Visualizing Cubic Algebraic Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cubic Surfaces and Their Invariants: Some Memories of Raymond Stora
Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 912 (2016) 374–425 www.elsevier.com/locate/nuclphysb Cubic surfaces and their invariants: Some memories of Raymond Stora Michel Bauer Service de Physique Theorique, Bat. 774, Gif-sur-Yvette Cedex, France Received 27 May 2016; accepted 28 May 2016 Available online 7 June 2016 Editor: Hubert Saleur Abstract Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I’m very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. Ireview briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. Ishow how to retrieve this description via counting/generating functions and character formulae. © 2016 The Author. Published by Elsevier B.V. -
Classifying Smooth Cubic Surfaces up to Projective Linear Transformation
Classifying Smooth Cubic Surfaces up to Projective Linear Transformation Noah Giansiracusa June 2006 Introduction We would like to study the space of smooth cubic surfaces in P3 when each surface is considered only up to projective linear transformation. Brundu and Logar ([1], [2]) de¯ne an action of the automorphism group of the 27 lines of a smooth cubic on a certain space of cubic surfaces parametrized by P4 in such a way that the orbits of this action correspond bijectively to the orbits of the projective linear group PGL4 acting on the space of all smooth cubic surfaces in the natural way. They prove several other results in their papers, but in this paper (the author's senior thesis at the University of Washington) we focus exclusively on presenting a reasonably self-contained and coherent exposition of this particular result. In doing so, we chose to slightly modify the action and ensuing proof, more aesthetically than substantially, in order to better reveal the intricate relation between combinatorics and geometry that underlies this problem. We would like to thank Professors Chuck Doran and Jim Morrow for much guidance and support. The Space of Cubic Surfaces Before proceeding, we need to de¯ne terms such as \the space of smooth cubic surfaces". Let W be a 4-dimensional vector-space over an algebraically closed ¯eld k of characteristic zero whose projectivization P(W ) = P3 is the ambient space in which the cubic surfaces we consider live. Choose a basis (x; y; z; w) for the dual vector-space W ¤. Then an arbitrary cubic surface is given by the zero locus V (F ) of an element F 2 S3W ¤ ½ k[x; y; z; w], where SnV denotes the nth symmetric power of a vector space V | which in this case simply means the set of degree three homogeneous polynomials. -
1 Real-Time Algebraic Surface Visualization
1 Real-Time Algebraic Surface Visualization Johan Simon Seland1 and Tor Dokken2 1 Center of Mathematics for Applications, University of Oslo [email protected] 2 SINTEF ICT [email protected] Summary. We demonstrate a ray tracing type technique for rendering algebraic surfaces us- ing programmable graphics hardware (GPUs). Our approach allows for real-time exploration and manipulation of arbitrary real algebraic surfaces, with no pre-processing step, except that of a possible change of polynomial basis. The algorithm is based on the blossoming principle of trivariate Bernstein-Bezier´ func- tions over a tetrahedron. By computing the blossom of the function describing the surface with respect to each ray, we obtain the coefficients of a univariate Bernstein polynomial, de- scribing the surface’s value along each ray. We then use Bezier´ subdivision to find the first root of the curve along each ray to display the surface. These computations are performed in parallel for all rays and executed on a GPU. Key words: GPU, algebraic surface, ray tracing, root finding, blossoming 1.1 Introduction Visualization of 3D shapes is a computationally intensive task and modern GPUs have been designed with lots of computational horsepower to improve performance and quality of 3D shape visualization. However, GPUs were designed to only pro- cess shapes represented as collections of discrete polygons. Consequently all other representations have to be converted to polygons, a process known as tessellation, in order to be processed by GPUs. Conversion of shapes represented in formats other than polygons will often give satisfactory visualization quality. However, the tessel- lation process can easily miss details and consequently provide false information. -
Arxiv:1712.01167V2 [Math.AG] 12 Oct 2018 12
AUTOMORPHISMS OF CUBIC SURFACES IN POSITIVE CHARACTERISTIC IGOR DOLGACHEV AND ALEXANDER DUNCAN Abstract. We classify all possible automorphism groups of smooth cu- bic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quar- tic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automor- phism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive char- acteristic, together with a group action, can be lifted to characteristic zero. Contents 1. Introduction2 Acknowledgements8 2. Preliminaries8 3. Del Pezzo surfaces of degree 4 12 4. Differential structure in special characteristics 19 5. The Fermat cubic surface 24 6. General forms 28 7. Rationality of the moduli space 33 8. Conjugacy classes of automorphisms 36 9. Involutions 38 10. Automorphisms of order 3 46 11. Automorphisms of order 4 59 arXiv:1712.01167v2 [math.AG] 12 Oct 2018 12. Automorphisms of higher order 64 13. Collections of Eckardt points 69 14. Proof of the Main Theorem 72 15. Lifting to characteristic zero 73 Appendix 78 References 82 The second author was partially supported by National Security Agency grant H98230- 16-1-0309. 1 2 IGOR DOLGACHEV AND ALEXANDER DUNCAN 1. Introduction 3 Let X be a smooth cubic surface in P defined over an algebraically closed field | of arbitrary characteristic p. The primary purpose of this paper is to classify the possible automorphism groups of X. -
