<<

Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital School of Medicine

1959 The effect of muscular exercise on the blood ammonia concentration in man. With particular reference to patients with Laennec's Cirrhosis Scott nI gram Allen Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

Recommended Citation Allen, Scott nI gram, "The effect of muscular exercise on the blood ammonia concentration in man. With particular reference to patients with Laennec's Cirrhosis" (1959). Yale Medicine Thesis . 2334. http://elischolar.library.yale.edu/ymtdl/2334

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. VALE UNIVERSITY LIBRARY

3 9002 067 2 1757

CONCENTRATION IN MAN

.A ixMt*

MUDD LIBRARY Medical YALE

MEDICAL LIBRARY

Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund

https://archive.org/details/effectofmuscularOOalle

THE EFFECT OF MUSCULAR EXERCISE OH THE BLOOD AMMONIA CONCENTRATION

IN MAN

With Particular Reference To Patients With Laennec's Cirrhosis

by

Scott I. Allen, A.B. Nl Pomona College, 1955

A Thesis Submitted to the Faculty of the

Yale University School of Medicine

In Candidacy for the Degree of

Doctor of Medicine

Department of Internal. Medicine

1959 unoMtt t* K aoaaa ^uooth •so loans am-

MAM MI h ,-.-r ■ 'owiztfn-J• T fifi'j’lW cT e .n^1's*'- -i TJoIu^iTv '-i *1- •• ■*

VV '

.g.A ,nailA .1 Woo 2

.

;*IUN 1959 OKAR'f

, , - ... VC; X ^ ^ 'm-’l.T. f’- . 1 •"■

n ' - ti

’lO j "2* \ *3: - ’i

n ■ •. . k

anl-.ii M Xametnl io .laotasqaC Acknowledgement

I wish to express my gratitude to Dr. H. 0.

Conn for his many helpful suggestions and guidance during this investigation. I am also indebted to Dr. M. Calabresi for his help and laboratory facilities. •it tw o-.-'lvoa::

,'tG • i(jj;t '■'Xfi XF Bavicxa of rieiv I

lulqlad a etd • 1 ;

.noli id j ixi irfd jn: pi - 1 -

•io'. t98icfiii80 .M .'id Ot Jbofd&fxtl Oi-Sn

.aeifJti ioe’i tied-ototSsi ms qXad 1

THE EFFECT OF MUSCULAR EXERCISE ON THE BLOOD AMMONIA* CONCENTRATION

IN MAN

With Particular Reference To Patients With Laennec's Cirrhosis

Introduction

In 1925 Luck, Thacker, and Marrack reported high hlood ammonia levels in epileptic patients after grand mal seizures (1), Although they suspected that muscular exercise might be responsible for this observation, they apparently excluded this possibility by their inability to produce an increase in venous ammonia by exercise (stair running for five minutes) in normal subjects. They were unable to satisfactorily explain this phenomenon. In 192? Embden found the ammonia content of isolated frog muscle preparations to be elevated after muscle activity (2).

He suggested that ammonia was formed during muscle contraction by the deamination of adenylic acid. In addition he believed that this ammonia remained within the muscle for the resynthesis of adenylic acid during the resting phase. In the same year Parnas, Mozolowski, and Levinski reported that the ammonia content of venous blood which drained the exercising forearm was elevated In normal subjects (3). These investi¬ gators demonstrated that the ammonia which is liberated by fatiguing muscle exercise escapes into tissue fluid and blood.

* Although it is realized that at pH 7.^ almost all amonia exists as ammonium ion, the term ammonia is used to represent the total ammonia- ammonium content. 1

aouie sHi' wo :: iiofiGDCa HAJiraeaH * > ro®** :®r

4AM RI

• . • . . . . •: la - 1 &W i • * oeao9

rioidoubo'fOal

RlnooEDfl boold Hslri b^aor a-x *>smsM An® ^arloail/ tSowJ al

.Kuoddi .(I) 3swsl98 law fin 5*03 i?^s ednsidaq otdqeliqe ni 319731

0l. s sltfl-.aoqeea 3d ftfela ealsw*® Mlw® *«ri* v'rf*

• . ,, * y;a yjl.ldi' oc Utid bebaioxe yldaoa sq.q« X®** ,aoWm9Edo

.,y, Tjnlfirtu*T Ti9t8) esfotexe yd Binoom* aarone* ni «MTDOi a« aou.^o'iq ox

. .. ,n;j - . ■ ' ** ( '

ta(,,lWo Btaom* «tt bm<* noficnrS YS*I flX .acaamonedq airix nlelqxo f ) Jt.vj m ;,Lo •.um t'.x 3 fiedevols ad cd sncidFnsqstq alosnar aoH fiedeloai

*

f inocme eW* dedd A®T.®*I®tf erf aoWltt* fll .Um ol ' » *> #>****&»»*

sntsub 6X08 oiXyaeda to aiaoddcrcaea odd act aloeo* ®d* ******* ****?*

r ^alw-ju Ux* . Mevolo soM : assy ««®® 9rf* al -03BtltI 5*nitasl #fW

-ioiiftf boo Id esionev to dnsdaoo «towns* odd darfd f>9j •'■"

)V,,» *3S:. .( ) 9r>9t,djjB Ifsaraon at bed sv el a aew maaetoi anlaioae*.*

^ Xd Mtiatfli el <* d*dd ********* ««**

. booid fcne blalt euseld odnl aoq*oa» ealonexa el®a«=i

. hui /'laontn Xi X.'.oinXr *1.T Hq t« darfd Aasllaea ®i ** rix.uc■UA mI „ .., ,* *** jneee'iqMt od to*n 1 slnonnm arxod add xaol OTflnocjM . a v o i t 2

For many years after these investigations the effect of exercise on ammonia metabolism was practically ignored. Recently in this country

Schwartz, Lawrence, and Roberts described elevated peripheral venous ammonia levels following muscular exercise in normal subjects after running and in patients after convulsions induced by electric shock therapy (1). These investigators were interested in the possibility that increases in blood ammonia following muscular exercise might be a factor in the hyperpnea of exercise.

A brief review of ammonia metabolism might be helpful in order to more fully appreciate the important role of muscle function on blood ammonia concentration. The gastrointestinal tract is the most important source of blood ammonia as a result primarily of the bacterial or enzy¬ matic action on ingested nitrogenous substances (5). Most of this ammonia is liberated from urea which has diffused into the bowel by the action of bacterial ureases. Bacterial amino acid oxidases liberate ammonia by the deamination of amino acids derived from digested protein. The ammonia is carried to the liver by the portal vein where much of the ammonia is removed and is converted to urea and other nitrogenous substances. In the presence of cirrhosis of the liver there is a decreased removal of ammonia by the damaged liver (6). In addition much ammonia escapes hepatic extraction by passing directly from the portal vein into the systemic circulation through portasystemic collateral veins. This accounts for the increased ammonia concentration frequently measured in peripheral venous blood. The kidney which paradoxically is the main site of nitrogen excretion has been demonstrated to be a source of endogenous ammonia production (5).

It has recently been recognized that the peripheral tissues, presumably to tortto BooWasttoevni asarti ««« a<“^ •{BM ’IO*

„tnuoo eWJ ni U^nocaa .batons! tU«»Mlj W> *inc‘“9 fl°

aorta a»o»t

j ■ • , ; ttl - * ■ •

k- jrfeit .eioisxe tsluoeum jjntooXXol *i«w»» *>oXd <*» «•«*»»** ,Bd#

. ‘io aenqioqxrf »rtJC -ix o.oi-'' 5

, ™ «o ni Uftq aii «s trfgiffl. UPllodeJan sinonna to -rtvst tol"<

,00X4 no noitomrt eio8

'

,io 4 >115 to iXltani*! n«rtot B as

.( , 0* « - «* ■

0 ,. r, » ,,0 lowed add odnt taaBYUb oad dot*' ^“- aoii ai

I« ' '■ ' ■" **

,.„o -,, Jrff .nlatotc b rt :»Hl mrtl bcTltot .«» “»*"•*«

j to • nisv Xodtoq art! *« tatiX «tf ov »i««9

ni .ooon.rt.idaa u.ones,otdXn todto Sno a.«o od ieitavnoo at ins bovoast

..,,-. . .-t »£ s it M ' ‘ to dlaorittio to Ml ta s.O

notnM. «I -O) tortl »««•* •<»

■...„) 8,(5 o5ni niav Xadtoq srti «vrt tXtoelii »nt8*«q id nortortrto

not eimioooB ri.IT .entot XBtsisXXoo oimtavodtoq d8«oto5 noitoXostto

uolK, ioteilqitaq ni ,iln«.f8tft noiiatjnsonoo sinoMde baaaotoni

. ■ ..

„ woobot, ainc-r .o. «BPb» to .otuca - ad o* W«»«^ **

.Auro nq . louaati i todcfiKt «. t 5sjiJ beslreaooat o»«d tXtoooot ana rl - 3 -

muscle, are important sites for the removal of ammonia from the blood

in the presence of increased blood ammonia. Bessman and coworkers (7,8)

first demonstrated the peripheral uptake of ammonia in hepatic coma, and

recently a similar phenomenon was demonstrated in normal subjects (9).

Similar removel of ammonia by brain tissue has been noted (7,10). In

fasting normal subjects at rest arterial and venous ammonia values are

either in equilibrium or show a slight arterio-venous uptake.

In most patients with hepatic coma elevated levels of venous blood

ammonia have been reported. However, high levels of venous ammonia are

not always found in hepatic coma (11,12,13). Furthermore the alterations

in venous blood ammonia do not correlate well with the level of conscious¬

ness of the patient. Bessman and Bradley who demonstrated increased peripheral

arterio-venous ammonia differences in hepatic coma postulated that the

normal venous ammonia level observed in hepatic come, may be due to a

large uptake of ammonia by muscle tissue (8). They found a closer cor¬ relation between arterial ammonia levels and the neurological status of

patients in hepatic coma. Although the uptake of ammonia by peripheral

sites during hepatic coma has been observed by a number of authors, not all cirrhotic patients in hepatic coma, demonstrate peripheral uptake. In

fact Summerskill, Wolfe, and Davidson have reported patients in the late

stages of hepatic coma in whom ammonia was released by peripheral tissue despite high arterial concentrations (1M). Bessman end Mirick suggested

that the reduced muscle mass found in debilitated cirrhotics might explain

the poor uptake of ammonia occasionally seen in terminal hepatic coma. (15).

It is apparent that the status of peripheral ammonia removal may be important

in the genesis and prognosis of hepatic coma (10). vo,c v,j ao'i elite ut to liw.i add -sol ^ iJ ditfr^oq** (ns imLoeim

«M .. • - S' ■ I ® ** !

• ‘ ■ '

n .,• ’ J -■> '

u-; (ox,Y) betoa aeorf a*d • flTUrtt *# '

- ,ua V -i to .’{J ■ *V bn.*. .U •/'t .J-V/ r.- t d« : I^'-on wildat/l

. odedqo ejtaa~iV-o£’t.j7'iB drfsi' e ■'■ votic t. mul'i. txlup» nl 'ltd*}.#

••uonsv to t i ovel h ••*>*/sJO. wsroo oldBcori ’*■?+« MB' :T"-' J ?{°*

latw* B’joa f to thieve telo. .wv wJ: .»3wsi n»od elattrae

^ . oarceddrurt . (*'i. 'i, JI) ftnoo cl >wc (

, t . ■ j JWoIrf hoj^v ni

■ u. iri ni r ."I*' co • - -•.• acut:t • f i rr°a

-n, o • /.ocfr . (O oooalS sinews to sated cw «S*

;J- ■/ isJvi/oi 'iwari wit bon 3^/voX o/noKioe ieliot'i* aaaifior n’ideie*

. . . • -' ' ■ ' N

?0;, r ,• _'pi to 'tydtrrun « vci av'is.do nest! .*eri mhoo oidnqsd Stni'u/b

jfiqiieq edB*xdeno®©b smoo oidBqeri IIJt »di»ld*fc oldori'«i& 1

J1 v'.;.d noer.jtvea bos t©lXsW - ■ ’

21 is~ i*v-c \< *'«v fiinoarte rncrfv ni v»co otteqert to asRBd:

t%lH baa ntmsfi .(-’.0 « > **• slalfxs tj*!m •oided«nU» bedftdllicisb nl bairot a*m sIobms bsoirl*'! arid tart*

(

/• . . p*: ad : 'fi ein'. i.iraa ietorfqi'xsq to no? -de arid tryid dnaisqa* si *1

.(•' !.) t o oidflqarl 't<- «i©orv,o*’ ..v; .-it i- odd nl - k -

Although it is generally agreed that ammonia intoxication does

not explain the pathogenesis of all cases of hepatic coma, it is

certainly true that the absorption of ammonisgenic substances from the

gastrointestinal tract may produce this syndrome. Hepatic coma with

hyperammonemia has been reported in subjects following porta-caval

shunts (16), gastrointestinal hemorrhage (1?), the administration of

high protein diet (18), urea (18), emmonium compounds (18), and methio¬

nine (19). The drugs acetazolemide (Diamox®))(20) and chlorothiazide

(Diuril®)(21) are also known to produce impending hepatic coma usually associated with hyperammonemia although the mechanism of action is not

clearly understood. It has been suggested that Diamox may interfer with

the uptake of ammonia by peripheral muscle tissue (22).

The balance between the factors of production and removal of ammonia from the blood is certainly more precarious in patients with

impaired liver function and increased portal collateral circulation.

Some preliminary work in this laboratory has suggested that patients with Laennec's cirrhosis might release ammonia from muscle sources more readily than other subjects after muscle exercise.

This investigation was undertaken to evaluate the effects of muscular exercise on the release of blood ammonia from peripheral tissues and particularly to compare this phenomenon in normal subjects and in cirrhotic patients. ...,0b noi; yjlxotat 'ir tv ' tejij try '3' TkL£*

2 . yiaco oZtscrefl to •.«9£•••.■> lie xo siaen. jOtiiSu ani niciestun

■ 't .jo-:'.'. rfO'TiaJ MCfwB oineaelnofnfflB lo nciJc- oatfB asr - X- .nitoiarr.

v boo •. iJ«creft . amortbo^e *£ . ' - • ’ ' '

. .. ,0-et*--.g iniwoilol :ioe\vra at bet'xoqo'j oe«f asrf nl«aic.'a(H.w

nold j odd , (VI) e^sriYiowexi innl? v • ' -

l ' : t ' ) I W ■ ' ) ' ■

.. • . . a (0 )( cc EG) «J ImvlQSU . w • Igpti • - 0

.:ii«jDu stood oitsqod snibnactfi eanb/oiq o* rr oal

‘on aL noWos 'io raalnadoom sdt d^i/orXMa to*sJaoa*

w .• oj oaielG Isot ,na&o etui t1 rooiv..-.sinrr •;-■* - ■ '

.( ) ,u '.It eloaaw I»ierfcJtT»q yd sia >

U j: '. S' 0 > fj ; ' '' ■'

(y-jtv :>jnai ni tuolosoenq aioni ylnistf'iBO *•? '-**• * 'l'"- siaonruB

n . : ri'sJ.-lioo IsfrYoo < jasa-v ax hern noilonu? * v/il «q»i

ainoiJryii baJ’souyua nrri y*xvJ-«*xooui ait'-i til iliov x~imImi- ?uflt '

:,io« aeoiuoti touaiB »BsoXe*r ?rfciru slaoriin o a*OMU

HI 1A/’ t . '; • *

i‘t0 y ' j -ulevo noiir f'xo.uw b >' no'.y jlta^vni ir\l

• dqJta jq bpt^ bJuipbbob be ’ fl° bbIqymgb *xpXxio«iflw

: ^du . al tf aawonaxlq alriJ #W#S* cJ 1 J" !: ■' • *

jj -. cJ r ox -o '.*••" i:' ni one Materials & Methods

Subjects

This investigation was carried out at the West Haven Veterans

Administration Hospital between May and October of 1958. The experi- mental subjects were divided into three groups.

Group A consisted of 10 normal subjects 18 to 40 years of age who

were employed as doctors or technicians at the hospital. These volunteers

were younger and physically stronger than the patients in the other two

groups.

Group B included 31 ambulatory control patients 21 to 63 years

of age with a variety of benign non-hepatic diseases.

Group C consisted of 17 cirrhotic patients 31 to 6l years of age

in whom the diagnosis of Laermec's cirrhosis was established by histologic methods. Most of these patients had experienced hepatic decompensation at some time in the past as evidenced by Jaundice, ascites, esophageal hemorrhage, or Impending coma. At the time of this study these patients were capable of ambulation and were able to exercise with vigor equiva-

lent to the control patients.

Most of the subjects were in the postprandial state.

Exercise

In one series of observations each patient merely clenched his

fist vigorously at the rate of one per second against no resistance.

This type of exercise will be referred to as "fist clenches." In an attempt to better standardize the amount of muscular exercise a spring

type hand grip exerciser known as a Power Gripper was utilized (Figure l). ,<■« f, ,v * -fit It-- .two fid-n^o e v 1'iT

j . 1 . 1 x ° * jdotfo Uv . • . jc ‘Iq .c-i’ .:ic.' .tnlin.. •

.( »• ; ecu; ri ' ’ •< stfo*'/.'!. .

0*1 oj - ... ■ • ‘ ; ; §

. > - ■' .ik>v> 1C S'lc J^ yjh SS bV%Ql

t a± sjastlsq etl nefi* t$ ha ■■ . t

. :: 'J0V-,

} i . inoJtS pr .fc-Jia-. j viol ; ai- a' •*• » waiO

. J. *:i >. c: iS i.J-i'W c.'*.3 'CO

a'aSfiOeaJ 10 $l3O08»16 »ct* JBMfw fit

a rt-.cr ne '. >-ui fcfufl; br-o t.xiQlSfiq 92 zd* *aoM .» bodies

j'•; • v • rjt.x a ;• , : i-.{•): , 1 boo«u V f»oofle>£: Vi .;• • faaa, oAi m: •••”'•* • ••’K?oe 3 !-

tn }j ■ . j v.Ur ; *-.l rf* --Ml d * A • 3aXJbflc-q®i ->'• . uv;Bdi'i(V' .1

_ . . )xo ci ©Xtf® »«WP hoc fldvW BXfltftti ©ifif.cieo HW

.elaai ■/>«: ..ov tnc-o orW ol la a*.

■I -a v '. ' •.!' -v. ..." 3 >;" -r ■• 1 ■ " -1 ;•■••’

i&A . •.'ii v;.

.' nodi Jn$»l3 3c tiiao ar iicvi'cacio to 6r»livi

j- .. S .. *10 tVJ '• ■ :

nfl nx . f.tJrioaoi o -n” os ol noiiotoi »

•-. , in:tr. i/»Xwo«u.n to Jnuo.ve • dJ oiilXistueIp ot ffqinollo

( , ua ;' i .vl iwu s-w caqqliO a-w 7 » tv awc-mi '!.•> «::a: -xw crtTr b«oxi Fig. 1 ( ) ( )

( ) { ) - 6 -

The Power Gripper was squeezed at the rate of one per second up to a

maximum of 100 contractions. This type of exercise will be referred

to as "power grips." A maximum of 100 "power grips” was sufficient

exercise to severely fatigue the forearm muscles of all normal subjects.

The longest duration of exercise was less than two minutes. Although all

subjects worked against the same spring resistance, some subjects squeezed

with more vigor than others. Various groups of subjects were studied

after 100 "fist clenches,” 50 "power grips," and 100 "power grips."

Blood Specimens

Twenty milliliter syringes were prepared by wetting the barrel of

the syringe with Upjohn heparin (1000 units/ml,). All excess heparin

was expressed from the syringe leaving only the heparin filling the

"dead space." A lateral antecubital vein was usually selected for veni¬

puncture . A soft rubber tourniquet was used to distend the vein momentarily

for the venipuncture. Then the tourniquet was released and the baseline

blood specimen was drawn without venous stasis. The subjects were not

permitted to squeeze or pump their fists prior to or during the blood

collection. A three-way stopcock attached to the needle was closed and

the needle was then secured in the vein with adhesive tape. Immediately

after exercise another sample was drawn without stasis. Then 0.5 ml. of

heparin (1000 units/ml.) was injected into the stopcock to prevent clotting

in the needle. At the end of fifteen minutes after discarding 5 ml. of

blood another sample was drawn without tourniquet. Arterial ammonia samples

were obtained through an 18 gauge Cournand indwelling needle from either

a femoral or a brachial artery. All blood specimens were analyzed for ammonia within ten minutes after drawing the samples. a Oj qy u<. . o*-.. rrae cc lo ?: xf J X. cc«ul.o . -v ,.c .;."i0 •. vcS edT

io*exe to xr. J a*tf& /•ooitowetec ■-

t : 9 • r "wl' • " 0 .. Ic m t ".I! ' »

.Qjoticue lmrr.cn Us to aoXoewin rua*K/i viJ Ve'ic./s* oJ aBJowa

X„ risxrorfJlA .ueJjfaX* owX fl©dJ a»©X bcw iBiotax© to n-itcTot /a-.nnoX edT

; i.vaaype aJ-sofcrftfB rrooe ,s:>0sX iew '-jilhqe ~mbb »dJ X * ab&l'sam - J.f:rr;

&*XXujJa ©naw stoat^6 -o •« uo-rq :• •/oi'XPV . ..>-. >»<: .. ar.xi:;- io:.;Xv 5'soaf 4W*f

• n • - ' ,^nioaeX t ---•’' 00i 'i-wtr-

an^ 'i-t’xex-q:.: o< ic

levs at :;i:f v,e tattaq a. o*?. aw a^gnirTtB •'xaJXXX.LliKj Y,Jiv..w

a HA . (.X»\aJinu 0001) alWfad ndof.#; rfJXw -xtc-. ,x ettt

•3tlX grriiXXl nivajed id* 1&IQO gfllvael agnize rdJ .e >it taf-eaT: .0 asw

ot be JoeXee ^XXbjjbw aaw fli©v-X«ticfflro®#4iB Xsnetai •

1 ■ r in ' ■• ■ ' ■'■ - ' ,J uS

©ntioacd eriJ Las b&h-:■■■■ l -*i a*w Jejjpirrxtff* ?' ©lit neriT . oautonuqla-yv ©eft *ioi

j jfi 6c -.»/ todue >i'» .ciaata xyoaev Jucdtjfr aw^.X e«w a*dci u* •.••qa ix>oXd

fcooXo on* gaiiub 10 Oj 0:0 Kq ©tsJtt 'lierft crcuxcs; do >se««p© oJ baJtXflrc©q

, ■ . a , .; • • ; Io°

y © J, J: r. drool . qat ©Vifiodb© riJiw nJtav ad* ni boaa dltf

xo j. p) -,C fi'tl . riiecXa JuoriJtv nv-'il t.xjw tuqnsp. -xerlto n.< 31. lot axe let^a

, . , /.;. v-.-t ; ot doooqote ©lit oJni ietoe^X sev (. Xflj\aJln*r GOOX) at*W®Bd

.0 . Xsi giiib*::- •. tl ■■ leJta eetwolra o©©ttit to trio *sdJ t- .© LX-oen • ^■ r nl

■ :eiqj»aB ■ Xcio.-Tinj X«li©.t*xA .XwpXniwot t«« dtxv m/axh '.sw --Xqsirja wo Jena JcooXcf

•• ..iX.’-.j wr x iXt n r*nlXi©wfcai bnenujoD a»tf£» 8X n« risuoidj .t-enieJ.-o «rraw

10’t feosxXfvno onww eiWBioeqa Xo..-.ic . •

-lO.Lqmae -«1J gaiwaia 'isJXb uoJwnXffi rx*J ninXxw ©inoicroe - 7 -

Methods

The blood ammonia was determined according to the method of

Seligeon and Hirahara (23). In this laboratory this method has been

modified in the following respects. Two steel rods instead of three

were placed in each diffusion bottle. The Kessler reagent of Vanselow

was diluted 1:10 instead of 1:20 with distilled water. The ammonium

sulfate standard and the unknown blood samples were determined in

triplicate instead of duplicate. The mean venous ammonia level for

normal subjects in this laboratory was 102^:23 micrograms per

100 ml. with a range of 67-1^2. The abbreviation ^ gn$ will be used

throughout this communication.

Blood oxygen saturation and carbon dioxide content were determined

according to the method of Peters and Van Slyke (2l). Serum sodium and

potassium were determined with a Baird flame photometer. Serum chloride

was determined by the method of Shales and Shales (25). Serum magnesium

was determined by a modification of the method of Orange and Rhein (26).

Serum glutamic oxaloacetic transminase (SCOT) was measured by the Sigma

Chemical Company's colorimetric procedure (27). Blood pH was measured with a Cambridge Model R pH meter.

Discussion of Methods.

During the period of this investigation the mean and range for venous blood ammonia in normal subjects was noted to be elevated above

the levels previously observed in this laboratory. In a series of ten normal subjects the mean venous ammonia was l6l± 12jugra$ with a range of 1^1-184^, gaff, . The explanation for this rise in the mean venous blood ammonia was not established until after the conclusion of this study. - V -

,:I\ J

i • tot ei o rmr •.■■tsxmiaB boo±4 ei£F

. 3 . • ni •1 ) ■ i- : f -■■■'■•

■■ . {;> . a J ; •,/ •: •? ' ji v - J J.ci M iifcot

W0.U:6fl •' • IO ill ; ’i ..L.;.' .’I ;f".C . *1^ nc ^ HU j : Zt ffo ;0 i* -y >** - ' *?. •• '•

■ .... ’ • •' • - - • • "

fc* 3V eatery .. :• J tv •

,'i it)' ".in*- ian.»

K-, EW SOTB’JgO'XOIflf f 1. ; w,C ':TV si 3-i

XX.tv oe i ■ • ....

a'..':: :ctcr.»• <-.=oc ’J. :J ^uoelsycTSi*

j • , . ; -

ifTP. n/1/lbOB iwnof .{•• ) v. • M *© - :'-

; . • ■ • . •■: .. , ■ .. . ' ■ ■ ' ' - ' ! - '

.. 1

. {cS) n ' -■ •

sj ( ■ ) - ■ ■ : ' ■ ' 1 :: ■ ■ '• ■

b*uiee«w 3j?w E« tooifi (Y ■) - - •' ’ • -- ' •

fle ■ oi. ’..tic- '0 -

. y 'ic i . i UV--JUT

'ic*'*’ n?

v/;c - L*,X j :>•: of b i i -v Iisroion fit .tnotwi'a haclri cwor.vv

lvy} x, - x , & tI .v-a .Model aid* ni oe>v-:eftfo< ^is.-.aoiv->Tq eXevei sol

• • r*t?w 'v, ; •• . • L . -w 'jtnoitfflF •.•sjonr.'V ai'.o if* elott.cus j.-.in»it

: n ■ 1 ■

.x£y.: , »;r.lit X- nol uJLonoo 9..1 19*1 * ILUw JbedJsUrfftc© Ml V - 8 -

Investigation subsequently revealed that the Upjohn heparin (1000 units/mi.) used throughout this study was responsible for the higher ammonia values.

The earlier range of normal had been established using Liquaemin^)

(Organon).

Comparative analysis using these two commercial heparin preparations revealed that the use of the Upjohn product invariably resulted in higher hlood ammonia values than the Organon preparation. The roe an difference in twenty-five hlood specimens, each performed in triplicate, was 30U€>®$ and ranged from 4 to 70 Jign#. It is ironic to note that three additional commercial heparin preparations, which were similarly evaluated, did not differ significantly from the results obtained with the Organon heparin.

The Upjohn product hy direct analysis liberated approximately 10 times as much M^-N as did the Organon preparation (1500{xgntf vs lOjugn^)*

Measurement hy weight showed that the amount of heparin required to fill the dead space of a 20 ml. syringe varied from 0.15 to 0.18 ml. Since

10 to 12 ml. of blood were withdrawn, approximately 1.5$ of this total volume was heparin, which would account for more than 20p.gm$ of MET ,-N when the Upjohn product was used.

It is apparent that variations in the amount of heparin employed might effect comparative blood ammonia values. The effect of the heparin may explain some of the discrepancies observed in the values for venous hlood ammonia drawn simultaneously from both arms of the seme patient

(Table III and IV). Since this study is concerned primarily with relative, ratter than absolute, changes in blood ammonia values before and after exercise, the obtained in this study is valid. The random distribution - 8 -

(.:.as\Bttau OOQX) niaaq & o::c: 03 :: I JbeXaeireT; ^Xds*0i*>e®i?ifB notd^xe^vnl

w . sinoffli • . . s / tf&t m

. ’ •' OH 1« fl V. '

. 'Tu ‘ )

) : . "j at ■ !■ *

j; nj; j L.; i<: iit »vnJ: J-- u :ifTJ X.^X»ove*r

ul eon»f©mfc asew etfT . nci^-xr^s i, n;,. . / : n -\S.; 3-n.iSrv .7 Inc:'jr: ■>. booiu

. - o . f ■

.. if.. £ ; o; ; • : ' . - * o • • • •

- • . . ■ ■ aol ■ w

/ xusle# o- . \»iJ,ir'j5oi'tia8le •xe'i'iXfc

C *•' # •• JWodlX is;n' c -?u£o'n! tri©t,c;!J «t

( • ■ • - C ) j ' FK * B ;

• • xil • : ■ ' ’ ■ ■

20C1/-8 .Xkj 8X.0 oJ 8i.O mo-l'i toh v - laii^ .!» OV. » to ©OBqs i>f»a£ ocj

j - .. X ,fl* • ■ - • ■

n ■ y -.ot &SM&&Q& fcXuow rfr/irsw M

, c-v ■ • ■ n •;,• ^d-t n-«

h., f.oicxn» ni » od to tauome -dt at - ,v S»dS -mwm* ei rl

O ©iff .BOwXfcf filaOfflWB IjOOXtf ©▼X±«t*KIttOO ^»©rto ^riaX«3

fjocu.v «ior r,^ui3V ©iiJ- ai feeviey* • • ^ionflq-STrot’.ifc irit o **t:3 ni^Xqx . X*®

fci jlfsq ©m«« add- to Rum; iltotf xuo*rt ^awonwXoPtF. ©inotrenr. fcoo.ic

t ii < riJ.c • : ■ ' : r • ’; a ' ■

. ,fU, frtr, „• oloc *.*rXirr Vioowc fcooio ni aesctMio ,*t«Xc«

t; i i X"' nolXocTI*'.if _i iuoi nr' c! . v >i ni r. . i . :■ •> ! 3 'V. S -Ii - 9 -

of the adverse effect of the heparin among the experimental subjects

permits reliable statistical analysis.

Results

Mild Exercise

In a preliminary series of 10 control patients and 7 cirrhotic patients venous blood samples were drawn for ammonia determination from

the antecubital vein of the exercising arm before and immediately after

100 "fist clenches" at the rate of one per second. The results are shown

in Table I and Figure 2. Only one patient (J.P.) in the control group

showed a significant elevation in venous ammonia with this mild exercise.

Five cirrhotic patients showed elevations in excess of UO/lgmfjL Two cirrhotic patients (W.C. and F.N.) did not show a significant rise in venous ammonia with this mild exercise. The mean elevations in venous ammonia, was 0± 20ju.gn$ in the control group and 43±22>*.gm$ in the cirrhotic group. The difference between the elevation of the means of the two groups is statistically significant with a P value of 0.001.

This exercise study indicated a greater increase in ammonia content in venous blood of cirrhotic patients following mild muscular effort as compared to control patients. Although the resting blood ammonis level was higher in cirrhotic patients, there was no relationship between the

initial ammonia concentration and the absolute or percentage rise in the blood ammonia.

Moderate Exercise

In a series of six control patients and seven cirrhotic patients r,. • j-tt Inner.** ' trow- n£? t. * } O J >/. o . <* ..f.s 'jo

.' - ‘ o. j > : - •. u ^oc

8Jit'; .O'!

, f-n : *)t«s If-..ion "■ . i' U‘ ::

■ j .. -,, ■ '■ • •• ■ :

• ■. •. .. i .■ /. r- ’ - * ■ * • ''

IV v- eij..«o©«s stfP . ooosee net, oiso 'to sifn du? f* ’’aoiionolc Jar." 001

; j - . llit ( ®

. ■ ■ f : • fj • • .t i & fcewoda

: . . ■ o Ctt ■: . ' . W> ■ - ■ -

i t„ f. i i o • : ' • • N

j; J

: . , . a O At 11J - .n C - ■■

:,Q _ av-'M- ” 't.o .# 0. .t ri, e.->»0HSl-».& •• - *• -l»tc o

■) - C ' ' 'J> -

j] i al Mnwnoiil n«Kffl®*jq| s ':

-.' - , bX* / 1

in ■ fU - ■ * - ■ i ' ’

- . , i . ■ ■ ?n rr • - : r '• •

IT ", i I ' 1 i (i

tcf •• Jt m>v-»8 '■ n>' & , 10

Table I

Venous Blood Ammonia in the Exercising Arm Before and After 100 11 Fist Clenches”

Control Patients Before Exercise After Exercise Difference

1. J.P. 121 167 46 2. E.F. 111 113 2 3- W.F. 110 107 "3 4. L.K. 145 130 -15 5- J.C. 151 137 -14 6. F.J. 126 135 9 7. P.H. 155 153 - 2 8. L.C. 102 - 103 1 9- R.C. 120 126 6 10. J.D. 133 102 -31 Mean 127 127 0 S.D. ±21 ±24 ■r 20

Cirrhotic Patients Before Exercise After Exercise Difference

1. E.C. 114 164 50 2. L.C. 129 169 40 3- F.N. 156 166 10 4. W.C. 150 14? - 3 5- C.M. 206 300 94 6. H.W. 157 206 49 7. s.s. 147 214 67 Mean 151 195 43 S.D. ± 26 ± 47 ± 22 01

I iXcfrT

nj • >i *»* A >© -• I - fonoiO ler GOX ***** -one mA

: i j' :. . i . ■ .•->"• ■ rr •• ■ J • -

Vdl in . "i . G .1 . . \ . 11 in . . ■:? - TCI Oil VV1 c Of! .« . 0 (-1- vei .d eei . .. i >-01 - 501 J. 051 .O.fi .CT. b .01 1>S- 501 tf.. 1 '(V X .v-'-.M 0-' IS’* .

i •!(.' v: j-r.al; •' • • z:y.r. ■‘*ma . i . j ■

. .!. . i Of >dl 111 .0. . 5 01 lei ^.1 . -.i. r • 1 ot ddl dei V). w - Til ip 00 f v. ; cO' . .u . j ■ T ' Vcl 4iS T '1 fUS^M fT“ X?I Tit dS r ,ct.s FIG. 2 Venous Blood Ammonia in the Exercising Arm Before and After IOO Fist Clenches.

| | BEFORE

^ AFTER Control Cirrhotic Patients Patients

Mean NH3 ^gm per 100ml

O 1 <

» { ) ( 11

venous ammonia samples were collected from the exercising arm before

and immediately after 50 "power grips" at one per second. The results

are shown in Table II and Figure 3. Although two control patients

showed rises of 35 and 36ug®$, all cirrhotic patients demonstrated

rises of more than 46p-gm$> with this moderate exercise. There was a

mean rise of 5p.gn$ in the control group and a mean rise of 80p.ga$ in

the cirrhotic group. The difference between these means is statistically

significant with a P value of 0.001. These results with moderate exercise

confirm the results from the 100 "fist clench” experiments. These findings

suggest that cirrhotic patients may have a greater tendency than non¬

cirrhotic patients to liberate ammonia from muscle sites with moderate

degrees of exercise.

Fatiguing Exercise

In a series of 10 normal subjects, 10 control patients without liver

disease, and 10 cirrhotic patients a needle was placed in an antecubitsl

vein of each arm. Venous samples for ammonia determination were drawn

simultaneously from both extremities before exercise of one forearm,

immediately after, and fifteen minutes after exercise. The exercise

consisted of 100 "power grips" at one per second.

The results for venous blood ammonia from the exercising arm are

shown in Table III and Figure 1. The mean blood ammonia values before

exercise were not significantly different in the three groups although

one cirrhotic patient (C.M.) had a baseline blood ammonia of 276|xgm$.

All 30 subjects showed an elevated venous blood ammonia immediately after

exercise. The smallest rise was 25in a normal subject (A.P.) The

largest rise was 320^.gm# in a control patient (A.S.). Although the - IX

zio'ied at:"' *nliiO".&xfc aroil bafroell.-o ;.tow aolqwefc ?laoawa euoaev

.; adT .Jbooo©® *xsc '.no te "ecrl^s iewoq‘ *i©J" . * iX>afii«2

Ic.n.taoo cv* xfego^lA . £ Xts IX ni iwofje

M < 1 -• -- • ' »w ’

... r. w ^or l' .eat':-?.*.:? ->.j,«na• or. :;‘iv ' t.r. : 34 ntfiil t-nora lo '-■ 'i*

u • 06 si* JbrwB quo* -' • - • 8® oeh n.

• s r sin .-;r 'sd3 n»0iui©rf tjoaMoHii erfl? .qoo*r%, oicroitvxlo

■_ - &, ■ 3 tv Ix/ee* i'‘- ■ ■ • " - ' • . ■ - ■■• -

i . i« ‘’its i' OC.... J '■ ■ ' ' • ‘

-ncn a&A3 iieJ *22Si**i% & ©vori sJnoii«q oiJcihraio Jbc^ub

a1 ‘robots riiJw eeJis * ' '• r,j Btfnaitosq oWodwto

. O&iO'S'iSX*) ‘iO ."6 >fc

■ t'-:- V ._ tevi • X loriiiw etfneJt J/sq Xo'TJnoo 01 . sioaf.due X'snion 01 tc ssiiew » n-

Xeiidnootnn a» at beo«I* aew ®I6**n * etfnei*** olJcrinlo 01 me te«*eeiX

nv -rr, s’isw noiX pnianedoX Rinoao© 'xol eolgmaa auoaeV .vrtt* done *o niav

fcetf aeJtf imenfrxo dtod isfo-i’i

>sioiox« ©riT .©aiortact® aetlv a#ttmla ae&3ht1 ban tnefts x^b^b! bonsai

.f«o.oe8 leq ©no 3e "oqiTS ->wcq1! 001 to b&izienoo

y*ie -:*tp ,nielo~ >j.s ©rid- «o*it eiaoaimi? i-ooltf euoa&v nol sfXneen ©rtt

Wi&<< :QUlsn viacme boo Id a«on oXT .4 ©auaXi Xnfi III oid^' ni nworia

* uctttX. qncTS «eii» ed* ni ttsnMtb xUcteom&M ton w* oetoiax*

booltf ©nileafid b Jbfirf (.M.O) ■ -

7,1 /±beunui siuowna fcold buomv betsvele, ae bevofc B*oel

tiifT (. t. A) #s>ettf*WB Xatnon b ni acw eeli JBelleoa erfT

i;X dv a<: (j'J./. - 12

Table II

Venous Blood Ammonia In the Exercising Arm Before and After 50 "Power Grips”

Control Patients Before Exercise After Exercise Difference

1. L.C. 15k 136 -18 2. R.C. 156 191 35 3- A .H. 128 127 - 1 b. G.E. lb 3 132 - 9 5- A.T. lb3 130 -13 6. J.B. 151 18? 36 Mean lb5 151 5 S.D. ±6 ±30 ±2b

Cirrhotic Patients Before Exercise After Exercise Difference

1. D.S. 11+9 21+7 98 2. S.S. 117 193 1+6 3- L.S, 11+7 211 61+ b. J.K. 150 232 82 > • W.C. 1^3 213 70 6. W.P. 108 2l+9 Ibl 7. C.M. 198 258 61+ Mean 1^ 229 80 S.D. ±15 ±21 ±35 - £1 -

II ©itfjEfiP

; ■ >c;; ,-i ;l: £.hi': hoc & 'uc r ," "t ; -■[: in w : G; i h bn« ©no!* ■

■ £©•* .. • ft . 'oi: • ■. J -.J

.1 3i- oil 0*1 . 'j. £ . 0 8 six -c . . ' .4

£4£ r ;» r \'6.i Xv X . '. L •; T f ' f/

d * .

. . •. _ t* . •a , -■ t e I ,

Bp . . 4 4"d 113 • l ■££S Oc;i . >. -v OT £IS lit I . . tf . 6 . ; • T . .'V ' trot

• • » FIG. 3 Venous Blood Ammonia in the Exercising Arm Before and After 50 Power Grips. | | BEFORE 300-

T7jI AFTER Control Cirrhotic Patients Patients Mean NH3 /igm per 100 ml

o ( 1 ( )

) ) - 13 -

Table III

Venous Blood Ammonia in the Exercising Arm Before and After 100 "Power Grips"

Normal Subjects Before Exercise After Exercise 15 Minutes After Ex.

1. S.A. 150 373 352 2. M.S. 144 276 207 3- A.P. 168 193 191 4. A.S. 180 249 — 5- J.D. 156 348 221 6. P.M. 184 240 160 7. T.A. 153 256 173 8. S.N. 154 180 150 9. J.O. 144 209 164 10. H.C. 172 216 «... Mean T6T 254 ~20E S.D. ±12 ±64 t 51

Control Patients

1. A.S. 110 430 284 2. K.K. 179 247 --- 3- E.W. 159 230 171 4. W.F. 158 377 263 ^ * B.L. 110 200 169 6. C.W. 158 346 161 7. J.D. 156 275 230 8. R.S. 170 230 153 9- F.G. 124 211 169 10. L.L. 116 177 -- - Mean 144 272 200 S.D. •±51 ±82 t 51

Cirrhotic Patients

1. H.V. 223 394 264 2. W.C. 135 258 188 3* C.M. 276 330 320 4. H.W. 196 313 204 C. J • s.s. 197 275 300 6. L.S. 116 232 139 7. D.S. 104 305 - ~ *- 8. J.W, 130 310 9. J.S. 139 207 --- 10. S.P. 117 231 Mean 163 ~28S 233 S.D. £44 a:54 ±65 - i -

III old T

~.rl | . ;«.! rye - -W- - J - - 1 • ■ i'j'Li ’.'-MC l

;.»f -Sit :.i,C JJC. i ■ .zA A atlUttJ '•rXo" --xl V~-.v '>■■■'. ‘ ''"1 ■ . A. 3 .1 441 .8.M .S F_4s 08l . . .4 84f e)ei .iT.u .0 Obi 481 ....: .V ZU £Gi obi 4£1 .vi.:. .8 4 41 STX . J. T .01 QUb. Id! ciboM Xdx Sid: .a. a

in 2 ) rv i . i .

48- or 4 Oil .'•.A .1 i ,a - 9T1 .1.3 P8I . W. • . ■ l VT£ 8?X .4 cos on 8»I . W. 0 .a ?vc d^X .G, t, .T OTi - • ♦ • .8 .0. o'dl. T T - - - dll » . ■ • V •. ,01 :, ILL inrr cic-jM s8 t V -i . a. 3

r. o.v. ::

. V. H. .1 . ). W . M. ) • 8 .4 pi w . . . oil .2.1 .8 . _ _ . .C — O.L{ 0- X 4 b . S. . -• .01 n«t>M 44 + . . FIG. A Venous Blood Ammonia in the Exercising Arm Before and After IOO Power Grips.

□ before EXERCISE ^2 IMMEDIATELY after exercise ■ (5 MIN. AFTER EXERCISE ( ( ) - Ik

cirrhotic group exhibited a slightly higher mean elevation in venous

blood ammonia in the exercising arm immediately after exercise, the

difference between the three groups is not statistically significant.

Although most subjects still had an elevated venous blood ammonia

level in the exercising arm at fifteen minutes after exercise, in one

or two subjects of each group the venous ammonia concentration had

returned to the pre-exercise level. At fifteen minutes the mean venous

blood ammonia in the exercising arm was not significantly different in

the three groups.

The results for the resting arm in the 100 "power grip" exercise

study are shown in Table IV and Figure 5- The mean venous ammonia values

in the resting arm immediately after exercise and fifteen minutes after

exercise were not significantly different from the pre-exercise values.

This experiment indicates that when the forearm was exercised to

fatigue there occurred a large but variable elevation of the venous

ammonia of the exercising arm, but there was no significant change in

venous blood ammonia in the resting arm. The similarity of the response

to fatiguing exercise in the three groups as opposed to less rigorous

exercise suggests that cirrhotic patients liberate ammonia at lesser

degrees of muscular exertion. When the exercise is carried out to the

stage of fatigue, however, both cirrhotics and non-cirrhotics respond

identically.

Arterial-Venous Ammonia Values

In three control patients and two cirrhotic patients venous blood

ammonia levels were obtained from the exercising arm before and immediately

after 100 "power grips.” Simultaneous arterial samples were obtained from .;joudv ni aol J r.ve.:. ■■ a' ft i&rfelri fi fcfttlri trix« 011013 ©iforivtlo

)0S ,&r,i‘j~9xe letflm v,i ■ >! -2Jbi win sortie 1 ©lexorfr nl '-inofrms boolrf

, •_. t erfl neewtfod aoaemTU r-

•i noair-• -he© Id euon&v I. -/ "/-I ■ n • 6k£ XXils afo©!'}

■ . , - . . :. . - • ■ •■ e ' -

;,ej( ac*f $>zjrn&c(ioo sinoronra twoner orif quotj-. xfo®9 af t.^one c *

ucnsv n ) n s t •

; aia .' ■ ' - ■

. 3q;iio*xa aeoril sdi

" v ' A il n 14 •• '

.juiev p-.inonESif. axionav nuarn ®r!T ? uta VI aideT ni nworfa arte xXuia

0 3©Jwfiler nsfirirt bne e-ai-ie** i&ile iclejslfresjnii arr.s unifsai sal m

■ - .• i ,’ ■

• -■ -

.yoneiv eit ':o aoltpv.»!•■> »ltf£lw Sue f&ial e beviuooo onzdt euuLSi^

ni 8g.rtP.rIo IntBomnsiG on saw etedf tarie galalo-iasw ettt *io alnouwB

... ;:• I iff fir • ■ ■

■ -1, ; • , o ■ ■ ' ' ' 1 ' ' C'

T ; 1 t o Kino;-,rat: U r.jrrelfBq ol.n.rfvilo Seds ateag^ws ©sioiexe

of fuo 60111*0 M w.lowxa odf nariW .nolfw* iai«o«um "io aeW8»6

r ■ ■ a ' • ••■ .yliBa line t>l

awil s/ irlnctfreA enon.’_V~X

60010 anonat :n»«ec -Wo*ralo owt to* attisUeq loilooo *n« “I ilel’-lbemil too otoHod trr* sal«lot»*» sifct «*rt banirJdo mow eisfei »taaan

».rt t, aUlto oisv 8!>lQor>t ffloonBltaia ".agios oawoq" 001 oerta - 15 -

Table IV

Venous Blood Ammonia in the Besting Arm Before and After 100 "Power Grips"

Normal Subjects Before Exercise After Exercise 15 Minutes .

1. S.A. « « w 172 ... 2. M.S. 153 178 166 3- A.P. 165 187 I65 1. A.S. 176 196 5. J.D. 183 178 201 6. P.M. 220 208 160 7- T.A. ll2 ll2 135 8. S.N. 153 113 121 9. J.O. 13^ 132 111 10. H.C. 118 111 « •«. Mean ~l&2 167 157 S.D. ±32 ±33 ±22

Control Patients

1. A.S. 111 127 « 2. K.K. 176 179 - -- 3- H.W. 172 169 169 1. W.F. 180 183 I83 5. B.L. 113 108 --- 6. c.w. 161 --- 7. J.D. 15I 161 151 8. R .S. 167 116 150 9- F.G. 1I2 133 137 10. L.L. 126 120 - Mean 151 TW T5F S.D. ±22 ±31 ±18

Cirrhotic Patients

1. H.V. ... 2. w.c. 111 150 170 3- C.M. 2l5 255 225 1. H.W. 182 181 173 5- s.s. 180 163 168 6. L.S. 101 112 137 7. D.S. 129 131 8 •T W

9. J.S. aa am 10. S.P. - aa, Mean 171 175 S.D. ±17 ± 51 £ 28 VI eltiflT

■ •' • ;• : ; htO. ••?•'* • . v " newoS* OCX bnr> s^iotwC ktiA

A astUiiiM CX . Si' ■*/.■:. i'j iqI'i ;i 1. .C '• .0 •iXoa‘/ oc ■■

: T X M — • . a. a .1 SYX • ‘5 rV.. . •:. k „ f d^X ^YI .4 6YX .a.L • •■ QdX SOY 02$ .0. i • C PpX 241 ?y.'d . A-T -V 421 Fi'l *ex . K. •: .8 I^.£ •ip I k± . Q,L .O.K ,o.c vax nr.f.'i sfil- . I. 0

ir.t i 7jbS • i :

YYI Hi * i — — eu avx .X.US <• YX . 7. P. . ; . V .4 c8 X Of • _ 8CX ■ i :. .;. ?: . V. ) * M .

. . ■ .1 . ^ry OYX IXX . . . - . K tYI 8&I 08x . .. ■' - -c1 sux 4cx . J. esx . 8. d • Y _- .8 - — * --- .C L

__ ^ -- » . .. .Ci 4c I n afcM FIG. 5 Venous Blood Ammonia in the Resting Arm Before and After IOO Power Grips.

Normal Subjects Control Patients Cirrhotic Patients

200-

Mean NH3 100- per 100ml.

o

□ before exercise Y7[ IMMEDIATELY AFTER EXERCISE 15 MIN. AFTER EXERCISE { } ( )

( ) ( ) - 16 -

either a brachial or a femoral artery. The results are shown in

Table V. After exercise the venous ammonia levels rose significantly

in each patient as has been shown in earlier studies. The mean elevation

in systemic ammonia measured in arterial blood was 11 jagm$ which is

within the limits of experimental error for the ammonia determination.

The 8rterio-venous difference in blood ammonia after exercise ranged

from -66 to -15l|ugn$ but did not correlate with the pre-exercise

arterial or venous levels. In these five patients a marked elevation

in peripheral venous ammonia from the exercising extremity was demon¬

strated without significant change in the systemic arterial ammonia

concentration. It is conceivable that the slight rise in arterial

ammonia concentration which occurred in two of the patients resulted

from the high ammonia concentration of the venous blood from the

exercising arm.

Effect of Acetazolamide

Nine cirrhotic patients in whom the effect of exercise was studied

were restudied within one week to evaluate the effect of acetazolamide

(Diamox^) on this phenomenon. Two hundred fifty milligrams of Diamox

was given orally 13 hours prior to exercise and two hundred fifty milligrams of Diamox was given one hour prior to exercise. Venous blood ammonia samples were obtained in the exercising arm before and immediately after 100 '’power grips.” The exercise response of these nine cirrhotic

patients with and without Diamox is shown in Table VI and Figure 6. The mean venous ammonia level before exercise was not significantly different after the ingestion of 500 mgm. of Diamox than it had been previously. •: . ■ ; - • ’ todtle

v ' ' • leve. ca V /GCM»V 3 H9» Jtc

, . • ■ • • - / i .

II & eat boo id Isitetf'UB ni elnctma J. st

m& es&t -zo’i 'lO'Z'xa laJtfMffliwqx* to «3iroli. en'.t niitilv

I

n, • - : - - cs toaov L ' . -

_ ; .■ f \ , tO SlflGKWfB Sift flST lanaftqitaq &2

a o -" jisoni iv saJo'ii’a

i'~ r nl -mil i ft* lie ;dLi 3*?ri3 e..cflvtsono' 6 31 .aol^Bitaooao;..

. , . tne i act to ovj ni ■ u xoitaitaeo In

... .. {j ,■ (toJtifi33fl6on

. 13*2 JB % Cl i £5 IO *S ax

;•• ■.. o j 1

■ ,, ;rT , ... j:.j .o "o,/:'lo rrf.3 Mow ni . jci lit iioirrci . *Ji-’

; iosjeoso ■ . I-.: t * 3ft J • - . • : •>' -

. • - . .T i ^ ■ f* : ’ ■ 'I •-

y -j ; S • ssiri "Vt £3? i , ai '•.••'inf; irarofl ^IIp.io novla b.*w

, i • o • • . i ; ■■ x '

n . a l *t isftt ni Jbanlftitfc ©now iqaw to

, •<-; nia ... ‘ o © noneon lelnnoxo ©;i ' •-

. c • r\ )lcJpsT ni avorie si xoanitf inofliiw i>a® fill* aim 133q in-'x. til) :itn - tv yon «• v ©aionex® not ad lev .1 «Jtac»®e aucnov OMOr-

Y.J. (K ivo'ic n»arf b- t 31 narli xo®ol

Table V

Arterial Blood Ammonia Before and After 100 "Power Gripe”

Before Exercise After Exercise Change

1. R.K, Control 96 119 23 11 2. *L.A. 246 273 27 f! 3. W.D. 123 128 5 4. J.S. Cirrhotic 129 131 2 11 ✓a • W.P. 182 179 - 3 Mean 11 S.D. ±13

Venous Blood Ammonia in the Exercising Arm Before and After 100 Power Grips

Before Exercise After Exercise Change

1. R.K. Control 121 298 177 2. *L.A . ft 190 310 120 11 3. W.D. 119 210 91 4. J.S. Cirrhotic 139 207 68 ff 5- W.P. 143 291 148 Mean 121 S.D. ±43

Arterio-Venous Ammonia Difference in the Exercising Arm Before and After 100 Power Grips

A-V diff. Before A-V diff. After Change

1. R.K. Control - 25 -179 -154 If 2. *L.A . 56 - 37 - 93 3- W.D. H 4 - 82 - 86 4. J.S. Cirrhotic - 10 - 76 - 66 11 5. W.P. 39 -112 -151 Mean -110 S.D. ±35

* L.A. had ingested 3 grams of HH.C1 45 minutes prior to this study. V r.;ld sr

t nc h "incM- .oclfc ... i'soJ’i t'-'vJ •i.ovo-i" OCX

a.'if.) si-.-tonox^ m*tA b:...{:oi«x, /'OX O''.

qu 2* Xo-itncO .'X dXS .A. . a, v? j-1 . d CTX 281

. Cl, 8

^nisio'iox . ■' J nl dXnoiBWv -0 (] o.uon»? 1 ’ ' . ■- j i - . a ' j ’ :■

>•■■!• i • ../ .J Of Xo^vrtf,: Otl.

X", j Xon Xao O ,X.F cm . .; * 01$ 0;'. . oiXoria^i X .% XQS . .V aeuM

« vi»

; % ' ' n.!: r« illlC ■ .jioian ■-. j - ~.c. 'J" .. eaXtcO fyVOci OCX *S'-' ■» + 3 A Xnv e'.:'vio8 rciA.

auru? d') .vn<> v-a - - " — —

« vT-- J" - Xo'i.trroO . )\ . ■" •• T£ - . : - ” C - oiJodiiiO . . • . x. w

(T - 18 -

Table VI

Diamox Study

Venous Blood Ammonia in the Exercising Arm Before and After 100 ’’Power Grips”

Cirrhotics without Before Exercise After Exercise Difference Diamox

1. w.c. 135 258 123 2. C.M. 276 330 54 3- s.s. 197 275 78 4. L.S. 116 232 116 5. J.S. 139 207 68 6. D.S. 104 305 201 7. J.W. 130 310 180 8. J.K. 167 313 146 9- W.P. 143 291 148 Mean 156 "280 124" S.D. £55 ±42 ± 40

Cirrhotics after Before Exercise After Exercise Difference 500 mgm. Di8tnox

1. W.C, 145 261 116 2. C.M. 256 285 29 3. s.s. 215 225 10 4. L.S. 151 370 219 5. J.s. 161 235 74 6. D.S. 108 269 157 7 . J .W. 147 314 167 8, J.K. 211 324 113 9. W.P. 138 281 143 Mean 170 “285 115 S.D. *48 ±59 ±65 •i -

IV bIc mT

--lOMnrI

0*± eri t a • im \ : :;co-v- - ; ; . CC.. 'tal: ■ .' a ■ ■- •

•• ~vn ; ' xJtO

fSl 4(* Ci- ? te .0 . s~ A VC1 •- Y9X r..CI .4 A TCI 9FI . : 4CI . . . d Ofci 01 O'-'.). g • Y c.lj- «*K Y'U .6 A'3 £••1 . I. 0 .9 EBT n if; * c < v\ * -•

•.-r: >' 1 «3 t _ •J ■ i, 3 (f$& ■' ■ " ' ■ i-iiO ' " ■.G ..'J :.;3

an ias *41 .o.w ,1 ;*go; ..4. : .£ ac;s • ’U . •e Ifi .1... .4 01T a 4y ees ... a . • .L - V. i r . 801 . d 4I0 Y-i \ . H.L • <> .if- .‘j.W TfZ Cv.t oe * 84 * . . FIG. 6 Venous Blood Ammonia In the Exercising Arm Before and After 100 Power Grips.

Cirrhotics Cirrhotics "Diamox" 300-

Mean

NH3 | | BEFORE 200- /xgm ^ AFTER* per 100ml.

00- { ) i )

( ) ( ) - 19 -

Neither the exercise-induced rise in blood ammonia nor the mean base¬ line blood ammonia level was altered by the administration of 500 mgm. of Diamox. It is interesting to note that although there is a wide individual variation, the elevation in venous ammonia following exercise was quite reproducible in the same patients with and without Diamox.

Although one patient (D.S.) developed a transitory flapping tremor five hours after the second dose of Diamox, a repeat venous blood ammonia at this time was only 148 M-grafif>. Diamox apparently had no significant effect on the peripheral release of ammonia after fatiguing muscular exercise.

Hydrogen Ion Concentration, Oxygen Saturation, and Electrolytes

In a series of five control patients and four cirrhotic patients venous samples were obtained for blood pH, oxygen saturation, and serum electrolytes before and immediately after 100 "power grips.” The results are shown in Table VII and Figure 7-

A.11 subjects showed a fall in venous blood pH following exercise.

The mean blood pH fell from 7.40 to 7.28. This change is statistically significant with a P value of 0.01.

Six patients including the five control patients showed a decrease in oxygen saturation following exercise. In one cirrhotic patient (W.P.) it remained unchanged, and in another cirrhotic patient (J.W.) it became elevated. The mean venous oxygen saturation fell from 66$ to 55$. This fall is statistically significant with a P value of 0.05.

All of the patients showed a rise in venous C0? content following exercise. The mean C0?content changed from 23.0 to 25.1 rnEq/l after exercise. This change is statistically significant with a P value of 0.001. - QJL -

*!'.•* - •••a cans fcoold nJ: eel’s iter-wJani- •• • ® erf* "teriJIaW

on : a.1 •. irtf \r.d be'i&tM bbw level elseancs 600X0 soil

i - j- ii#is * -'Sit >jca j : -•’ n’ J. . eoiwsia to j 1 to* ' • »oa®T al no • • - ’ ■ • • '

. w0t 0 0 wo, t;>; i.n- ittJtw Btaettoq smea &A3 nJt eloiowimoe? iiJjp sew

/ / ll

j* sinciDBJs loo Id acyiev * ;aqei e txoer.eiG So >ac:> taooo? sxiJ- seJlB ?-i0orf

; n • • - •

,e i. '. yj , •s -j.u TeJS; inoi’.us So Ifrr lqi‘. *tT aitt no

. . IB tXXOl . TO. ' ::

■ . , . iwo ;i ' ' . ■ - • ' r D® t ' ■. ■ T

f . ic ■ f - : r ... TO Sli • ■ ■ om *

-j i f 1 j . - J M 00X T ..... ■' ' - J

.T ©Tuan has IIV elc e? al aw:.»ria «ts

. ■ ;• - nlwoXJ X< wofl s tla" • * m XJ

>:t Oil. I©S 5c as

.10.0 So -awlev - diirw ctaeoi. ; ingle

• i_ i ,;rori3 r. j-riatt^ c: CotJcic.. >vi‘v eild* ^nlXwloni &' la- Ow r.; .

r r y »no n ox© j.jjnlwollo’i nol$BTirlB9 no;- «*J

t (. ./ ■ ' • j: T©riJon-e at baa xbe»a onu lenlanres 11

. V.- i ■■•'-;• iiO< i »x ncMesaJsB n2.RT.xo ewonev neew ttir .lal

. •' ' o fl . . ■ > ’ . - * •

LXoS tn-vtnoo 0 auon->v ni 38.t*x a Lava ns efaoti "Q -v-' XIA

. j v nora Ac a ' ■ \ ' •" ■ •

( . j I . : . ’ - - ; • • -l 8. 7. 6. 4. 5- 1. 9- 8. 7. j • 6. 5 • 4. ro h 3- 2. Venous BloodpH,OxygenSaturation,and.Electrolytesinthe Subject Subject W.S. W.P. W.D. J.W. J.D. H.C. W.P. J.S. L.L. w.s. W.D. J.W. D.S. H.C. J.S. J.D. L.L. Exercising ArmBeforeandAfter100’’PowerGrips’’ (Cirrhotic) (Control) (Cirrhotic) (Control) If »! ff ff ff ff If tf ft tt ff ft !« Mean S.D. Mean S.D. pH Before ±12. Before After 82.6 77.6 62. 58. 60.9 69. 68. ^2 Sat.OgDifference 52.1 ±.03 7-40 7.41 7.^0 7.^5 7.44 7.38 7-3 8 7-38 7.40 7.40 OXYGEN SATURATION(Vol.per100ml.) HYDROGEN IONCONCENTRATION Table VII 20 pH After ±9. 55-2 62. 64. 52.5 64. 45. 53. 56.3 44.8 t.06 7.28 7.25 7.22 7.23 7.25 7.22 7.32 7.34 7-37 7.32 Differen 12. -11.1 -30.1 -15.9 -21.3 -l6. - 4. - 7-3 0. 6. ±.08 -.12 -.18 -.15 -.19 -•23 -.06 -.06 -.06 -.03 -.16 - G

1

... ■ f>a ■ .;.i ••• nsg^jtO ,Ha fcooxg aircaeV •• ■ Q M I : t i ■ ' ■ j rti

r . . >.t.o i ■ '£.

■ •. rii i - a fi A :'iq stolen Rq ife

04. V (XO’ld'lfBOO) l> 3e. v . j. :■ n A. . - Orf.T it aO.- se-r . C! . 1. It oO. - St • T 6f.T . . " 0 T • :.T (r\t toi-h i: 0) . • U — 44. V . . T .V . If — XJ.Y . V. L

' lo0 _ ITT £ ViJOUC; nait/tllG. .4#' 0 ■ . i y ■; . t ;j 10^1/'.

B. 44 i.se ( j j :i ') ... . J. . - • d.YT . . >I- . . . ‘•■'.■‘i- .(“4 Q.Od . ,.L .4 . 4 - . 4 ,8d ’■ . a. v

i . 0; - av . d . 4c) . W. \'» . C . • .k . J.X -* . . C :T,l >c: ,ei.t .9 i .Si. ♦ \ 21

Table VII Continued

SERUM SODIUM (mEq. per liter)

Subject Na Before Na After Difference

1. L.L. (Control) 141 142 1 If 2. H.C. 140 144 4 11 3. W.S. 138 140 2 II 4. J.D. 134 140 6 n 5- W.D. 138 140 2 6. J.S. (Cirrhotic) 136.5 138 1.5 Iff 7. D.S. 126 128 2 Iff 8. W.P. 132 132 0 Iff 9. J.W. 137 137.5 0.5 Mean 135.8 137.9 2.1 S.D. ±5.6 r 5.2 ±2.2

SERUM POTASSIUM (mEq. per liter)

Subject K Before K After Difference

1. L.L. (Control) 4.75 4.50 »0.25 Iff 2. H.C. 4.25 4.25 0.0 Iff 3. W.S. M ^•5 0.2 11 4. J.D. 4.5 5.0 0.5 e; 11 ^ * W.D. 4.25 4.5 0.25 6. J.S. (Cirrhotic) 4.5 4.5 0.0 11 7. D.S. 3.3 3.4 0.1 19 8. W.P. 4.5 4.5 0.0 11 9- J.W. 1-3 M 0.0

Mean ~1.29 TT38 0.09 S.D. ±.55 ±.46 ±.02 b: '.nf. ;n ■ > fV wit y.

( .pSm) MLrigoa

j:i .■ * iQ •xs^'iA sW enoly? sT> J.. ■

(lo .Tno ) .J .d .1 1 tl 4 44i 041 . ,> 1* oai 8f;i 041 . Q T, 041 * v ». i 8 ex ^.0^1 ( . ; tor • ) .. L , o 1» 8SX oSl • T 1? Q j. 3£I . ■-> t{ ;•. T£1 T - . L .0 r £.c 1 n .•'••! o -*■ 'A . i r-. s. C -- A

34>nd*idViid 'ta't'U' X sreoft bfi ... ioa^ritfo

oe.a ( ' IOC ) .1 *s.o - er.a H r^S.4 . :. : 0.0 M s.o . il It . 0.

Table VII Continued

SERUM CARBON DIOXIDE (rriEq. per liter)

Subject COg Before C02 After Difference

1. L.L. (Control) 24.8 27.9 3-1 2. H.C. If 22.2 26.0 3.8 11 3- w.s. 22.5 23.5 1.0 ff 4. J.D. 23-6 26.1 2.5 tf K> • W.D. 24.1 25.3 1.2 6. J.D. (Cirrhotic) 21.9 24.5 2.6 If 7. D.S. 25-3 26.6 1.3 8. W.P. If 20.0 20.4 0.4 ff 9- J.W. 22.5 25.1 3.1 Mean 23.0 25.1 2.1 S.D. ±2.1 £2.7 ±1.1

SERUM CHLORIDE (mEq. per liter)

Subject Cl Before Cl After Difference

1. L.L. (Control) 102.8 102.8 0.0 2. H.C. 106.9 102.9 - 4.0 3. W.S. 92.3 92.7 0.4 4. J.D. 97-6 97.6 0.0 5- W.D. 99.8 100. 0.2 6. J.S. (Cirrhotic) 102.9 102.7 - 0.2 7. D.S. 109.5 107.7 - 2.2 8. W.P. 94.7 94.9 0.2 9. J.W. 93.8 94.0 0.2 Mean 100.0 99.5 * 0.5 S.D. ±7.3 ^6.7 ±1.4 -

6 uailncO X. \' vie sT

' i j . :J : •... x.

OOflKM 6-lOtQg s!.,) :*• jy i: .

(Icin'' ) . ; • u. 1* O.dS II . . c.x M'S e.":c; - ■. X.dS . t 11 Si . X F. *3 X. 49 . . w S.IS ( J. 3 ivtN . Cl. 1 | . . " ■ V r c.o . . X .?■ p .; \

^ • s. .

{ ) J

isi’iA XO tJ'V-.'X Iv j M

ft. SGI 3. VOX [ Xci jT: - ) ... • 4 __ V'.Xi e.dOi r ... . h . . 1 C.O . y;. .oo: G. X'V . . ■’ T.'-.OX • . SO ( no.) V - VC.L '.cc " .t.0 . Y . . . . s'. .8 V r T* . ♦ ' • *1 'T< ~~ o.'ocx • .* Y.d + FIG. 7 Venous Electrolytes, pH, and Oxygen Saturation in the Exercising Arm Before and After 100 Power Grips.

mEq./l

mEq./l ) ! J

) 1 ) - 23 -

There was no significant change in serum sodium, potassium, or

chloride following exercise. The slight changes in these parameters

are within experimental error.

Serum Glutamic Oxaloacetic Transaminase

In a series of three control patients and three cirrhotic patients

serum glutamic oxaloacetic transaminase (SGOT) determinations were done

on venous blood from the exercising arm before and immediately after

100 "power grips." The results are shown in Table VIII. Although two

cirrhotic patients had baseline SGOT levels above the normal limit of

40 units, no significant change in SGOT was observed in the venous blood following exercise. The differences observed are within the experimental error for the determination.

Serum Magnesium

In four control patients and three cirrhotic patients serum magnesium levels were obtained on venous blood from the exercising arm before and immediately after 100 "power grips." The results are shown in Table IX. No significant change in serum magnesium concentration was noted following muscular exercise.

