The Monodromy Groups of Schwarzian Equations on Closed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Branch Points and Cuts in the Complex Plane
BRANCH POINTS AND CUTS IN THE COMPLEX PLANE Link to: physicspages home page. To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment. Post date: 6 July 2021. We’ve looked at contour integration in the complex plane as a technique for evaluating integrals of complex functions and finding infinite integrals of real functions. In some cases, the complex functions that are to be integrated are multi- valued. As a preliminary to the contour integration of such functions, we’ll look at the concepts of branch points and branch cuts here. The stereotypical function that is used to introduce branch cuts in most books is the complex logarithm function logz which is defined so that elogz = z (1) If z is real and positive, this reduces to the familiar real logarithm func- tion. (Here I’m using natural logs, so the real natural log function is usually written as ln. In complex analysis, the term log is usually used, so be careful not to confuse it with base 10 logs.) To generalize it to complex numbers, we write z in modulus-argument form z = reiθ (2) and apply the usual rules for taking a log of products and exponentials: logz = logr + iθ (3) = logr + iargz (4) To see where problems arise, suppose we start with z on the positive real axis and increase θ. Everything is fine until θ approaches 2π. When θ passes 2π, the original complex number z returns to its starting value, as given by 2. -
Riemann Surfaces
RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them. -
Monodromy Representations Associated to a Continuous Map
Monodromy representations associated to a continuous map Salvador Borrós Cullell Supervisor: Dr. Pietro Polesello ALGANT Master Program Universität Duisburg-Essen; Università degli studi di Padova This dissertation is submitted for the degree of Master in Science July 2017 Acknowledgements First and foremost, I would like to thank my advisor Dr. Polesello for his infinite patience and his guidance while writing the thesis. His emphasis on writing mathematics in a precise and concise manner will forever remain a valuable lesson. I would also like to thank my parents for their constant support, specially during these two years I have been out of home. Despite the distance, they have kept me going when things weren’t going my way. A very special mention must be made of Prof. Marc Levine who introduced me to many of the notions that now appear in this thesis and showed unparalleled patience and kindness while helping me understand them in depth. Finally, I would like to thank my friends Shehzad Hathi and Jan Willem Frederik van Beck for taking up the role of a supportive family while living abroad. Abstract The aim of this thesis is to give a geometrical meaning to the induced monodromy rep- resentation. More precisely, given f : X ! Y a continuous map, the associated functor ind f f : P1(X) ! P1(Y) induces a functor Repk(P1(X)) ! Repk(P1(Y)) of the corresponding LCSH categories of representations. We will define a functor f∗ : LCSH(kX ) ! LCSH(kY ) from the category of locally constant sheaves on X to that of locally constant sheaves on Y in a way that the monodromy representation m LCSH is given by ind (m ), where m denotes f∗ F f F F the monodromy representation of a locally constant sheaf F on X. -
Arxiv:Math/0507171V1 [Math.AG] 8 Jul 2005 Monodromy
Monodromy Wolfgang Ebeling Dedicated to Gert-Martin Greuel on the occasion of his 60th birthday. Abstract Let (X,x) be an isolated complete intersection singularity and let f : (X,x) → (C, 0) be the germ of an analytic function with an isolated singularity at x. An important topological invariant in this situation is the Picard-Lefschetz monodromy operator associated to f. We give a survey on what is known about this operator. In particular, we re- view methods of computation of the monodromy and its eigenvalues (zeta function), results on the Jordan normal form of it, definition and properties of the spectrum, and the