Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, Michigan, 1994) 51 Louis H

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, Michigan, 1994) 51 Louis H http://dx.doi.org/10.1090/psapm/052 Selected Titles in This Series 52 V. Mandrekar and P. R. Masani, editors, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, Michigan, 1994) 51 Louis H. Kauffman, editor, The interface of knots and physics (San Francisco, California, January 1995) 50 Robert Calderbank, editor, Different aspects of coding theory (San Francisco, California, January 1995) 49 Robert L. Devaney, editor, Complex dynamical systems: The mathematics behind the Mandlebrot and Julia sets (Cincinnati, Ohio, January 1994) 48 Walter Gautschi, editor, Mathematics of Computation 1943-1993: A half century of computational mathematics (Vancouver, British Columbia, August 1993) 47 Ingrid Daubechies, editor, Different perspectives on wavelets (San Antonio, Texas, January 1993) 46 Stefan A. Burr, editor, The unreasonable effectiveness of number theory (Orono, Maine, August 1991) 45 De Witt L. Sumners, editor, New scientific applications of geometry and topology (Baltimore, Maryland, January 1992) 44 Bela Bollobas, editor, Probabilistic combinatorics and its applications (San Francisco, California, January 1991) 43 Richard K. Guy, editor, Combinatorial games (Columbus, Ohio, August 1990) 42 C. Pomerance, editor, Cryptology and computational number theory (Boulder, Colorado, August 1989) 41 R. W. Brockett, editor, Robotics (Louisville, Kentucky, January 1990) 40 Charles R. Johnson, editor, Matrix theory and applications (Phoenix, Arizona, January 1989) 39 Robert L. Devaney and Linda Keen, editors, Chaos and fractals: The mathematics behind the computer graphics (Providence, Rhode Island, August 1988) 38 Juris Hartmanis, editor, Computational complexity theory (Atlanta, Georgia, January 1988) 37 Henry J. Landau, editor, Moments in mathematics (San Antonio, Texas, January 1987) 36 Carl de Boor, editor, Approximation theory (New Orleans, Louisiana, January 1986) 35 Harry H. Panjer, editor, Actuarial mathematics (Laramie, Wyoming, August 1985) 34 Michael Anshel and William Gewirtz, editors, Mathematics of information processing (Louisville, Kentucky, January 1984) 33 H. Peyton Young, editor, Fair allocation (Anaheim, California, January 1985) 32 R. W. McKelvey, editor, Environmental and natural resource mathematics (Eugene, Oregon, August 1984) 31 B. Gopinath, editor, Computer communications (Denver, Colorado, January 1983) 30 Simon A. Levin, editor, Population biology (Albany, New York, August 1983) 29 R. A. DeMillo, G. I. Davida, D. P. Dobkin, M. A. Harrison, and R. J. Lipton, Applied cryptology, cryptographic protocols, and computer security models (San Francisco, California, January 1981) 28 R. Gnanadesikan, editor, Statistical data analysis (Toronto, Ontario, August 1982) 27 L. A. Shepp, editor, Computed tomography (Cincinnati, Ohio, January 1982) 26 S. A. Burr, editor, The mathematics of networks (Pittsburgh, Pennsylvania, August 1981) 25 S. I. Gass, editor, Operations research: mathematics and models (Duluth, Minnesota, August 1979) 24 W. F. Lucas, editor, Game theory and its applications (Biloxi, Mississippi, January 1979) (Continued in the back of this publication) Norbert Wiener 1894-1964 Photograph taken in 1963 in Madison, Wisconsin. Proceedings of the Norbert