On the Euler Number of an Orbifold 257 Where X ~ Is Embedded in .W(X, G) As the Set of Constant Paths
Math. Ann. 286, 255-260 (1990) Imam Springer-Verlag 1990 On the Euler number of an orbifoid Friedrich Hirzebruch and Thomas HSfer Max-Planck-Institut ffir Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany Dedicated to Hans Grauert on his sixtieth birthday This short note illustrates connections between Lothar G6ttsche's results from the preceding paper and invariants for finite group actions on manifolds that have been introduced in string theory. A lecture on this was given at the MPI workshop on "Links between Geometry and Physics" at Schlol3 Ringberg, April 1989. Invariants of quotient spaces. Let G be a finite group acting on a compact differentiable manifold X. Topological invariants like Betti numbers of the quotient space X/G are well-known: i a 1 b,~X/G) = dlmH (X, R) = ~ g~)~ tr(g* I H'(X, R)). The topological Euler characteristic is determined by the Euler characteristic of the fixed point sets Xa: 1 Physicists" formula. Viewed as an orbifold, X/G still carries someinformation on the group action. In I-DHVW1, 2; V] one finds the following string-theoretic definition of the "orbifold Euler characteristic": e X, 1 e(X<~.h>) Here summation runs over all pairs of commuting elements in G x G, and X <g'h> denotes the common fixed point set ofg and h. The physicists are mainly interested in the case where X is a complex threefold with trivial canonical bundle and G is a finite subgroup of $U(3). They point out that in some situations where X/G has a resolution of singularities X-~Z,X/G with trivial canonical bundle e(X, G) is just the Euler characteristic of this resolution [DHVW2; St-W]. -
UNIVERSAL TORSORS and COX RINGS Brendan Hassett and Yuri
UNIVERSAL TORSORS AND COX RINGS by Brendan Hassett and Yuri Tschinkel Abstract. — We study the equations of universal torsors on rational surfaces. Contents Introduction . 1 1. Generalities on the Cox ring . 4 2. Generalities on toric varieties . 7 3. The E6 cubic surface . 12 4. D4 cubic surface . 23 References . 26 Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [7], [9], [8], [22], [23], [24]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277. 2 BRENDAN HASSETT and YURI TSCHINKEL bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [21]. This approach was further developed in the work of Peyre, de la Bret`eche, and Heath-Brown [19], [20], [3], [14]. Colliot-Th´el`eneand Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj}j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface. -
Shadow of a Cubic Surface
Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary . -
A Mathematical Background to Cubic and Quartic Schilling Models
Utrecht University A Mathematical Background to Cubic and Quartic Schilling Models Author: I.F.M.M.Nelen A thesis presented for the degree Master of Science Supervisor: Prof. Dr. F. Beukers Second Reader: Prof. Dr. C.F. Faber Masters Programme: Mathematical Sciences Department: Departement of Mathematics University: Utrecht University Abstract At the end of the twentieth century plaster models of algebraic surface were constructed by the company of Schilling. Many universities have some series of these models but a rigorous mathematical background to the theory is most often not given. In this thesis a mathematical background is given for the cubic surfaces and quartic ruled surfaces on which two series of Schilling models are based, series VII and XIII. The background consists of the classification of all complex cubic surface through the number and type of singularities lying on the surface. The real cubic sur- faces are classified by which of the singularities are real and the number and configuration of the lines lying on the cubic surface. The ruled cubic and quartic surfaces all have a singular curve lying on them and they are classified by the degree of this curve. Acknowledgements Multiple people have made a contribution to this thesis and I want to extend my graditute here. First of all I want to thank Prof. Dr. Frits Beukers for being my super- visor, giving me an interesting subject to write about and helping me get the answers needed to finish this thesis. By his comments he gave me a broader un- derstanding of the topic and all the information I needed to complete this thesis. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Algebraic Families on an Algebraic Surface Author(S): John Fogarty Source: American Journal of Mathematics , Apr., 1968, Vol
Algebraic Families on an Algebraic Surface Author(s): John Fogarty Source: American Journal of Mathematics , Apr., 1968, Vol. 90, No. 2 (Apr., 1968), pp. 511-521 Published by: The Johns Hopkins University Press Stable URL: https://www.jstor.org/stable/2373541 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics This content downloaded from 132.174.252.179 on Fri, 09 Oct 2020 00:03:59 UTC All use subject to https://about.jstor.org/terms ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE. By JOHN FOGARTY.* 0. Introduction. The purpose of this paper is to compute the co- cohomology of the structure sheaf of the Hilbert scheme of the projective plane. In fact, we achieve complete success only in characteristic zero, where it is shown that all higher cohomology groups vanish, and that the only global sections are constants. The work falls naturally into two parts. In the first we are concerned with an arbitrary scheme, X, smooth and projective over a noetherian scheme, S. We show that each component of the Hilbert scheme parametrizing closed subschemes of relative codimension 1 on X, over S, splits in a natural way into a product of a scheme parametrizing Cartier divisors, and a scheme parametrizing subschemes of lower dimension. -
Moduli Spaces and Invariant Theory
MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6. -
Polynomial Curves and Surfaces
Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .