Supervised Machine Learning Bot Detection Techniques to Identify
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical and Legal Approaches to Unsolicited Electronic Mail, 35 USFL Rev
UIC School of Law UIC Law Open Access Repository UIC Law Open Access Faculty Scholarship 1-1-2001 Technical and Legal Approaches to Unsolicited Electronic Mail, 35 U.S.F. L. Rev. 325 (2001) David E. Sorkin John Marshall Law School, [email protected] Follow this and additional works at: https://repository.law.uic.edu/facpubs Part of the Computer Law Commons, Internet Law Commons, Marketing Law Commons, and the Privacy Law Commons Recommended Citation David E. Sorkin, Technical and Legal Approaches to Unsolicited Electronic Mail, 35 U.S.F. L. Rev. 325 (2001). https://repository.law.uic.edu/facpubs/160 This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in UIC Law Open Access Faculty Scholarship by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. Technical and Legal Approaches to Unsolicited Electronic Mailt By DAVID E. SORKIN* "Spamming" is truly the scourge of the Information Age. This problem has become so widespread that it has begun to burden our information infrastructure. Entire new networks have had to be constructed to deal with it, when resources would be far better spent on educational or commercial needs. United States Senator Conrad Burns (R-MT)1 UNSOLICITED ELECTRONIC MAIL, also called "spain," 2 causes or contributes to a wide variety of problems for network administrators, t Copyright © 2000 David E. Sorkin. * Assistant Professor of Law, Center for Information Technology and Privacy Law, The John Marshall Law School; Visiting Scholar (1999-2000), Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University. -
Arxiv:1805.10105V1 [Cs.SI] 25 May 2018
Effects of Social Bots in the Iran-Debate on Twitter Andree Thieltges, Orestis Papakyriakopoulos, Juan Carlos Medina Serrano, Simon Hegelich Bavarian School of Public Policy Technical University of Munich Abstract Ahmadinejad caused nationwide unrests and protests. As these protests grew, the Iranian government shut down for- 2018 started with massive protests in Iran, bringing back the eign news coverage and restricted the use of cell phones, impressions of the so called “Arab Spring” and it’s revolution- text-messaging and internet access. Nevertheless, Twitter ary impact for the Maghreb states, Syria and Egypt. Many reports and scientific examinations considered online social and Facebook “became vital tools to relay news and infor- mation on anti-government protest to the people inside and networks (OSN’s) such as Twitter or Facebook to play a criti- 1 cal role in the opinion making of people behind those protests. outside Iran” . While Ayatollah Khameini characterized the Beside that, there is also evidence for directed manipulation influence of Twitter as “deviant” and inappropriate on Ira- of opinion with the help of social bots and fake accounts. nian domestic affairs2, most of the foreign news coverage So, it is obvious to ask, if there is an attempt to manipulate hailed Twitter to be “a new and influential medium for social the opinion-making process related to the Iranian protest in movements and international politics” (Burns and Eltham OSN by employing social bots, and how such manipulations 2009). Beside that, there was already a critical view upon will affect the discourse as a whole. Based on a sample of the influence of OSN’s as “tools” to express political opin- ca. -
EVALUATION of HIDDEN MARKOV MODEL for MALWARE BEHAVIORAL CLASSIFICATION By
EVALUATION OF HIDDEN MARKOV MODEL FOR MALWARE BEHAVIORAL CLASSIFICATION By Mohammad Imran A research thesis submitted to the Department of Computer Science, Capital University of Science & Technology, Islamabad in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER SCIENCE CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY ISLAMABAD October 2016 Copyright© 2016 by Mr. Mohammad Imran All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the permission from the author. To my parents and family Contents List of Figures iv List of Tablesv Abbreviations vi Publications vii Acknowledgements viii Abstractx 1 Introduction1 1.1 What is malware?............................1 1.2 Types of malware............................3 1.2.1 Virus...............................3 1.2.2 Worm..............................3 1.2.3 Trojan horse...........................3 1.2.4 Rootkit.............................4 1.2.5 Spyware.............................4 1.2.6 Adware.............................4 1.2.7 Bot................................4 1.3 Malware attack vectors.........................5 1.3.1 Use of vulnerabilities......................5 1.3.2 Drive-by downloads.......................5 1.3.3 Social engineering........................5 1.4 Combating malware: Malware analysis................5 1.4.1 Static analysis..........................6 1.4.2 Dynamic analysis........................9 1.4.3 Hybrid analysis......................... 12 1.5 Combating malware: Malware detection and classification...... 12 1.6 Observations from the literature.................... 13 1.7 Problem statement........................... 15 1.8 Motivation................................ 15 1.8.1 Why malware analysis?..................... 16 1.8.2 Why Hidden Markov Model?................ -
A Case Study in DNS Poisoning