Wiener Centenary Congress, 1994 Proceedings of Symposia in APPLIED MATHEMATICS Volume 52 Proceedings of the Norbert Wiener Centenary Congress, 1994 Michigan State University November 27-December 3, 1994 V. Mandrekar P. R. Masani Editors S, American Mathematical Society a Providence, Rhode Island ^NDED 1991 Mathematics Subject Classification. Primary 60H30, 42A38, 94A05, 31C15, 81P20; Secondary 60G46, 60H05, 94A15. Library of Congress Cataloging-in-Publication Data Norbert Wiener Centenary Congress (1994 : Michigan State University) Proceedings of the Norbert Wiener Centenary Congress, 1994 : Michigan State University, November 27-December 3, 1994 / V. Mandrekar, P. R. Masani, editors. p. cm.—(Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 52) Includes bibliographical references. ISBN 0-8218-0452-9 (alk. paper) 1. Stochastic analysis—Congresses. 2. Fourier analysis—Congresses. I. Mandrekar, V. (Vid- yadhar), 1939- . II. Masani, Pesi Rustom. III. Title. IV. Series. QA274.2.N67 1994 519.2—dc20 96-43346 CIP Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permissionQams.org. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) © 1997 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. 10 9 8 7 6 5 4 3 2 1 02 01 00 99 98 97 Norbert Wiener Centenary Congress November 27, 1994 to December 3, 1994 Michigan State University Department of Statistics and Probability Michigan State University East Lansing, Michigan co-sponsored by the American Mathematical Society, International Association of Cybernetics, and World Organization of Systems and Cybernetics Organizing Committee J. Benedetto (University of Maryland) D. L. Burkholder (University of Illinois, AMS representative) T. Kailath (Stanford University) G. Kallianpur (University of North Carolina) V. Mandrekar (Michigan State University) P. R. Masani (University of Pittsburgh and WOSC representative) S. Mitter (MIT) I. E. Segal (MIT) Local Organizers Raoul LePage and V. Mandrekar Supporters National Science Foundation Army Research Office Capital Area Community Foundation Institute of Mathematics and Applications Deutsche Forschungsge Meinshaft French Academy of Sciences Osterreichische Studiengesellschaft Fur Kybernetik Royal Netherlands Academy of Arts and Sciences The Royal Society The Swedish Academy of Engineering Sciences Swiss Academy of Sciences vii Contributors D. R. Adams, Professor of Mathematics, University of Kentucky S. Albeverio, Lehrstuhl Fakultat und Inst it ut fiir Mathematik, Ruhr-Universitat Bochum H. Bart, Professor of Mathematics, Economic Institute, Erasmus University, Rotterdam J. R. Benedetto, Professor of Mathematics, University of Maryland N. K. Bose, HRB Systems Professor, and Director, The Spatial and Temporal Processing Center, The Pennsylvania State University D. L. Burkholder, Professor of Mathematics, Center for Advanced Study, University of Illinois E. H. Carlen, Associate Professor of Mathematics, Georgia Institute of Technology, Atlanta H. A. Feichtinger, Professor of Mathematics, University of Vienna G. D. Gale, Professor of Philosophy, University of Missouri-Kansas City /. Gohberg, Professor of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University L. Gross, Professor of Mathematics, Cornell University M. A. Kaashoek, Professor of Mathematics, Vrije University G. Kallianpur, Alumni Distinguished Professor of Statistics, Center