The Galois Group of the 27 Lines on a Rational Cubic Surface
The Galois group of the 27 lines on a rational cubic surface Arav Karighattam Mentor – Yongyi Chen May 18, 2019 MIT-PRIMES Conference Cubic surfaces and lines A cubic surface is the set of all points (x, y, z) satisfying a cubic polynomial equation. In this talk we will be considering smooth cubic surfaces. Example. The Fermat cubic is the set of all points (x, y, z) with + + = 1. 3 3 3 − Cubic surfaces and lines The lines in the Fermat cubic + + = 1 are: 3 3 3 (-ζ, t, -ωt),− (-ζt, t, -ω), (-ζt, -ω, t), where t varies over , and ζ and ω are cube roots of 1. Notice that there areℂ 27 lines on this cubic surface. Theorem. (Cayley, 1849) Every smooth cubic surface contains exactly 27 lines. Cubic surfaces and lines This is an example of a cubic surface. Source: 27 Lines on a Cubic Surface by Greg Egan http://www.gregegan.net/ Projective space Define n-dimensional projective space as the space of nonzero (n + 1)-tuples of complex numbers … up to scaling. We may embed n-dimensional space ℙ into projective space by setting one of the 0 ∶ 1 ∶ 2 ∶ ∶ projective coordinates to 1. Projective space can be considered as ℂ with points at infinity. A line in is a linear embedding . We can parametrize a general line in ℂ as [s : t : as3 + bt : cs + dt] for some fixed1 complex3 numbers a, b, c, and d. 3 For the restℙ of the talk, we will be consideringℙ ↪ ℙ cubic surfaces in projective space. ℙ The blow-up of at six points 2 ℙ The blow-up of at the origin is \ {0} with a line at 0, with each point on the line corresponding to a2 tangent direction at2 the point.
[Show full text]