Business Computers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review and Assessment of Information Kiosk Systems
U.S. Department of Transportation Federal Transit Administration Review and Assessment of Information Kiosk Systems March 1997 ACKNOWLEDGEMENT The Center for Urban Transportation Research (CUTR) has been approached by the Metro Dade Transit Agency to review the current state-of-the-art and assesses the progress that is being made in Kiosk Information Systems. This information will be used in developing a kiosk system for Metro Dade Transit Agency (MDTA), which has recently been awarded a Federal Transit Administration (FTA) Operational Test grant to develop an Informational Kiosk Prototype at major rail and bus transfer points. This research was conducted by Eric T. Hill of the CUTR, under the sponsorship of the FTA Operational Test Program, and the guidance of Maria Elena Salazar, Manager, Information Services MDTA. TABLE OF CONTENTS List of Figures.................................................................................................................. ii List of Tables................................................................................................................... ii Executive Summary.........................................................................................................1 Introduction......................................................................................................................6 Technical Approach/Methodology of Study.....................................................................6 Section 1. MDTA Project Description..........................................................................8 -
United States Patent (19) 11 Patent Number: 4,821,029 Logan Et Al
United States Patent (19) 11 Patent Number: 4,821,029 Logan et al. (45) Date of Patent: Apr. 11, 1989 54 TOUCH SCREEN COMPUTER-OPERATED 4,475,239 10/1984 van Raamsdonk ...... - - - - - - - 340/707 VIDEO DISPLAY PROCESS AND 4,476,463 10/1984 Ng et al. .................. 340/712 APPARATUS 4,524,421 6/1985 Searby et al. ... 340/706 4,550,221 10/1985 Mabusth ........... ... 340/706 (75) Inventors: James D. Logan, Arlington; Yury 4,621,257 11/1986 Brown ...... ... 340/712 Litvin, Bedford, both of Mass. 4,656,603 4/1987 Dunn ................................... 340/721 73) Assignees: Microtouch Systems, Inc., Middlesex; OTHER PUBLICATIONS The Academy of Applied Science, PC Magazine, "The Tale of the Mouse', vol. 1, No. 10, Boston, both of Mass.; a part interest Feb. 1983, pp. 66–71. (21) Appl. No.: 604,319 Primary Examiner-John W. Caldwell, Sr. (22) Filed: Apr. 26, 1984 Assistant Examiner-Jeffery A. Brier (51) Int. Cl." ............................................... G09G 1/00 Attorney, Agent, or Firm-Rines and Rines; Shapiro and (52) U.S. C. .................................... 340/712; 340/706; Shapiro 340/721; 178/18 57 ABSTRACT (58) Field of Search ............... 340/789, 706, 707, 708, The invention provides a novel computer-operated 340/709, 710, 711, 712, 716, 721, 724; 178/18; touch screen video display system in which the human 273/148 B, DIG. 28 operator by first touching a sub-area or chamber of the 56) References Cited screen containing predetermined graphic information U.S. PATENT DOCUMENTS and then pointing on the screen to a different sub-area 3,189,889 6/1965 Bridgett ............................. -
Megatouch Ion Circuit Board Cross Reference Chart
Megatouch Ion Circuit Board Cross Reference Chart SA10068- SA10068- SA10068- SA10068-09 SA10068-10 SA10068-11 SA10068-12 SA10068-13 01 through 06 through 08 -05 -07 USB ION I/O USB ION I/O USB ION I/O USB ION I/O USB ION I/O USB ION I/O I/O Card USB ION I/O USB ION I/O RoHS RoHS Compliant RoHS RoHS RoHS RoHS Game Model Game Model & Applicable RoHS Compliant Converted Compliant Compliant Compliant Compliant Compliant Board Megatouch Megatouch All Megatouch Megatouch Megatouch Ion Board Standard Aurora Entertainer, Entertainer, Ion Games Entertainer, Rx Games Games Wallette, Aurora Wallette Games except the Wallette Games Widescreen, & Rx Megatouch Rx Motherboard Games ECS • Requires USB cable NOT NOT NOT NOT NOT NOT NOT EC0139-01 COMPATIBLE COMPATIBLE COMPATIBLE COMPATIBLE COMPATIBLE COMPATIBLE COMPATIBLE (EC0094-01) ASUS • Requires • Requires • Requires USB • Requires • Requires • Requires NOT NOT USB cable USB cable cable USB cable USB cable USB cable EC0139-02 COMPATIBLE COMPATIBLE (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) RoHS