relation between the monodromy and the topology of the singularity. Introduction The word ’monodromy’ comes from the greek word µoνo − δρoµψ and means something like ’uniformly running’ or ’uniquely running’. According to [99, 3.4.4], it was first used by B. Riemann [135]. It arose in keeping track of the solutions of the hypergeometric differential equation going once around arXiv:math/0507171v1 [math.AG] 8 Jul 2005 a singular point on a closed path (cf. [30]). The group of linear substitutions which the solutions are subject to after this process is called the monodromy group. Since then, monodromy groups have played a substantial rˆole in many areas of mathematics. As is indicated on the webside ’www.monodromy.com’ of N. M. Katz, there are several incarnations, classical and l-adic, local and global, arithmetic and geometric. Here we concentrate on the classical lo- cal geometric monodromy in singularity theory. More precisely we focus on the monodromy operator of an isolated hypersurface or complete intersection singularity. -
Arxiv:2010.15657V1 [Math.NT] 29 Oct 2020
LOW-DEGREE PERMUTATION RATIONAL FUNCTIONS OVER FINITE FIELDS ZHIGUO DING AND MICHAEL E. ZIEVE Abstract. We determine all degree-4 rational functions f(X) 2 Fq(X) 1 which permute P (Fq), and answer two questions of Ferraguti and Micheli about the number of such functions and the number of equivalence classes of such functions up to composing with degree-one rational func- tions. We also determine all degree-8 rational functions f(X) 2 Fq(X) 1 which permute P (Fq) in case q is sufficiently large, and do the same for degree 32 in case either q is odd or f(X) is a nonsquare. Further, for several other positive integers n < 4096, for each sufficiently large q we determine all degree-n rational functions f(X) 2 Fq(X) which permute 1 P (Fq) but which are not compositions of lower-degree rational func- tions in Fq(X). Some of these results are proved by using a new Galois- theoretic characterization of additive (linearized) polynomials among all rational functions, which is of independent interest. 1. Introduction Let q be a power of a prime p.A permutation polynomial is a polyno- mial f(X) 2 Fq[X] for which the map α 7! f(α) is a permutation of Fq. Such polynomials have been studied both for their own sake and for use in various applications. Much less work has been done on permutation ra- tional functions, namely rational functions f(X) 2 Fq(X) which permute 1 P (Fq) := Fq [ f1g. However, the topic of permutation rational functions seems worthy of study, both because permutation rational functions have the same applications as permutation polynomials, and because of the con- struction in [24] which shows how to use permutation rational functions over Fq to produce permutation polynomials over Fq2 . -
Galois Theory Towards Dessins D'enfants
Galois Theory towards Dessins d'Enfants Marco Ant´onioDelgado Robalo Disserta¸c~aopara obten¸c~aodo Grau de Mestre em Matem´aticae Aplica¸c~oes J´uri Presidente: Prof. Doutor Rui Ant´onioLoja Fernandes Orientador: Prof. Doutor Jos´eManuel Vergueiro Monteiro Cidade Mour~ao Vogal: Prof. Doutor Carlos Armindo Arango Florentino Outubro de 2009 Agradecimentos As` Obsess~oes Em primeiro lugar e acima de tudo, agrade¸co`aminha M~aeFernanda. Por todos os anos de amor e de dedica¸c~ao.Obrigado. Agrade¸coao meu Irm~aoRui. Obrigado. As` minhas Av´os,Diamantina e Maria, e ao meu Av^o,Jo~ao.Obrigado. Este trabalho foi-me bastante dif´ıcilde executar. Em primeiro lugar pela vastid~aodo tema. Gosto de odisseias, da proposi¸c~aoaos objectivos inalcan¸c´aveis e de vis~oespanor^amicas.Seria dif´ıcilter-me dedicado a uma odisseia matem´aticamaior que esta, no tempo dispon´ıvel. Agrade¸coprofundamente ao meu orientador, Professor Jos´eMour~ao: pela sua enorme paci^enciaperante a minha constante mudan¸cade direc¸c~aono assunto deste trabalho, permitindo que eu pr´oprio encontrasse o meu caminho nunca deixando de me apoiar; por me ajudar a manter os p´esnos ch~aoe a n~aome perder na enorme vastid~aodo tema; pelos in´umeros encontros regulares ao longo de mais de um ano. A finaliza¸c~aodeste trabalho em tempo ´utils´ofoi poss´ıvel com a ajuda da sua sensatez e contagiante capacidade de concretiza¸c~ao. Agrade¸cotamb´emao Professor Paulo Almeida, que talvez sem o saber, me ajudou a recuperar o entu- siasmo pela procura da ess^enciadas coisas. -