A wrinkle in time: A case study in DNS poisoning Harel Berger Amit Z. Dvir Moti Geva Abstract—The Domain Name System (DNS) provides a trans- lation between readable domain names and IP addresses. The DNS is a key infrastructure component of the Internet and a prime target for a variety of attacks. One of the most significant threat to the DNS’s wellbeing is a DNS poisoning attack, in which the DNS responses are maliciously replaced, or poisoned, by an attacker. To identify this kind of attack, we start by an analysis of different kinds of response times. We present an analysis of typical and atypical response times, while differentiating between the different levels of DNS servers’ response times, from root servers down to internal caching servers. We successfully identify empirical DNS poisoning attacks based on a novel method for DNS response timing analysis. We then present a system we developed to validate our technique that does not require any changes to the DNS protocol or any existing network equipment. Our validation system tested data from different architectures including LAN and cloud environments and real data from an Internet Service Provider (ISP). Our method and system differ from most other DNS poisoning detection methods and achieved high detection rates exceeding 99%. These findings suggest that when used in conjunction with other methods, they can considerably enhance the accuracy of these methods. I. INTRODUCTION Fig. 1. DNS hierarchy example The Domain Name System (DNS) [1], [2] is one of the best known protocols in the Internet. Its main function is to trans- late human-readable domain names into their corresponding following steps. -
Predicting the Political Alignment of Twitter Users
2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing Predicting the Political Alignment of Twitter Users Michael D. Conover, Bruno Gonc¸alves, Jacob Ratkiewicz, Alessandro Flammini and Filippo Menczer Center for Complex Networks and Systems Research School of Informatics and Computing Indiana University, Bloomington Abstract—The widespread adoption of social media for po- Of particular interest to political campaigns is how the scale litical communication creates unprecedented opportunities to of the Twitter platform creates the potential to monitor political monitor the opinions of large numbers of politically active opinions in real time. For example, imagine a campaign individuals in real time. However, without a way to distinguish between users of opposing political alignments, conflicting signals interested in tracking voter opinion relating to a specific piece at the individual level may, in the aggregate, obscure partisan of legislation. One could easily envision applying sentiment differences in opinion that are important to political strategy. analysis tools to the set of tweets containing keyword relating In this article we describe several methods for predicting the to the bill. However, without the ability to distinguish between political alignment of Twitter users based on the content and users with different political affiliations, aggregation over structure of their political communication in the run-up to the 2010 U.S. midterm elections. Using a data set of 1,000 manually- conflicting partisan signals would likely obscure the nuances annotated individuals, we find that a support vector machine most relevant to political strategy. (SVM) trained on hashtag metadata outperforms an SVM trained Here we explore several different approaches to the problem on the full text of users’ tweets, yielding predictions of political of discriminating between users with left- and right-leaning affiliations with 91% accuracy. -
Political Astroturfing Across the World
Political astroturfing across the world Franziska B. Keller∗ David Schochy Sebastian Stierz JungHwan Yang§ Paper prepared for the Harvard Disinformation Workshop Update 1 Introduction At the very latest since the Russian Internet Research Agency’s (IRA) intervention in the U.S. presidential election, scholars and the broader public have become wary of coordi- nated disinformation campaigns. These hidden activities aim to deteriorate the public’s trust in electoral institutions or the government’s legitimacy, and can exacerbate political polarization. But unfortunately, academic and public debates on the topic are haunted by conceptual ambiguities, and rely on few memorable examples, epitomized by the often cited “social bots” who are accused of having tried to influence public opinion in various contemporary political events. In this paper, we examine “political astroturfing,” a particular form of centrally co- ordinated disinformation campaigns in which participants pretend to be ordinary citizens acting independently (Kovic, Rauchfleisch, Sele, & Caspar, 2018). While the accounts as- sociated with a disinformation campaign may not necessarily spread incorrect information, they deceive the audience about the identity and motivation of the person manning the ac- count. And even though social bots have been in the focus of most academic research (Fer- rara, Varol, Davis, Menczer, & Flammini, 2016; Stella, Ferrara, & De Domenico, 2018), seemingly automated accounts make up only a small part – if any – of most astroturf- ing campaigns. For instigators of astroturfing, relying exclusively on social bots is not a promising strategy, as humans are good at detecting low-quality information (Pennycook & Rand, 2019). On the other hand, many bots detected by state-of-the-art social bot de- tection methods are not part of an astroturfing campaign, but unrelated non-political spam ∗Hong Kong University of Science and Technology yThe University of Manchester zGESIS – Leibniz Institute for the Social Sciences §University of Illinois at Urbana-Champaign 1 bots. -