for Stochastic Processes, University of North Carolina, Chapel Hill J. R. Klauder, Professor of Mathematics, University of Florida P. Malliavan, l'Academie des Sciences, Paris R. W. Mann, Whitaker Professor of Biomedical Engineering Emeritus Massachus• etts Institute of Technology P. R. Masani, University Professor, Department of Mathematics and Statistics, University of Pittsburgh B. McMillan, Formerly Vice President, Bell Telephone Laboratories S. A. Molchanov, Professor of Mathematics, University of North Carolina, Charlotte, formerly Professor of Mathematics and Statistics, Moscow State University 0. Penrose, F.R.S., Professor of Mathematics Emeritus, Herriot-Watt University, Edinburgh K. H. Pribram, James P. and Anna King University Professor and Eminent Scholar, Commonwealth of Virginia, Radford University, and Professor Emeritus, Stanford University ix x CONTRIBUTORS J. Rissanen, Professor of Mathematics, Technical University of Tempere, Finland, and member of Research Staff, IBM Almaden Center D. Roseman, Professor of Mathematics, University of Iowa /. E. Segal, Professor of Mathematics Emeritus, Massachusetts Institute of Technology H. A. Stapp, Senior Staff Physicist, Lawrence Berkeley Laboratories, University of California E. G. F. Thomas, Professor of Mathematics, University of Groningen R. L. Wornock, Visiting Physicist, formerly Staff Physicist, Stanford Linear Accel• erator Center S. Watanabe, Professor of Mathematics, Kyoto University Contents Norbert Wiener Centenary Congress: Sponsors, organizing comittee and supporters vii List of contributors ix Preface: Overview of the Norbert Wiener Centenary Congress and acknowledgment by the editors xv Program xlv I. Wiener's Concept of the Stochastic Universe. Wiener-Kolmogorov
Recommended publications
  • Wolfgang Pauli
    WOLFGANG PAULI Physique moderne et Philosophie 12 mai 1999 de Wolfgang Pauli Le Cas Kepler, précédé de "Les conceptions philosophiques de Wolfgang Pauli" 2 octobre 2002 de Wolfgang Pauli et Werner Heisenberg Page 1 sur 14 Le monde quantique et la conscience : Sommes-nous des robots ou les acteurs de notre propre vie ? 9 mai 2016 de Henry Stapp et Jean Staune Begegnungen. Albert Einstein - Karl Heim - Hermann Oberth - Wolfgang Pauli - Walter Heitler - Max Born - Werner Heisenberg - Max von… Page 2 sur 14 [Atom and Archetype: The Pauli/Jung Letters, 1932-1958] (By: Wolfgang Pauli) [published: June, 2001] 7 juin 2001 de Wolfgang Pauli [Deciphering the Cosmic Number: The Strange Friendship of Wolfgang Pauli and Carl Jung] (By: Arthur I. Miller) [published: May, 2009] 29 mai 2009 de Arthur I. Miller [(Atom and Archetype: The Pauli/Jung Letters, 1932-1958)] [Author: Wolfgang Pauli] published on (June, 2001) 7 juin 2001 Page 3 sur 14 de Wolfgang Pauli Wolfgang Pauli: Das Gewissen der Physik (German Edition) Softcover reprint of edition by Enz, Charles P. (2013) Paperback 1709 de Charles P. Enz Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics) by Wolfgang Pauli (2000) Paperback 2000 Page 4 sur 14 Electrodynamics: Volume 1 of Pauli Lectures on Physics (Dover Books on Physics) by Wolfgang Pauli (2000) Paperback 2000 Journal of Consciousness Studies, Controversies in Science & the Humanities: Wolfgang Pauli's Ideas on Mind and Matter, Vol 13, No. 3,… 2006 de Joseph A. (ed.) Goguen Atom and Archetype: The Pauli/Jung Letters, 1932-1958 by Jung, C.
    [Show full text]
  • The Universe, Life and Everything…
    Our current understanding of our world is nearly 350 years old. Durston It stems from the ideas of Descartes and Newton and has brought us many great things, including modern science and & increases in wealth, health and everyday living standards. Baggerman Furthermore, it is so engrained in our daily lives that we have forgotten it is a paradigm, not fact. However, there are some problems with it: first, there is no satisfactory explanation for why we have consciousness and experience meaning in our The lives. Second, modern-day physics tells us that observations Universe, depend on characteristics of the observer at the large, cosmic Dialogues on and small, subatomic scales. Third, the ongoing humanitarian and environmental crises show us that our world is vastly The interconnected. Our understanding of reality is expanding to Universe, incorporate these issues. In The Universe, Life and Everything... our Changing Dialogues on our Changing Understanding of Reality, some of the scholars at the forefront of this change discuss the direction it is taking and its urgency. Life Understanding Life and and Sarah Durston is Professor of Developmental Disorders of the Brain at the University Medical Centre Utrecht, and was at the Everything of Reality Netherlands Institute for Advanced Study in 2016/2017. Ton Baggerman is an economic psychologist and psychotherapist in Tilburg. Everything ISBN978-94-629-8740-1 AUP.nl 9789462 987401 Sarah Durston and Ton Baggerman The Universe, Life and Everything… The Universe, Life and Everything… Dialogues on our Changing Understanding of Reality Sarah Durston and Ton Baggerman AUP Contact information for authors Sarah Durston: [email protected] Ton Baggerman: [email protected] Cover design: Suzan Beijer grafisch ontwerp, Amersfoort Lay-out: Crius Group, Hulshout Amsterdam University Press English-language titles are distributed in the US and Canada by the University of Chicago Press.
    [Show full text]
  • Registration Form for Polish Scientific Institution 1. Research Institution Data (Name and Address): Faculty of Mathematics
    Registration form for Polish scientific institution 1. Research institution data (name and address): Faculty of Mathematics, Informatics and Mechanics University of Warsaw Krakowskie Przedmiescie 26/28 00-927 Warszawa. 2. Type of research institution: 1. Basic organisational unit of higher education institution 3. Head of the institution: dr hab. Maciej Duszczyk - Vice-Rector for Research and International Relations 4. Contact information of designated person(s) for applicants and NCN (first and last name, position, e-mail address, phone number, correspondence address): Prof. dr hab. Anna Gambin, Deputy dean of research and international cooperation, Faculty of Mathematics, Informatics and Mechanics, Banacha 2 02-097 Warsaw, +48 22 55 44 212, [email protected] 5. Science discipline in which strong international position of the institution ensures establishing a Dioscuri Centre (select one out of 25 listed disciplines): Natural Sciences and Technology disciplines: 1) Mathematics 6. Description of important research achievements from the selected discipline from the last 5 years including list of the most important publications, patents, other (up to one page in A4 format): The institution and its faculty. UW is the leading Polish department of mathematics and one of the islands of excellence on the map of Polish science. Our strength arises not only from past achievements, but also from on-going scientific activities that attract new generations of young mathematicians from the whole of Poland. The following is a non-exhaustive list of important results published no earlier than 2016 obtained by mathematicians from MIM UW. Research articles based on these results have appeared or will appear in, among other venues, Ann.
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • Science Beyond Enchantment Revisiting the Paradigm of Re-Enchantment As an Explanatory Framework for New Age Science
    INSTITUTIONEN FÖR LITTERATUR, IDÉHISTORIA OCH RELIGION Science Beyond Enchantment Revisiting the Paradigm of Re-enchantment as an Explanatory Framework for New Age Science Kristel Torgrimsson Termin VT-17 Kurs: RKT 250, 30 hp Nivå: Master Handledare: Jessica Moberg Abstract A common understanding of scientists within the New Age movement is that they are manifesting a form of re-enchantment and that their ideas should be addressed as natural theologies. This understanding often takes as its reference point, the re-entanglement of science and religion whose original separation, in this case, is often the working definition of disenchantment. This essay argues that many contemporary scientists who are both popular references and active participants on New Age conferences cannot fully be accounted for by this paradigm. Among these scientists and more particularly those interested in quantum physics, there are many who wish to extend the quantum phenomena not only to support questions of religious character, but to develop theories on physical reality and human nature. Their ambitions are not solely about merging science and religion but also about suggesting new scientific solutions and discussing scientific dilemmas. The purpose of this essay has therefore been to find a viable alternative to the re-enchantment paradigm that offers a more detailed description of their ideas. By opting instead for a radically revised re-enchantment paradigm and an anthropological suggestion for studying minor sciences, this essay has found that a more precise definition of popular New Age scientists could be as (1) “problematic” to the epistemological and ontological underpinnings of the disenchantment of the world, where the problem is not necessarily restricted to the separation of religion and science, and (2) as being a minor science, which entails a critique and challenge to state science, albeit not necessarily in terms of imposing religion on the grounds of science.
    [Show full text]
  • Consciousness and the Collapse of the Wave Function∗
    Consciousness and the Collapse of the Wave Function∗ David J. Chalmers† and Kelvin J. McQueen‡ †New York University ‡Chapman University May 7, 2021 Abstract Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by experiments with quantum com- puters. The upshot is not that consciousness-collapse interpretations are clearly correct, but that there is a research program here worth exploring. Keywords: wave function collapse, consciousness, integrated information theory, continuous spontaneous localization ∗Forthcoming in (S. Gao, ed.) Consciousness and Quantum Mechanics (Oxford University arXiv:2105.02314v1 [quant-ph] 5 May 2021 Press). Authors are listed in alphabetical order and contributed equally. We owe thanks to audiences starting in 2013 at Amsterdam, ANU, Cambridge, Chapman, CUNY, Geneva, G¨ottingen,Helsinki, Mississippi, Monash, NYU, Oslo, Oxford, Rio, Tucson, and Utrecht. These earlier presentations have occasionally been cited, so we have made some of them available at consc.net/qm. For feedback on earlier versions, thanks to Jim Holt, Adrian Kent, Kobi Kremnizer, Oystein Linnebo, and Trevor Teitel. We are grateful to Maaneli Derakhshani and Philip Pearle for their help with the mathematics of collapse models, and especially to Johannes Kleiner, who coauthored section 5 on quantum integrated information theory.
    [Show full text]
  • Physics Must Evolve Beyond the Physical
    Activitas Nervosa Superior https://doi.org/10.1007/s41470-019-00042-3 IDEAS AND OPINION Physics Must Evolve Beyond the Physical Deepak Chopra1 Received: 23 July 2018 /Accepted: 27 March 2019 # The Author(s) 2019 Abstract Contemporary physics finds itself pondering questions about mind and consciousness, an uncomfortable area for theorists. But historically, key figures at the founding of quantum theory assumed that reality was composed of two parts, mind and matter, which interacted with each other according to some new laws that they specified. This departure from the prior (classical- physicalist) assumption that mind was a mere side effect of brain activity was such a startling proposal that it basically split physics in two, with one camp insisting that mind will ultimately be explained via physical processes in the brain and the other camp embracing mind as innate in creation and the key to understanding reality in its completeness. Henry Stapp made important contributions toward a coherent explanation by advocating John von Neumann’s orthodox interpretation of quantum mechanics. von Neumann postulated that at its basis, quantum mechanics requires both a psychological and physical component. He was left, however, with a dualist view in which the psychological and physical aspects of QM remained unresolved. In this article, the relevant issues are laid out with the aim of finding a nondual explanation that allows mind and matter to exist as features of the same universal consciousness, in the hope that the critical insights of Planck, Heisenberg, Schrödinger, von Neumann, and Stapp will be recognized and valued, with the aim of an expanded physics that goes beyond physicalist dogma.