The Monodromy Groupoid of a Lie Groupoid Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 36, No 4 (1995), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES RONALD BROWN OSMAN MUCUK The monodromy groupoid of a Lie groupoid Cahiers de topologie et géométrie différentielle catégoriques, tome 36, no 4 (1995), p. 345-369 <http://www.numdam.org/item?id=CTGDC_1995__36_4_345_0> © Andrée C. Ehresmann et les auteurs, 1995, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET Volume XXXVI-4 (1995) GEOMETRIE DIFFERENTIELLE CATEGORIQUES THE MONODROMY GROUPOID OF A LIE GROUPOID by Ronald BROWN and Osman MUCUK Resume: Dans cet article, on montre que, sous des condi- tions générales, Punion disjointe des recouvrements universels des étoiles d’un groupoide de Lie a la structure d’un groupoide de Lie dans lequel la projection possède une propriete de mon- odromie pour les extensions des morphismes locaux reguliers. Ceci complete un rapport 46ta,iU6 de r6sultats announces par J. Pradines. Introduction The notion of monodromy groupoid which we describe here a.rose from the grand scheme of J. Pradines in the ea.rly 1960s to generalise the standard construction of a simply connected Lie group from a Lie al- gebra to a corresponding construction of a. Lie grOllpOld from a Lie algebroid, a notion first defined by Pradines. -
LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2. -
Sequential Discontinuities of Feynman Integrals and the Monodromy Group
Sequential Discontinuities of Feynman Integrals and the Monodromy Group Jacob L. Bourjaily1,2, Holmfridur Hannesdottir3, Andrew J. McLeod1, Matthew D. Schwartz3, and Cristian Vergu1 1Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark 2Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University, University Park, PA 16892, USA 3Department of Physics, Harvard University, Cambridge, MA 02138, USA July 29, 2020 Abstract We generalize the relation between discontinuities of scattering amplitudes and cut diagrams to cover sequential discontinuities (discontinuities of discontinuities) in arbitrary momentum channels. The new relations are derived using time-ordered per- turbation theory, and hold at phase-space points where all cut momentum channels are simultaneously accessible. As part of this analysis, we explain how to compute se- quential discontinuities as monodromies and explore the use of the monodromy group in characterizing the analytic properties of Feynman integrals. We carry out a number of cross-checks of our new formulas in polylogarithmic examples, in some cases to all loop orders. arXiv:2007.13747v1 [hep-th] 27 Jul 2020 Contents 1 Introduction1 2 Cutting rules: a review4 2.1 Cutkosky, 't Hooft and Veltman . .5 2.2 Time-ordered perturbation theory . .7 3 Discontinuities 10 3.1 Covariant approach . 11 3.2 Discontinuities in TOPT . 14 4 Discontinuities as monodromies 17 4.1 Warm-up: the natural logarithm . 17 4.2 The monodromy group . 21 4.3 Monodromies of propagators . 31 5 Sequential discontinuities 33 5.1 Sequential discontinuities in the same channel . 34 5.2 Sequential discontinuities in different channels . -
Integral Formula for the Bessel Function of the First Kind