Compliant ASUS • Requires • Requires • Requires USB • Requires • Requires • Requires EC0139-03 NOT USB cable USB cable cable USB cable USB cable USB cable NOT RoHS Compliant COMPATIBLE (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) (EC0150-01) COMPATIBLE NOT • Requires • Requires • Requires USB NOT • Requires NOT • Requires COMPATIBLE USB cable USB cable cable COMPATIBLE USB cable COMPATIBLE USB cable Intel (EC0232-01) (EC0232-01) (EC0232-01) (EC0232-01) (EC0094-03) Little Falls for Aurora EC0368-02 Widescreen RoHS Compliant • Requires USB cable (EC0094-03) for Rx 90003007-07 Megatouch Ion Circuit Board Identification Page 1 Megatouch Ion Circuit Board Cross Reference Chart Visual identification of the various Motherboards, I/O boards, and OSD boards used in the Merit Megatouch ION series games. -
Tech Talk Technology Considerations to Improve Access, Involvement, Outcomes
Tech Talk Technology Considerations to Improve Access, Involvement, Outcomes Phonak Roger Touchscreen Personal DM System Your student uses an Phonak Roger Touchscreen personal DM (digitally modulated) system to access auditory information in the classroom. The term DM system refers to what was previously known as a personal FM system. While FM/DM systems may have a different physical appearance, they all function in a very similar manner. The teacher wears a microphone and transmitter that sends their voice to receivers that ‘talk to’ the hearing aids/cochlear implants. Consistent and proper use of this technology is imperative. Phonak Personal DM Receivers The part of the DM system, worn by the student, that ‘receives’ the teacher’s voice from the DM microphone and sends it to the hearing aids/cochlear implants. These style of receivers can be integrated with the students’ hearing aids or connect to the hearing aids via an audio shoe. This style of receiver ‘talks’ to the hearing aids/cochlear implants via an electromagnetic signal. The student wears this neck loop device around their neck, either inside or on top of clothing. Phonak Touchscreen Transmitter & Microphone The part of the Touchscreen that the teacher wears to ‘transmit’ their voice to the student’s DM receiver(s). The three, small dots on the face of the Touchscreen are the microphone openings. Any time something touches or rubs against these openings, unwanted sound will be transmitted to your student’s brain. The placement of the Touchscreen will strongly impact how well your student accesses verbal instructions. The Touchscreen must be worn unobstructed at the STERNUM LEVEL (no lower). -
Hematopoietic and Lymphoid Neoplasm Coding Manual
Hematopoietic and Lymphoid Neoplasm Coding Manual Effective with Cases Diagnosed 1/1/2010 and Forward Published August 2021 Editors: Jennifer Ruhl, MSHCA, RHIT, CCS, CTR, NCI SEER Margaret (Peggy) Adamo, BS, AAS, RHIT, CTR, NCI SEER Lois Dickie, CTR, NCI SEER Serban Negoita, MD, PhD, CTR, NCI SEER Suggested citation: Ruhl J, Adamo M, Dickie L., Negoita, S. (August 2021). Hematopoietic and Lymphoid Neoplasm Coding Manual. National Cancer Institute, Bethesda, MD, 2021. Hematopoietic and Lymphoid Neoplasm Coding Manual 1 In Appreciation NCI SEER gratefully acknowledges the dedicated work of Drs, Charles Platz and Graca Dores since the inception of the Hematopoietic project. They continue to provide support. We deeply appreciate their willingness to serve as advisors for the rules within this manual. The quality of this Hematopoietic project is directly related to their commitment. NCI SEER would also like to acknowledge the following individuals who provided input on the manual and/or the database. Their contributions are greatly appreciated. • Carolyn Callaghan, CTR (SEER Seattle Registry) • Tiffany Janes, CTR (SEER Seattle Registry) We would also like to give a special thanks to the following individuals at Information Management Services, Inc. (IMS) who provide us with document support and web development. • Suzanne Adams, BS, CTR • Ginger Carter, BA • Sean Brennan, BS • Paul Stephenson, BS • Jacob Tomlinson, BS Hematopoietic and Lymphoid Neoplasm Coding Manual 2 Dedication The Hematopoietic and Lymphoid Neoplasm Coding Manual (Heme manual) and the companion Hematopoietic and Lymphoid Neoplasm Database (Heme DB) are dedicated to the hard-working cancer registrars across the world who meticulously identify, abstract, and code cancer data. -
S5U1C88816P Manual (Peripheral Circuit Board for S1C88816/8F360)
MF1337-02a CMOS 8-BIT SINGLE CHIP MICROCOMPUTER S5U1C88816P Manual (Peripheral Circuit Board for S1C88816/8F360) NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. © SEIKO EPSON CORPORATION 2001 All rights reserved. Configuration of product number Devices S1 C 88104 F 0A01 00 Packing specifications 00 : Besides tape & reel 0A : TCP BL 2 directions 0B : Tape & reel BACK 0C : TCP BR 2 directions 0D : TCP BT 2 directions 0E : TCP BD 2 directions 0F : Tape & reel FRONT 0G : TCP BT 4 directions 0H -
The Effect of Muscular Exercise on the Blood Ammonia Concentration in Man
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1959 The effect of muscular exercise on the blood ammonia concentration in man. With particular reference to patients with Laennec's Cirrhosis Scott nI gram Allen Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Allen, Scott nI gram, "The effect of muscular exercise on the blood ammonia concentration in man. With particular reference to patients with Laennec's Cirrhosis" (1959). Yale Medicine Thesis Digital Library. 2334. http://elischolar.library.yale.edu/ymtdl/2334 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. VALE UNIVERSITY LIBRARY 3 9002 067 2 1757 CONCENTRATION IN MAN .A ixMt* MUDD LIBRARY Medical YALE MEDICAL LIBRARY Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/effectofmuscularOOalle THE EFFECT OF MUSCULAR EXERCISE OH THE BLOOD AMMONIA CONCENTRATION IN MAN With Particular Reference To Patients With Laennec's Cirrhosis by Scott I. Allen, A.B. Nl Pomona College, 1955 A Thesis Submitted to the Faculty of the Yale University School of Medicine In Candidacy for the Degree of Doctor of Medicine Department of Internal. -
Zoom Guide for Facilitators Using Whiteboard Options
ZOOM Guides by UCSF’s School of Medicine, Technology Enhanced Education Zoom Guide for Facilitators Using Whiteboard Options Use this guide to learn to share digital or physical writing (or drawing) surfaces in Zoom meetings. We recommend practicing these options below prior to utilizing them live. 1. Use the Zoom Whiteboard on a laptop or desktop computer • Instructions: o Click Share Screen then select the Whiteboard tool, then click the blue Share button. o Use Zoom’s annotation tools to write on the whiteboard. o Click the New screen button on the lower-right part of the whiteboard to add a screen. o Note: Instead of sharing the Zoom Whiteboard, you can also share a blank PowerPoint slide, or share another app that includes writing and annotation tools. • Pros: Whenever you share your screen, you can annotate and allow participants to annotate. • Cons: It can be hard to write with a mouse or trackpad. If possible, use a graphics tablet, stylus, or touchscreen device (see options 2 and 4). 2. Share the screen of your touchscreen device • Instructions: o You can connect a touchscreen device like a tablet or mobile phone to your computer, then share its screen. Here’s how: o In Zoom, click Share Screen then select the device from the options you see. Note: To share from a document camera, click Advanced on top, then click Content from 2nd Camera. o Click the blue Share button, then follow the connection instructions. o Use Zoom’s annotation tools to write on your device’s Zoom Whiteboard, or use your device’s annotation apps and tools. -
Title Layout
COMPUTING BASICS http://www.flickr.com/photos/oskay/472097903/ CSCI 135 - Fundamentals of Computer Science I 2 Outline • Computer Basics • Programs and Languages Hardware and Memory • Most modern computers have similar components including • Input devices (keyboard, mouse, touchscreen, etc.) • Output devices (display screen, printer, etc.) • A processor • Two kinds of memory (main memory and auxiliary memory). Main memory • Working memory used to store • The current program • The data the program is using • The results of intermediate calculations • Usually measured in megabytes or gigabytes (e.g. 8GB RAM) • RAM is short for random access memory • A byte is a quantity of memory Bits, Bytes, and Addresses • A bit is a digit with a value of either 0 or 1. • A byte consists of 8 bits. • Each byte in main memory resides at a numbered location called its address. Main Memory • Data of all kinds (numbers, letters, strings of characters, audio, video, even programs) are encoded and stored using 1s and 0s. • When more than a single byte is needed, several adjacent bytes are used. • The address of the first byte is the address of the unit of bytes. • When the computer is turned off, main memory is erased (volatile memory). Auxiliary Memory • Auxiliary memory uses devices such as a hard drive, USB drive, etc. • Data (files) need to be “saved” to the auxiliary memory • Data is still stored in bits and bytes • When the computer is turned off, this data does not go away (persistent storage) Programs • A program is a set of instructions for a computer to follow. • We use programs almost daily (email, word processors, video games, bank ATMs, etc.). -
