NUMERICAL COMPUTATION of GALOIS GROUPS 1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

NUMERICAL COMPUTATION of GALOIS GROUPS 1. Introduction Draft, May 25, 2016 NUMERICAL COMPUTATION OF GALOIS GROUPS JONATHAN D. HAUENSTEIN, JOSE ISRAEL RODRIGUEZ, AND FRANK SOTTILE Abstract. The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. Computing monodromy permutations using numerical algebraic geometry gives information about the group, but can only determine it when it is the full symmetric group. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators while the other gives information on its structure as a permutation group. We illustrate these algorithms with examples using a Macaulay2 package we are developing that relies upon Bertini to perform monodromy computations. AMS Subject Classification 2010: 65H10, 65H20, 14Q15. 1. Introduction Galois groups, which are a pillar of number theory and arithmetic geometry, encode the structure of field extensions. For example, the Galois group of the cyclotomic extension of Q given by the polynomial x4 + x3 + x2 + x + 1 is the cyclic group of order four, and not the full symmetric group. A finite extension L=K, where K has transcendence degree n over C, corresponds to a branched cover f : V ! U of complex algebraic varieties of dimension n, with L the function field of V and K the function field of U. The Galois group of the Galois closure of L=K equals the monodromy group of the branched cover [14, 19]. When U is rational, f : V ! U may be realized as a family of polynomial systems rationally parame- terized by points of U. Applications of algebraic geometry and enumerative geometry are sources of such families. For these, internal structure such as numbers of real solutions and symmetry of the original problem are encoded in the Galois/monodromy group. Computing monodromy is a fundamental operation in numerical algebraic geometry. Com- puting monodromy permutations along randomly chosen loops in the base U was used in [24] to show that several Schubert problems had Galois/monodromy group the full symmetric group. Leaving aside the defect of that computation|the continuation (and hence the mon- odromy permutations) was not certified—this method only computes an increasing sequence of subgroups of the Galois group, and thus only determines the Galois group when it is the full symmetric group. In all other cases, this method lacks a stopping criterion. We offer two additional numerical methods to obtain certifiable information about Galois groups and investigate their efficacy. The first method is easiest to describe when U is a rational curve so that K = C(t), the field of rational functions. Then V is an algebraic curve C equipped with a dominant map f : C ! C whose fiber at t 2 C consists of solutions to a polynomial system that depends upon t. This is a degree k cover outside the branch Research of Hauenstein supported in part by NSF grant ACI-1460032, Sloan Research Fellowship, and Army Young Investigator Program (YIP). Research of Rodriguez supported in part by NSF grant DMS-1402545. Research of Sottile supported in part by NSF grant DMS-1501370. 1 2 J. D. HAUENSTEIN, J. I. RODRIGUEZ, AND F. SOTTILE locus B, which is a finite subset of C. The monodromy group of f : C ! C is generated by permutations coming from loops encircling each branch point. Our second method uses numerical irreducible decomposition of the s-fold fiber product to determine orbits of the monodromy group acting on s-tuples of distinct points in a fiber. When s = k−1, this computes the Galois group. The partial information obtained when s < k−1 may be sufficient to determine the Galois group. We illustrate these methods. The irreducible polynomial x4 − 4x2 + t over C(t) defines a curve C in Cx × Ct whose projectionp pC ! Ct is four-to-one for t 62 B = f0; 4g. The fiber above the point t = 3 is {− 3; −1; 1; 3g. Following these points along a loop in Ct based at t = 3 that encircles the branch point t = 0 gives thep 2-cycle (p−1; 1). A loop encircling the branch point t = 4 gives the product of 2-cycles, (− 3; −1)(1; 3). These permutations generate the Galois group, which is isomorphic to the dihedral group D4 and has order 8. x C y 1 t x 3 4 −1 Figure 1. Curve C over Ct and fiber of C ×Ct C over t = 3. The fiber product C ×Ct C consists of triples (x; y; t), where x and y lie in the fiber of C 4 2 4 2 above t. It is defined in Cx × Cy × Ct by the polynomials x − 4x + t and y − 4y + t. Since (x4 − 4x2 + t) − (y4 − 4y2 + t) = (x − y)(x + y)(x2 + y2 − 4) ; it has three components. One is the diagonal defined by x − y and x4 − 4x2 + t. The off- diagonal consists of two irreducible components, which implies that the action of the Galois 4 2 group G is not two-transitive. One component isp definedp by x + y and x − 4x + t. Its fiber over t = 3 consists of the four ordered pairs (± 3; ∓ 3) and (±1; ∓1), which is an orbit of G acting on orderedp p pairs of solutions. This implies that G acts imprimitively as it fixes the partition {− 3; 3g t {−1; 1g. Thus G ⊂ S4 contains no 3-cycle, so G ⊂ D4. The third 2 2 4 2 component is defined by x + y − 4 and x − 4x + t and its projection to Ct has degree eight. Thus G has an orbit of cardinality eight, which implies jGj ≥ 8, from which we can