    [Show full text]
  • From Quantum Axiomatics to Quantum Conceptuality
    From Quantum Axiomatics to Quantum Conceptuality∗ Diederik Aerts1, Massimiliano Sassoli de Bianchi1,2 Sandro Sozzo3 and Tomas Veloz1,4,5 1 Center Leo Apostel for Interdisciplinary Studies, Brussels Free University Krijgskundestraat 33, 1160 Brussels, Belgium E-Mails: [email protected], [email protected] 2 Laboratorio di Autoricerca di Base, Lugano, Switzerland E-Mail: [email protected] 3 School of Business and IQSCS, University of Leicester University Road, LE1 7RH Leicester, United Kingdom E-Mail: [email protected] 4 Instituto de Filosof´ıa y Ciencias de la Complejidad IFICC, Los Alerces 3024, Nu˜noa,˜ Santiago, Chile 5 Departamento Ciencias Biol´ogicas, Facultad Ciencias de la vida Universidad Andres Bello, 8370146 Santiago, Chile E-Mail: [email protected] Abstract Since its inception, many physicists have seen in quantum mechanics the possibility, if not the necessity, of bringing cognitive aspects into the play, which were instead absent, or unnoticed, in the previous classical theories. In this article, we outline the path that led us to support the hypothesis that our physical reality is fundamentally conceptual-like and cognitivistic- like. However, contrary to the ‘abstract ego hypothesis’ introduced by John von Neumann arXiv:1805.12122v1 [quant-ph] 29 May 2018 and further explored, in more recent times, by Henry Stapp, our approach does not rely on the measurement problem as expressing a possible ‘gap in physical causation’, which would point to a reality lying beyond the mind-matter distinction. On the contrary, in our approach the measurement problem is considered to be essentially solved, at least for what concerns the origin of quantum probabilities, which we have reasons to believe they would be epistemic.
    [Show full text]
  • Beyond Scientific Materialism
    Western University Scholarship@Western Psychology Psychology 2010 Beyond Scientific aM terialism: Toward a Transcendent Theory of Consciousness Imants Barušs King's University College, [email protected] Follow this and additional works at: https://ir.lib.uwo.ca/kingspsychologypub Part of the Psychology Commons Citation of this paper: Barušs, Imants, "Beyond Scientific aM terialism: Toward a Transcendent Theory of Consciousness" (2010). Psychology. 15. https://ir.lib.uwo.ca/kingspsychologypub/15 Beyond Scientific Materialism: Toward a Transcendent Theory of Consciousness Imants Barušs Department of Psychology, King’s University College at The University of Western Ontario © 2010 Imants Barušs Beyond Scientific Materialism 2 Abstract Analysis of the social-cognitive substrate of scientific activity reveals that much of science functions in an inauthentic mode whereby a materialist world view constrains the authentic practice of science. But materialism cannot explain matter, as evidenced by empirical data concerning the nature of physical manifestation. Nor, then, should materialism be the basis for our interpretation of consciousness. It is time to move beyond scientific materialism and develop transcendent theories of consciousness. Such theories should minimally meet the following criteria: they should be based on all of the usual empirical data concerning consciousness, including altered states of consciousness; they should take into account data about anomalous phenomena and transcendent states of consciousness; they should address the issue of existential meaning and provide soteriological guidance; and they should be consistent with the most accurate theories of physical manifestation, such as relativistic quantum field theories. Speculating within a quantum-theoretic context, consciousness could be inserted as a primitive element into reality by providing a role for intention in the selection process of observables, the collapse of the state vector, or the ordering of quantum fluctuations.
    [Show full text]
  • Quantum Approoches to Consciousness. The
    UNED MASTER THESIS LOGIC, HISTORY AND PHILOSOPHY OF SCIENCE (code 30001361) QUANTUM APPROACHES TO CONSCIOUSNESS. THE HYPOTHESIS OF HENRY STAPP Author: Letizia Unzain Tarantino Director: Julio C. Armero San Jose May 2013 CONTENTS: CONTENTS: ................................................... ................................................... .................................. 2 I. INTRODUCTION. CONSCIOUSNESS: CAUSALITY AND CORRELATIONS. ........................ 3 II. INTEGRATED CONSCIOUSNESS AND SUPERVENING CONSCIOUSNESS. ALVA NOË AND DAVID CHALMERS. ................................................... ................................................... .......... 4 III. THE NEW PHYSICS. ................................................... ................................................... .............. 6 IV. INTERPRETATIONS OF QUANTUM MECHANICS. THE PILOT-WAVE OF DAVID BOHM. ................................................... ................................................... ........................................... 9 IV.1 Bohm’s pilot-wave model ................................................... ................................................... 11 V. QUANTUM MECHANICS AND CONSCIOUSNESS. ................................................... ............ 13 V.1.Henry Stapp: consciousness as a dimension of reality. ................................................... ......... 13 V.1.1 The two physics: two descriptions ................................................... ................................. 13 V.1.2 The measurement postulate.