Understanding Users' Perspectives of News Bots in the Age of Social Media
sustainability Article Utilizing Bots for Sustainable News Business: Understanding Users’ Perspectives of News Bots in the Age of Social Media Hyehyun Hong 1 and Hyun Jee Oh 2,* 1 Department of Advertising and Public Relations, Chung-Ang University, Seoul 06974, Korea; [email protected] 2 Department of Communication Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China * Correspondence: [email protected] Received: 15 July 2020; Accepted: 10 August 2020; Published: 12 August 2020 Abstract: The move of news audiences to social media has presented a major challenge for news organizations. How to adapt and adjust to this social media environment is an important issue for sustainable news business. News bots are one of the key technologies offered in the current media environment and are widely applied in news production, dissemination, and interaction with audiences. While benefits and concerns coexist about the application of bots in news organizations, the current study aimed to examine how social media users perceive news bots, the factors that affect their acceptance of bots in news organizations, and how this is related to their evaluation of social media news in general. An analysis of the US national survey dataset showed that self-efficacy (confidence in identifying content from a bot) was a successful predictor of news bot acceptance, which in turn resulted in a positive evaluation of social media news in general. In addition, an individual’s perceived prevalence of social media news from bots had an indirect effect on acceptance by increasing self-efficacy. The results are discussed with the aim of providing a better understanding of news audiences in the social media environment, and practical implications for the sustainable news business are suggested. -
Locating Spambots on the Internet
BOTMAGNIFIER: Locating Spambots on the Internet Gianluca Stringhinix, Thorsten Holzz, Brett Stone-Grossx, Christopher Kruegelx, and Giovanni Vignax xUniversity of California, Santa Barbara z Ruhr-University Bochum fgianluca,bstone,chris,[email protected] [email protected] Abstract the world-wide email traffic [20], and a lucrative busi- Unsolicited bulk email (spam) is used by cyber- ness has emerged around them [12]. The content of spam criminals to lure users into scams and to spread mal- emails lures users into scams, promises to sell cheap ware infections. Most of these unwanted messages are goods and pharmaceutical products, and spreads mali- sent by spam botnets, which are networks of compro- cious software by distributing links to websites that per- mised machines under the control of a single (malicious) form drive-by download attacks [24]. entity. Often, these botnets are rented out to particular Recent studies indicate that, nowadays, about 85% of groups to carry out spam campaigns, in which similar the overall spam traffic on the Internet is sent with the mail messages are sent to a large group of Internet users help of spamming botnets [20,36]. Botnets are networks in a short amount of time. Tracking the bot-infected hosts of compromised machines under the direction of a sin- that participate in spam campaigns, and attributing these gle entity, the so-called botmaster. While different bot- hosts to spam botnets that are active on the Internet, are nets serve different, nefarious goals, one important pur- challenging but important tasks. In particular, this infor- pose of botnets is the distribution of spam emails. -
A Study on Advanced Botnets Detection in Various Computing Systems Using Machine Learning Techniques
SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal A STUDY ON ADVANCED BOTNETS DETECTION IN VARIOUS COMPUTING SYSTEMS USING MACHINE LEARNING TECHNIQUES K. Vamshi Krishna Assistant Professor, Department of Computer Science and Engineering, Narasaraopet Engineering College, Narasaraopet, Guntur, India Article DOI: https://doi.org/10.36713/epra5902 ABSTRACT Due to the rapid growth and use of Emerging technologies such as Artificial Intelligence, Machine Learning and Internet of Things, Information industry became so popular, meanwhile these Emerging technologies have brought lot of impact on human lives and internet network equipment has increased. This increment of internet network equipment may bring some serious security issues. A botnet is a number of Internet-connected devices, each of which is running one or more bots.The main aim of botnet is to infect connected devices and use their resource for automated tasks and generally they remain hidden. Botnets can be used to perform Distributed Denial-of-Service (DDoS) attacks, steal data, send spam, and allow the attacker to access the device and its connection. In this paper we are going to address the advanced Botnet detection techniques using Machine Learning. Traditional botnet detection uses manual analysis and blacklist, and the efficiency is very low. Applying machine learning to batch automatic detection of botnets can greatly improve the efficiency of detection. Using machine learning to detect botnets, we need to collect network traffic and extract traffic characteristics, and then use X-Means, SVM algorithm to detect botnets. -