conclude that G is indeed the dihedral group D4. The systematic study of Galois groups of families of geometric problems and equations coming from applications is in its infancy. Nearly every case we know where the Galois group has been determined exhibits a striking dichotomy (e.g., [7, 14, 23, 24, 25, 26, 28, 34, 36]): either the group acts imprimitively, so that it fails to be 2-transitive, or it is at least (k−2)- transitive in that it contains the alternating group (but is expected to be the full symmetric group). The methods we develop here are being used [26] to further investigate Galois groups and we expect they will help to develop Galois groups as a tool to study geometric problems, including those that arise in applications. NUMERICAL COMPUTATION OF GALOIS GROUPS 3 The paper is structured as follows. Section 2 introduces the background material including permutation groups, Galois groups, fundamental groups, fiber products, homotopy continu- ation, and witness sets. In Section 3, we discuss the method of computing monodromy by determining the branch locus, illustrating this on the classical problem of determining the monodromy group of the 27 lines on a cubic surface. In Section 4, we discuss using fiber products to obtain information about the Galois group, illustrating this method with the monodromy action on the lines on a cubic surface. We further illustrate these methods using three examples from applications in Section 5, and we give concluding remarks in Section 6. 2. Galois groups and numerical algebraic geometry We describe some background, including permutation groups, Galois/monodromy groups, and fundamental groups of hypersurface complements from classical algebraic geometry, as well as the topics from numerical algebraic geometry of homotopy continuation, monodromy, witness sets, fiber products, and numerical irreducible decomposition. 2.1. Permutation groups. Let G ⊂ Sk be a subgroup of the symmetric group on k letters. Then G has a faithful action on[ k] := f1; : : : ; kg. For g 2 G and i 2 [k], write g(i) for the image of i under g. We say that G is transitive if for any i; j 2 [k] there is an element g 2 G with g(i) = j. Every group is transitive on some set, e.g., on itself by left multiplication. The group G has an induced action on s-tuples,[ k]s. The action of G is s-transitive if for any two s-tuples (i1; : : : ; is) and (j1; : : : ; js) each having distinct elements, there is a g 2 G with g(ir) = jr for r = 1; : : : ; s. The full symmetric group Sk is k-transitive and its alternating subgroup Ak of even permutations is (k−2)-transitive. There are few other highly transitive groups. This is explained in [9, x 4] and summarized in the following proposition, which follows from the O'Nan-Scott Theorem [29] and the classification of finite simple groups. Proposition 2.1 (Thm. 4.11 [9]). The only 6-transitive groups are the symmetric and alter- nating groups. The only 4-transitive groups are the symmetric and alternating groups, and the Mathieu groups M11, M12, M23, and M24. All 2-transitive permutation groups are known. Tables 7.3 and 7.4 in [9] list the 2-transitive permutation groups. Suppose that G is transitive on [k]. A block is a subset B of [k] such that for every g 2 G either gB = B or gB \ B = ;. The orbits of a block form a G-invariant partition of [k] into blocks. The group G is primitive if its only blocks are [k] or singletons, otherwise it is imprimitive. Any 2-transitive permutation group is primitive, and primitive permutation groups that are not symmetric or alternating are rare|the set of k for which such a nontrivial primitive permutation group exists has density zero in the natural numbers [9, x 4.9]. 2 Each G-orbit O ⊂ [k] determines a graphΓ O with vertex set [k]|its edges are the pairs in O.
Recommended publications
  • Branch Points and Cuts in the Complex Plane
    BRANCH POINTS AND CUTS IN THE COMPLEX PLANE Link to: physicspages home page. To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment. Post date: 6 July 2021. We’ve looked at contour integration in the complex plane as a technique for evaluating integrals of complex functions and finding infinite integrals of real functions. In some cases, the complex functions that are to be integrated are multi- valued. As a preliminary to the contour integration of such functions, we’ll look at the concepts of branch points and branch cuts here. The stereotypical function that is used to introduce branch cuts in most books is the complex logarithm function logz which is defined so that elogz = z (1) If z is real and positive, this reduces to the familiar real logarithm func- tion. (Here I’m using natural logs, so the real natural log function is usually written as ln. In complex analysis, the term log is usually used, so be careful not to confuse it with base 10 logs.) To generalize it to complex numbers, we write z in modulus-argument form z = reiθ (2) and apply the usual rules for taking a log of products and exponentials: logz = logr + iθ (3) = logr + iargz (4) To see where problems arise, suppose we start with z on the positive real axis and increase θ. Everything is fine until θ approaches 2π. When θ passes 2π, the original complex number z returns to its starting value, as given by 2.