    [Show full text]
  • Quantum Management: the Practices and Science of Flourishing Enterprise
    Journal of Management, Spirituality & Religion ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rmsr20 Quantum management: the practices and science of flourishing enterprise Chris Laszlo To cite this article: Chris Laszlo (2020) Quantum management: the practices and science of flourishing enterprise, Journal of Management, Spirituality & Religion, 17:4, 301-315, DOI: 10.1080/14766086.2020.1734063 To link to this article: https://doi.org/10.1080/14766086.2020.1734063 Published online: 24 Feb 2020. Submit your article to this journal Article views: 380 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rmsr20 JOURNAL OF MANAGEMENT, SPIRITUALITY & RELIGION 2020, VOL. 17, NO. 4, 301–315 https://doi.org/10.1080/14766086.2020.1734063 Quantum management: the practices and science of flourishing enterprise Chris Laszlo Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA ABSTRACT ARTICLE HISTORY Quantum Management brings to light the power of direct- Received 22 November 2019 intuitive practices – such as meditation, nature immersion, Accepted 17 February 2020 – ’ and countless others to transform a leader sconsciousness KEYWORDS as the highest point of leverage for entrepreneurial creativity Consciousness; leadership; embedding social purpose. Layered on top of such practices flourishing; quantum; are insights from quantum physics and related disciplines that science; spirituality offer a radically different view of organizational life. Such insights help managers understand how direct-intuitive prac- tices work to change a person at the deepest level of their identity. Direct-intuitive practices give managers an experience of wholeness that heightens their awareness of how their actions impact others and the world.
    [Show full text]
  • BIBLIOGRAPHY of NORBERT WIENER 1. on the Rearrangement of the Positive Integers in a Series of Ordinal Numbers Greater Than That
    BIBLIOGRAPHY OF NORBERT WIENER 1. On the rearrangement of the positive integers in a series of ordinal numbers greater than that of any given fundamental sequence of omegas, Messenger of Math, 3 (1913), No. 511. 2. The highest good, J. Phil. Psych, and Sci. Method 9 (1914), 512-520. 3. Relativism, J. Phil. Psych, and Sci. Method 9 (1914), 561-577. 4. A simplification of the logic of relations, Proc. Cambridge Philos. Soc. 27 (1914), 387-390. 5. A contribution to the theory of relative position, Proc. Cambridge Philos. Soc. 27 (1914), 441-449. 6. Studies in synthetic logic, Proc. Cambridge Philos. Soc. 18 (1915), 24-28. 7. The shortest line dividing an area in a given ratio, J. Phil. Psych, and Sci. Method (1915), 567-574. 8. Certain formal invariance in Boolean algebras, Trans. Amer. Math. Soc. 18 (1917), 65-72. 9. Bilinear operations generating all operations rational in a domain, Ann. of Math. 21 (1920), 157-165. 10. A set of postulates for fields, Trans. Amer. Math. Soc. 21 (1920), 237-246. 11. Certain iterative characteristics of bilinear operations, Bull. Amer. Math. Soc. 27 (1920), 6-10. 12. The mean of a functional of arbitrary elements, Ann. of Math. (2) 22 (1920), 66-72. 13. On the theory of sets of points in terms of continuous transforma- tions, G. R. Strasbourg Math. Congress, 1920. 14. Certain iterative properties of bilinear operations, G. R. Stras­ bourg Math. Congress, 1920. 15. A new theory of measurement: A study in the logic of mathematics, Proc. London Math. Soc. 19 (1921), 181-205.
    [Show full text]