INTEGRAL FORMULA FOR THE BESSEL FUNCTION OF THE FIRST KIND ENRICO DE MICHELI ABSTRACT. In this paper, we prove a new integral representation for the Bessel function of the first kind Jµ (z), which holds for any µ,z C. ∈ 1. INTRODUCTION In this note, we prove the following integral representation of the Bessel function of the first kind Jµ (z), which holds for unrestricted complex values of the order µ: z µ π 1 izcosθ 1 iθ C C (1.1) Jµ (z)= e γ∗ µ, 2 ize dθ (µ ;z ), 2π 2 π ∈ ∈ Z− where γ∗ denotes the Tricomi version of the (lower) incomplete gamma function. Lower and upper incomplete gamma functions arise from the decomposition of the Euler integral for the gamma function: w t µ 1 (1.2a) γ(µ,w)= e− t − dt (Re µ > 0), 0 Z ∞ t µ 1 (1.2b) Γ(µ,w)= e− t − dt ( argw < π). w | | Z Analytical continuation with respect to both parameters can be based either on the integrals in (1.2) or on series expansions of γ(µ,w), e.g. [4, Eq. 9.2(4)]: ∞ ( 1)n wµ+n (1.3) γ(µ,w)= ∑ − , n=0 n! µ + n which shows that γ(µ,w) has simple poles at µ = 0, 1, 2,... and, in general, is a multi- valued (when µ is not a positive integer) function with− a− branch point at w = 0. Similarly, even Γ(µ,w) is in general multi-valued but it is an entire function of µ. Inconveniences re- lated to poles and multi-valuedness of γ can be circumvented by introducing what Tricomi arXiv:2012.02887v1 [math.CA] 4 Dec 2020 called the fundamental function of the incomplete gamma theory [11, §2, p. -
Introduction to Iterated Monodromy Groups Arxiv:1403.0899V1 [Math.DS] 4 Mar 2014
Introduction to Iterated Monodromy Groups Sébastien Godillon March 24, 2012 Abstract The theory of iterated monodromy groups was developed by Nekrashevych [Nek05]. It is a wonderful example of application of group theory in dynamical systems and, in particular, in holomorphic dynamics. Iterated monodromy groups encode in a computationally efficient way combinatorial information about any dynamical system induced by a post-critically finite branched covering. Their power was illustrated by a solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [BN06]. These notes attempt to introduce this theory for those who are familiar with holomor- phic dynamics but not with group theory. The aims are to give all explanations needed to understand the main definition (Definition 10) and to provide skills in computing any iter- ated monodromy group efficiently (see examples in Section 3.3). Moreover some explicit links between iterated monodromy groups and holomorphic dynamics are detailed. In particular, Section 4.1 provides some facts about combinatorial equivalence classes, and Section 4.2 deals with matings of polynomials. Contents 1 Preliminaries 3 1.1 Tree automorphism . 3 1.2 Partial self-covering . 9 2 Tree of preimages 10 2.1 A right-hand tree . 10 2.2 A left-hand tree . 11 3 Iterated monodromy group 14 arXiv:1403.0899v1 [math.DS] 4 Mar 2014 3.1 Monodromy action . 14 3.2 Definition . 17 3.3 Examples . 19 4 Some properties in holomorphic dynamics 29 4.1 Combinatorial invariance . 29 4.2 Matings . 33 References 38 1 Representations of groups, automata, bimodules and virtual endomorphisms are inten- tionally omitted in order to make this introduction more elementary. -
CHAPTER 4 Elementary Functions Dr. Pulak Sahoo
CHAPTER 4 Elementary Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail:com 1 Module-3: Multivalued Functions-I 1 Introduction We recall that a function w = f(z) is called multivalued function if for all or some z of the domain, we find more than one value of w. Thus, a function f is said to be single valued if f satisfies f(z) = f[z(r; θ)] = f[z(r; θ + 2π)]: Otherwise, f is called as a multivalued function. We know that a multivalued function can be considered as a collection of single valued functions. For analytical properties of a multivalued function, we just consider those domains in which the functions are single valued. Branch By branch of a multivalued function f(z) defined on a domain D1 we mean a single valued function g(z) which is analytic in some sub-domain D ⊂ D1 at each point of which g(z) is one of the values of f(z). Branch Points and Branch Lines A point z = α is called a branch point of a multivalued function f(z) if the branches of f(z) are interchanged when z describes a closed path about α. We consider the function w = z1=2. Suppose that we allow z to make a complete circuit around the origin in the anticlockwise sense starting from the point P. Thus we p p have z = reiθ; w = reiθ=2; so that at P, θ = β and w = reiβ=2: After a complete p p circuit back to P, θ = β + 2π and w = rei(β+2π)=2 = − reiβ=2: Thus we have not achieved the same value of w with which we started.