    [Show full text]
  • Cubic Surfaces and Their Invariants: Some Memories of Raymond Stora
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 912 (2016) 374–425 www.elsevier.com/locate/nuclphysb Cubic surfaces and their invariants: Some memories of Raymond Stora Michel Bauer Service de Physique Theorique, Bat. 774, Gif-sur-Yvette Cedex, France Received 27 May 2016; accepted 28 May 2016 Available online 7 June 2016 Editor: Hubert Saleur Abstract Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I’m very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. Ireview briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. Ishow how to retrieve this description via counting/generating functions and character formulae. © 2016 The Author. Published by Elsevier B.V.
    [Show full text]
  • Classifying Smooth Cubic Surfaces up to Projective Linear Transformation
    Classifying Smooth Cubic Surfaces up to Projective Linear Transformation Noah Giansiracusa June 2006 Introduction We would like to study the space of smooth cubic surfaces in P3 when each surface is considered only up to projective linear transformation. Brundu and Logar ([1], [2]) de¯ne an action of the automorphism group of the 27 lines of a smooth cubic on a certain space of cubic surfaces parametrized by P4 in such a way that the orbits of this action correspond bijectively to the orbits of the projective linear group PGL4 acting on the space of all smooth cubic surfaces in the natural way. They prove several other results in their papers, but in this paper (the author's senior thesis at the University of Washington) we focus exclusively on presenting a reasonably self-contained and coherent exposition of this particular result. In doing so, we chose to slightly modify the action and ensuing proof, more aesthetically than substantially, in order to better reveal the intricate relation between combinatorics and geometry that underlies this problem. We would like to thank Professors Chuck Doran and Jim Morrow for much guidance and support. The Space of Cubic Surfaces Before proceeding, we need to de¯ne terms such as \the space of smooth cubic surfaces". Let W be a 4-dimensional vector-space over an algebraically closed ¯eld k of characteristic zero whose projectivization P(W ) = P3 is the ambient space in which the cubic surfaces we consider live. Choose a basis (x; y; z; w) for the dual vector-space W ¤. Then an arbitrary cubic surface is given by the zero locus V (F ) of an element F 2 S3W ¤ ½ k[x; y; z; w], where SnV denotes the nth symmetric power of a vector space V | which in this case simply means the set of degree three homogeneous polynomials.
    [Show full text]
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • Arxiv:1712.01167V2 [Math.AG] 12 Oct 2018 12
    AUTOMORPHISMS OF CUBIC SURFACES IN POSITIVE CHARACTERISTIC IGOR DOLGACHEV AND ALEXANDER DUNCAN Abstract. We classify all possible automorphism groups of smooth cu- bic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quar- tic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automor- phism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive char- acteristic, together with a group action, can be lifted to characteristic zero. Contents 1. Introduction2 Acknowledgements8 2. Preliminaries8 3. Del Pezzo surfaces of degree 4 12 4. Differential structure in special characteristics 19 5. The Fermat cubic surface 24 6. General forms 28 7. Rationality of the moduli space 33 8. Conjugacy classes of automorphisms 36 9. Involutions 38 10. Automorphisms of order 3 46 11. Automorphisms of order 4 59 arXiv:1712.01167v2 [math.AG] 12 Oct 2018 12. Automorphisms of higher order 64 13. Collections of Eckardt points 69 14. Proof of the Main Theorem 72 15. Lifting to characteristic zero 73 Appendix 78 References 82 The second author was partially supported by National Security Agency grant H98230- 16-1-0309. 1 2 IGOR DOLGACHEV AND ALEXANDER DUNCAN 1. Introduction 3 Let X be a smooth cubic surface in P defined over an algebraically closed field | of arbitrary characteristic p. The primary purpose of this paper is to classify the possible automorphism groups of X.
    [Show full text]
  • UNIVERSAL TORSORS and COX RINGS Brendan Hassett and Yuri
    UNIVERSAL TORSORS AND COX RINGS by Brendan Hassett and Yuri Tschinkel Abstract. — We study the equations of universal torsors on rational surfaces. Contents Introduction . 1 1. Generalities on the Cox ring . 4 2. Generalities on toric varieties . 7 3. The E6 cubic surface . 12 4. D4 cubic surface . 23 References . 26 Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [7], [9], [8], [22], [23], [24]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277. 2 BRENDAN HASSETT and YURI TSCHINKEL bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [21]. This approach was further developed in the work of Peyre, de la Bret`eche, and Heath-Brown [19], [20], [3], [14]. Colliot-Th´el`eneand Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj}j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface.