Open Sisko Final__Thesis.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF INFORMATION SCIENCE AND TECHNOLOGY THE WAKE OF CYBER-WAREFARE STUDENT NAME JACOB SISKO SPRING 2015 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Security and Risk Analysis with honors in Security and Risk Analysis Reviewed and approved* by the following: Gerald Santoro Senior Lecturer Professor Information Sciences and Technology Thesis Supervisor Edward Glantz Senior Lecturer Professor Information Sciences and Technology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The purpose of my thesis paper is to explain the significance and inter-relationship of cyber-crime and cyber-warfare. To give my reader a full understanding of the issue, I will begin by explaining the history of the Internet, give a definition of both cyber-crime and cyber-warfare, and then explain how they have impacted the Internet. I will also give examples of a few Chinese hacker groups, and what kind of attacks they have successfully carried out. Then I will talk about how recent attacks have become more sophisticated which are capable of causing more damage. I would also like to discuss how the cyber-warfare has impacted Chinese-US relations, and how it has an impact on the economic ties. Because of the currently capability and potential threat, I will explain why cyber-crime and cyber-warfare are so important to monitor because of the potential damage current and future attacks can cause. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... iii Chapter 1 Introduction ................................................................................................. 1 History of the Internet ...................................................................................................... 1 Chapter 2 Cyber-crime – Functions and Capabilities ................................................. -
Spambots: Creative Deception
PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications Spambots: Creative Deception Hayam Alamro Costas S. Iliopoulos Department of Informatics Department of Informatics King’s College London, UK King’s College London, UK Department of Information Systems email: costas.iliopoulos Princess Nourah bint Abdulrahman University @kcl.ac.uk Riyadh, KSA email: [email protected] Abstract—In this paper, we present our spambot overview on the intent of building mailing lists to send unsolicited or phishing creativity of the spammers, and the most important techniques emails. Furthermore, spammers can create fake accounts to that the spammer might use to deceive current spambot detection target specific websites or domain specific users and start send- tools to bypass detection. These techniques include performing a ing predefined designed actions which are known as scripts. series of malicious actions with variable time delays, repeating the Moreover, spammers can work on spreading malwares to steal same series of malicious actions multiple times, and interleaving other accounts or scan the web to obtain customers contact legitimate and malicious actions. In response, we define our problems to detect the aforementioned techniques in addition information to carry out credential stuffing attacks, which is to disguised and "don’t cares" actions. Our proposed algorithms mainly used to login to another unrelated service. In addition, to solve those problems are based on advanced data structures spambots can be designed to participate in deceiving users on that are able to detect malicious actions efficiently in linear time, online social networks through the spread of fake news, for and in an innovative way. -
A Visual Analytics Toolkit for Social Spambot Labeling
© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2019.2934266 VASSL: A Visual Analytics Toolkit for Social Spambot Labeling Mosab Khayat, Morteza Karimzadeh, Jieqiong Zhao, David S. Ebert, Fellow, IEEE G A H B C E I D F Fig. 1. The default layout of the front-end of VASSL: A) the timeline view, B) the dimensionality reduction view, C) the user/tweet detail views, D) & E) the topics view (clustering / words), F) the feature explorer view, G) the general control panel, H) the labeling panel, and I) the control panels for all the views (the opened control panel in the figure is for topics clustering view). Abstract—Social media platforms are filled with social spambots. Detecting these malicious accounts is essential, yet challenging, as they continually evolve to evade detection techniques. In this article, we present VASSL, a visual analytics system that assists in the process of detecting and labeling spambots. Our tool enhances the performance and scalability of manual labeling by providing multiple connected views and utilizing dimensionality reduction, sentiment analysis and topic modeling, enabling insights for the identification of spambots. The system allows users to select and analyze groups of accounts in an interactive manner, which enables the detection of spambots that may not be identified when examined individually. We present a user study to objectively evaluate the performance of VASSL users, as well as capturing subjective opinions about the usefulness and the ease of use of the tool.