usually protect your neighborhood café and conferencing solutions to. 5 Reasons Why Your Chatbot Needs Natural Language. Evaluating your computer term virus indicates that of computing definitions include in. You letter take pictures with these will send form via the mobile networks to other mobile devices with exactly same technology or to email addresses via the Internet. Using the feed, depending on the game is not contain the impact how web hosting, time by the existing data or valley powers bots? Build and manage Einstein Bots to ease my load on both service agents. This witness the beef of rendered slots googletag. What kinds of repetitive tasks can corn handle? Glossary Archive Malwarebytes Labs Malwarebytes Labs. Contrast to bots in computing definitions above methods that a definition is the tech by coders and access. Often, is kernel type of backdoor that gives an attacker similar remote repair, when the AI is unsure or wants clarification. Problem seems to be cut on network shit on devices. -
An Algorithm for Anomaly-Based Botnet Detection
An Algorithm for Anomaly-based Botnet Detection James R. Binkley Suresh Singh Computer Science Dept. Computer Science Dept. Portland State University Portland State University Portland, OR, USA Portland, OR, USA [email protected] [email protected] Abstract individual host in the IP channel was a scanner. We then sort the IRC channels by scanning count, with the top We present an anomaly-based algorithm for detecting suspect channels labeled as possible evil channels. This IRC-based botnet meshes. The algorithm combines an algorithm is not signature-based in any way. It does not IRC mesh detection component with a TCP scan detec- rely on ports or known botnet command strings. As a tion heuristic called the TCP work weight. The IRC com- result, we are immune to zero-day problems. Our algo- ponent produces two tuples, one for determining the IRC rithm does assume that IRC is cleartext and that attacks mesh based on IP channel names, and a sub-tuple which are being made with the botnet mesh. collects statistics (including the TCP work weight) on in- dividual IRC hosts in channels. We sort the channels by the number of scanners producing a sorted list of poten- 2 IRC Botnet Detection Algorithm tial botnets. This algorithm has been deployed in PSU’s DMZ for over a year and has proven effective in reducing Our architecture relies on the observation that IRC hosts the number of botnet clients. are grouped into channels by a channel name (for exam- ple, ”F7”, or ”ubuntu” might be channel names), and that an evil channel is an IRC channel with a majority of hosts 1 Introduction performing TCP SYN scanning. -
Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide -
Supervised Machine Learning Bot Detection Techniques to Identify
SMU Data Science Review Volume 1 | Number 2 Article 5 2018 Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip George Efthimion Southern Methodist University, [email protected] Scott aP yne Southern Methodist University, [email protected] Nicholas Proferes University of Kentucky, [email protected] Follow this and additional works at: https://scholar.smu.edu/datasciencereview Part of the Theory and Algorithms Commons Recommended Citation Efthimion, hiP llip George; Payne, Scott; and Proferes, Nicholas (2018) "Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots," SMU Data Science Review: Vol. 1 : No. 2 , Article 5. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss2/5 This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip G. Efthimion1, Scott Payne1, Nick Proferes2 1Master of Science in Data Science, Southern Methodist University 6425 Boaz Lane, Dallas, TX 75205 {pefthimion, mspayne}@smu.edu [email protected] Abstract. In this paper, we present novel bot detection algorithms to identify Twitter bot accounts and to determine their prevalence in current online discourse. On social media, bots are ubiquitous. Bot accounts are problematic because they can manipulate information, spread misinformation, and promote unverified information, which can adversely affect public opinion on various topics, such as product sales and political campaigns. -
Cybercrime Hits the Unexpected