    [Show full text]
  • Shadow of a Cubic Surface
    Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary .
    [Show full text]
  • A Mathematical Background to Cubic and Quartic Schilling Models
    Utrecht University A Mathematical Background to Cubic and Quartic Schilling Models Author: I.F.M.M.Nelen A thesis presented for the degree Master of Science Supervisor: Prof. Dr. F. Beukers Second Reader: Prof. Dr. C.F. Faber Masters Programme: Mathematical Sciences Department: Departement of Mathematics University: Utrecht University Abstract At the end of the twentieth century plaster models of algebraic surface were constructed by the company of Schilling. Many universities have some series of these models but a rigorous mathematical background to the theory is most often not given. In this thesis a mathematical background is given for the cubic surfaces and quartic ruled surfaces on which two series of Schilling models are based, series VII and XIII. The background consists of the classification of all complex cubic surface through the number and type of singularities lying on the surface. The real cubic sur- faces are classified by which of the singularities are real and the number and configuration of the lines lying on the cubic surface. The ruled cubic and quartic surfaces all have a singular curve lying on them and they are classified by the degree of this curve. Acknowledgements Multiple people have made a contribution to this thesis and I want to extend my graditute here. First of all I want to thank Prof. Dr. Frits Beukers for being my super- visor, giving me an interesting subject to write about and helping me get the answers needed to finish this thesis. By his comments he gave me a broader un- derstanding of the topic and all the information I needed to complete this thesis.
    [Show full text]
  • Moduli Spaces and Invariant Theory
    MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6.
    [Show full text]
  • The Monodromy Groups of Schwarzian Equations on Closed
    Annals of Mathematics The Monodromy Groups of Schwarzian Equations on Closed Riemann Surfaces Author(s): Daniel Gallo, Michael Kapovich and Albert Marden Reviewed work(s): Source: Annals of Mathematics, Second Series, Vol. 151, No. 2 (Mar., 2000), pp. 625-704 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/121044 . Accessed: 15/02/2013 18:57 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics. http://www.jstor.org This content downloaded on Fri, 15 Feb 2013 18:57:11 PM All use subject to JSTOR Terms and Conditions Annals of Mathematics, 151 (2000), 625-704 The monodromy groups of Schwarzian equations on closed Riemann surfaces By DANIEL GALLO, MICHAEL KAPOVICH, and ALBERT MARDEN To the memory of Lars V. Ahlfors Abstract Let 0: 7 (R) -* PSL(2, C) be a homomorphism of the fundamental group of an oriented, closed surface R of genus exceeding one. We will establish the following theorem. THEOREM. Necessary and sufficient for 0 to be the monodromy represen- tation associated with a complex projective stucture on R, either unbranched or with a single branch point of order 2, is that 0(7ri(R)) be nonelementary.
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Universal Unramified Cohomology of Cubic Fourfolds Containing a Plane
    UNIVERSAL UNRAMIFIED COHOMOLOGY OF CUBIC FOURFOLDS CONTAINING A PLANE ASHER AUEL, JEAN-LOUIS COLLIOT-THEL´ ENE,` R. PARIMALA Abstract. We prove the universal triviality of the third unramified cohomology group of a very general complex cubic fourfold containing a plane. The proof uses results on the unramified cohomology of quadrics due to Kahn, Rost, and Sujatha. Introduction 5 Let X be a smooth cubic fourfold, i.e., a smooth cubic hypersurface in P .A well-known problem in algebraic geometry concerns the rationality of X over C. Expectation. The very general cubic fourfold over C is irrational. Here, \very general" is usually taken to mean \in the complement of a countable union of Zariski closed subsets" in the moduli space of cubic fourfolds. At present, however, not a single cubic fourfold is provably irrational, though many families of rational cubic fourfolds are known. 5 If X contains a plane P (i.e., a linear two dimensional subvariety of P ), then X 2 is birational to the total space of a quadric surface bundle Xe ! P by projecting 2 from P . Its discriminant divisor D ⊂ P is a sextic curve. The rationality of a cubic fourfold containing a plane over C is also a well-known problem. Expectation. The very general cubic fourfold containing a plane over C is irra- tional. Assuming that the discriminant divisor D is smooth, the discriminant double 2 cover S ! P branched along D is then a K3 surface of degree 2 and the even Clifford 2 algebra of the quadric fibration Xe ! P gives rise to a Brauer class β 2 Br(S), called the Clifford invariant of X.
    [Show full text]