Energy Estimation of Peripheral Devices in Embedded Systems Ozgur Celebican Vincent J
Energy Estimation of Peripheral Devices in Embedded Systems Ozgur Celebican Vincent J. Mooney III Center for Research on Embedded Tajana Simunic Rosing Center for Research on Embedded Systems and Technology, Hewlett-Packard Labs Systems and Technology, Electrical and Computer Engineering Palo Alto, CA, 94304-1126, USA Electrical and Computer Georgia Institute of Technology (1) 650 725 3647 Engineering Atlanta, GA, 30332-0250, USA [email protected] Georgia Institute of Technology (1) 404 3851722 Atlanta, GA, 30332-0250, USA [email protected] (1) 404 3850437 [email protected] ABSTRACT system. While increasing the energy capacity of the system is one approach to solve the problem, another approach is to optimize the This paper introduces a methodology for estimation of energy energy consumption of the system. A significant ratio of the energy consumption in peripherals such as audio and video devices. consumption for a state-of-the-art embedded system comes from Peripherals can be responsible for significant amount of the energy peripheral devices such as audio, video or network devices. Up to consumption in current embedded systems. We introduce a cycle- now, energy optimization for peripheral devices has been done with accurate energy simulator and profiler capable of simulating restricted methods. One method is to add up datasheet values for peripheral devices. Our energy estimation tool for peripherals can be each component. This method can give a rough estimate but cannot useful for hardware and software energy optimization of multimedia show effects of software. Another method is using prototypes. applications and device drivers. The simulator and profiler use Prototypes can give exact energy and performance numbers, but the cycle-accurate energy and performance models for peripheral devices cost of the prototype and time spent building the prototype is huge. -
Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses
of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and -
Energy Consumption of Personal Computer Workstations
Energy Consumption of Personal Computer Workstations Richard F. Szydlowski and William D. Chvála, Jr.r Pacific Northwest Laboratory A field study directly measured the electric demand of 189 personal computer workstations for 1-week intervals, and a survey recorded the connected equipment at 1,846 workstations in six buildings. Each separate workstation component (e.g., computer, monitor, printer, modem, and other peripheral) was individually monitored to obtain detailed electric demand profiles. Other analyses included comparison of nameplate power rating with measured power consumption and the energy savings potential and cost-effectiveness of a controller that automatically turns off computer workstation equipment during inactivity. An important outcome of the work is the development of a standard workstation demand profile and a technique for estimating a whole-building demand profile. Together, these provide a method for transferring this information to utility energy analysts, design engineers, building energy modelers, and others. A life-cycle cost analysis was used to determine the cost-effectiveness of three energy conservation measures: 1) energy awareness education, 2) retrofit power controller installation, and 3) purchase of energy-efficient PCs. Introduction The explosive growth of the information age has had a a positive step toward creating a market for more energy- profound effect on the appearance of today’s office. efficient computer equipment by encouraging buyers to Although the telephone still remains an important part of purchase equipment that meets energy conservation stan- the information exchange and processing system within an dards set by the EPA. The standards dictate that Energy office, other electronic devices are now considered re- Star computers and video display monitors have a power- quired equipment within this environment.