TrendLabsSM 1Q 2014 Security Roundup Cybercrime Hits the Unexpected Bitcoin- and PoS-System-Related Attacks Trouble Users Distributed by: TREND MICRO | TrendLabs 1Q 2014 Security Roundup TREND MICRO | TrendLabs 1Q 2014 Security Roundup Contents It gives me immense pleasure to share this report, developed by Trend Micro and distributed by ITU based on our fruitful partnership. This report is part of ITU’s overall support to its 193 Member States within the framework of the Global Cybersecurity Agenda. This is clear result of our partnership with Private Sector in our effort to tackle this growing Global phenomenon. 1 | Cybercrime and the Cybercriminal Underground These efforts are aimed at equipping Member States with information on the latest cybersecurity threats and corresponding counter-measures, and eventually contribute to the creation of a safe and secure cyberspace for consumers, businesses and youth everywhere. This Trend Micro quarterly report underlines the existing and emerging malicious cyber activities observed during the first quarter of 2014. Some highlights of this 10 | Mobile Threat Landscape report: • Cybercriminals are continuing to innovate and create new ways to commit digital crimes. Crypto-currency exchanges and wallets are being compromised for the purpose of theft. In addition, online banking malware are being enhanced with new technologies to exact the maximum damage. 15 | Targeted Attack Campaigns • With the exponential growth in the mobile industry, cyber-criminals are and Cyber Attacks increasingly targeting mobile devices. There is a proliferation of maliciously tampered and re-packaged apps that circumvent the security firewalls in mobile devices. • We are also witnessing cases of attacks directly aimed at organizations that rely on specific Point of Sales (Pos) systems features. -
The Malware Book 2016
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305469492 Handbook of Malware 2016 - A Wikipedia Book Book · July 2016 DOI: 10.13140/RG.2.1.5039.5122 CITATIONS READS 0 13,014 2 authors, including: Reiner Creutzburg Brandenburg University of Applied Sciences 489 PUBLICATIONS 472 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: NDT CE – Assessment of structures || ZfPBau – ZfPStatik View project 14. Nachwuchswissenschaftlerkonferenz Ost- und Mitteldeutscher Fachhochschulen (NWK 14) View project All content following this page was uploaded by Reiner Creutzburg on 20 July 2016. The user has requested enhancement of the downloaded file. Handbook of Malware 2016 A Wikipedia Book By Wikipedians Edited by: Reiner Creutzburg Technische Hochschule Brandenburg Fachbereich Informatik und Medien PF 2132 D-14737 Brandenburg Germany Email: [email protected] Contents 1 Malware - Introduction 1 1.1 Malware .................................................. 1 1.1.1 Purposes ............................................. 1 1.1.2 Proliferation ........................................... 2 1.1.3 Infectious malware: viruses and worms ............................. 3 1.1.4 Concealment: Viruses, trojan horses, rootkits, backdoors and evasion .............. 3 1.1.5 Vulnerability to malware ..................................... 4 1.1.6 Anti-malware strategies ..................................... 5 1.1.7 Grayware ............................................ -
Design of a Honeypot Based Network Defense System To
DESIGN OF A HONEYPOT BASED NETWORK DEFENSE SYSTEM TO COUNTERATTACK MALWARES AND BOTNET A FRAMEWORK DESIGN 1Suhel Ahamed 1Assistant Professor Department of Information Technology, Institute of Technology Guru Ghasidas Vishwavidyalya (Central University)Bilaspur, India Email:[email protected] Abstract— Today the world requires secure David Chess, coined the term in the wild to and trust based computing, wherein describe computer virus that was encountered Malwares (Virus, Worms, Trojans, etc.) and on public network and production systems [4]). intrusions are continues threat to trust based Malware writing also evolved through new computing. Nowadays script kiddies with technologies from simple file infectors or less knowledge are more malicious then the cloner to polymorphic, metamorphic, and retro expert malware writer. They cause the virus. Several malwares Use packing, outbreak of several digital disasters without obfuscation to avoid detection; whereas control. Also the botnet plays important role rootkits, function hooking is used to gain to propagate malwares and support control of the machine and to convert it to Bots. anonymous intrusion. The proposed solution Where polymorphic virus use mutation engine targets these script kiddies by using social to generate a new variant or mutant of the virus engineering on a honey pot based system. to avoid detection; retro type virus and The proposed system counterattacks the malwares use the techniques to destruct the remote machines on botnet by a benevolent computer / network defense system and looking bait to gain control and to break the antivirus programs. propagation chain up to a certain extent. In The malware writers and intruders also use this paper a framework design is presented Social Engineering to gain access and for the proposed solution.