Discussion

The significance of the liberation of ammonia by muscular exercise is not clear. It has been observed that in the resting state the peripheral arterial and venous ammonia levels are in equilibrium or show a small uptake by the tissues of the extremities. With muscular activity large amounts of ammonia are released Into the systemic circulation. It must o,7 - . ul o (straps a.c wjfrst&do itaeo .Richie ©tt went 'isriT

ibj ^rtfwoXiot obiTOXrfo

.TOr,i .f n;Ml'r.'-z.y;.& nidJiw e--'i,;

.r; ’ • i. j ' • >*.'• ' u 0 " UT

•J-olJ" rfi'it ! ;)-1' 7 »- v ::tnzl&t-q ICTino© e^ir# ":o aeiTaa e al

, ( 7 ) * ‘i ■ • i-iv tui# mratB

-v,}*! -if. r; j; bn*' ••:'lG>ed ' : s.nir-’.jtOTG '; eri:t :u-\ feoeic fiflOfiev ilO

. . [V ©ItfaT ni nvorie ©t® sXXjjaei I ' ( t’

; ; . evcx • • a • i.

ftu-onfcv .il nl £■■ . ■•-<:•. arv T00<. ni 9’^n- •.:> iTJ^v: i'iingie on taJinn (•»*

. ::J- a ‘ iJ-tw ©ia b©tn ■■. •. ' •■ . a r I - © •

''ai -j-r-i r t;i ©tit /J tott© ie:tac-affll'i®qxe

uiv/i - Hi;

.7 ft ■ : • iXo ©©nicf bne e'frneitftH - tnoo il

. • ■ . - - • <:o . • . •• - . •-

•v lijeai wriT ".egi-sji i*woq‘‘ 001 Terf* pi bne eiol©rf art*

, i j ■ , i *ri n rw ' ni egaerfo ia ■ - 1 “

!; v •; : ^niwoXXo '-.j - o - ^

o. taeuu •

; i ICitWTfl I©t ST® i ••

, ■ j- ©j •; nJt t ed ■ u a a 0rf °

wod* to , ri'jx xiiup® ni •T^slcVv, in fflin ’ .‘Honev n xv;tTeiis

1

X an? t7 . nc ' ' Lit *ito cirnotf -\k' &tt3 o&ni bTt.woi;vt ©tc 7. L.S.” 6. J.B." 5. S.S.(Cirrhotic) 4. L." 2. W.D. 1. C.W.(Control) 3. L.C. Serum GlutamicOxaloaceticTransaminaseintheExercisingArmBeforeand 6, A.C. 5. D.S. 1. E.B. 4. L.S. 2. W.D. -4 ONVJ1 3. F.R. Subject MgBeforeEx. Mg AfterEx.Difference Subject (Cirrhotic) (Control) Serum MagnesiumintheExercisingArmBeforeandAfter It If !I It After 100"PowerGrips" Before Exercise 100 "PowerGrips" Table VIII Table IX 100 - 24 1.9 1-3 1.6 1.7 1.9 1.8 1.8 13 58 12 34 31* SERUM MAGNESIUM(mEq,perliter) After Exercise 100 1.9 1.3 1.6 1.7 1.8 1.8 1.8 63 15 36 12 3^ Difference - 0.1 0 0 5 2 0 2 0.0 0.0 0.0 0.0 0.0 0.0 • ••

IIIV oic yT

:■ l ' - • T • ■ ; "'.ci'iO levc . ’ GG1 'xeJ.

r -*Xia ‘le-lvA to:-?, iy.

0 (loiJaa») - .1 0 si . :o r\ C-t r .E.ru .£ (if. ( .a OCX OCX . . 1 .e 8e .0. A . 0

XI -Id ;.:T

■ ; >a -• . *xA tor oxi .nJt ffisri*aa8«M fflin»€

"scItO "iwci'1 001

(■ . i ( ) ; ' D ioioTi r x3 r&ftk v/M . v: ar'St&E ' -I -j

0.0 8.1 6.1 (lo* ) . W. .1 .a.w .s 0.0 ■.-> • 8.1 1.0 - 9.1 ” . ;.j • l .4 T-l T.X 0.0 ?j. I ( ■ I ) . • V 0.0 " .f. . .c> 0.0 9.1 9.1 • V - 25 -

be assumed that during normal daily activities the release of ammonia during muscular activity is balanced by the extraction of ammonia by peripheral tissues. Furthermore the liberation and extraction of ammonia by the extremities is a relatively small part of the maintenance of the overall ammonia equilibrium In the body in normal subjects.

These observations have several important practical aspects in the management of patients with advanced liver cirrhosis. The first of these concerns the value of bed rest in the treatment of liver disease. The muscles appear to play a major role in the maintenance of normal systemic blood ammonia concentrations when faced with increased intake of ammonia or decreased hepatic capacity for its removal. The uptake of ammonia by the peripheral tissues has been shown to occur in both normal subjects and in patients with impending hepatic coma, as systemic venous ammonia levels rise. This extraction of ammonia by muscles has been interpreted as an attempt to maintain normal systemic ammonia concentrations (7,10). When the capacity of the peripheral tissues to take up ammonia is surpassed, terminal hepatic coma appears to develop. Since muqcular activity is accompanied by the release of ammonia into the systemic circulation, superficially this implies that muscular exercise may be harmful in liver disease, in general, and in impending hepatic coma in particular where small additional increments of ammonia may be quite toxic. Until there is a more complete understanding of these phenomena, it would appear wise to employ complete rest as part of the regimen of therapy for impending hepatic coma.

The observation that even insignificant degrees of exercise may release large quantifies of ammonia suggests the use of certain precautions i aaftfiTltfoidB v.i; *50

l.i •: n >: . ••».•/>" ■ j rt .': \.s;• v' / . *?:■ ■:.ivs ^tiiovb

, v ao no 1 > • . ■ ■

O I ■ ' ■ ' . : • ■' i ' lH tX Itl ;■

, j .o!- u ■ .on at \,bo iyfrj ill i ,j:ocf> • on wr - ilsis-vo

tout. ■■■'.• : • , t 8flDi:d»V,ie8>tfO o-JftrfT

J ' ■ ^ ‘ . tagsaan;

• ; ' ! ■ • . .! ■ • ■■ SSlBV •

ie.faJta v . « . ua . b J b

.. ;

; • < ■ • I. • ■ ■ j n

■f'■ f irworfs need eari i.j i :<■;I • .. - ) :,c •jj;noC!^e> lo u

• • . tt . 1 "

tnc > io olfJT . ®aJt*3c alovai

: J . a ■

. - i . ' J oa looms

. oc sg© -I - -■ /ail

‘•■v .. j . •: im>c . no ■ •: yflvtfoa isluosw - lJi . colavoi of

. . .i ; ■ • • -

jo ’• nl . -3 '!>»!: * •11 nJt lulm •rt er -..lone a •• -.ujoeu-n

■ j tl .. I ■' /■ ■ >1 .nfc ■" ■ mi rr ■ ac a r on ...-wri 1 •/ ■ . 7>' .■ 1- !•."• • • ‘ i • -.tftv "i

• j is od v rOTC.r; ■

. • o oir K r,; . , ' - c ; >; -.r r i '.o i > laei oof io

' o )•. ... j • ..'{i;.,! oil ;i va jtv' noi vm .ro ri ? ao J. u *r rtJrj- ') io nu .•■1 ~.?seww-. -Inormr i j o M.tli'up ogisX - 26 -

in the withdrawal of venous blood. The patient is frequently requested

to clench his fist repeatedly in order to facilitate the filling of

peripheral veins. Since as few as 50 fist clenches can cause significant

elevations of the venous ammonia in cirrhotic patients, such exercise

must be assiduously avoided. Although some investigators have recognized

this artifact, it is certain that it has not been universally appreciated.

It is interesting to note that one group of workers who noted surpris¬

ingly high venous ammonia values in newborn infants, attributed these results, at least in part, to the activity of the infants during the

collection of the blood (28).

The data presented in this study confirms earlier work which demonstrated increased ammonia levels in the veins which drain exer¬

cising muscle. After mild and moderate exercise cirrhotic patients

showed increased ammonia content in venous blood immediately following exercise compared to control patients. After more severe fatiguing muscular exercise, however, the elevation in venous blood ammonia was

similar in cirrhotic and control patients.

The explanation for this difference is unknown. It is interesting

to speculate that in the cirrhotic fproup of patients who had a higher mean blood ammonia concentration, the ammonia binding sites of the peripheral tissues were more nearly saturated and might liberate ammonia more readily than in normal subjects. Certainly in patients in hepatic coma arterio-venous ammonia differences increase as the arterial ammonia level rises until final decompensation develops accompanied by the release of ammonia from the extremities (10). This has been interpreted

to mean that the complete saturation of the peripheral tissue capacity jj, :,u,; - - in l moltad'T .hocLti ww-v "o s-i ni

5.11X11 ■ tlJtOBl Q ■ tti

: i ' ’ ’ <* 1' - '

• ■: ' ■■ ■ ' t l J 1 :

■ ,t<&u*ovixl aaoe fauoteik . • ^

. bet<■ tstyixiqs- iwtau aeac lent : • ' it tssii r ; .*voo si "i -■■iil’xe 3irt't

. . ■ ■ 9 ■ -n a.ttwmta - ‘

j ta ni mo a til ' ' - 1 u

• . - • ' •

. {>• ,) r,ooi . y ' ) ncjinniioo

in* ••• •■ ■..' -ioi.L'i!-i ijJWilnoc s*-'* nl i-**0**' 'i": eril

• . p. . ' . flft » •• - ' •'

, : , -; ► &i i ■ ■ • - ■’ '

. . io't V. ,:.

• . , # ' I ■ ' - •

, ,• , ... ? vmH^A trttioi©xe -xaiiiDetfB

. jtfn.io-ag io*xia > .n* ol Joe-nip ui .u.-i.

. _ • aaoatkm - - ■ : ■ - j ;l ; - 1

. -.vo-:--;; *iit at

jaJ- )c jtia •^ni.fertid einoofflB aril tooXv arihiaoao sinofl:m.B fiooXcf a^as

■ - ■ a ■ • ■ ; *

at Kta,lt*q. at i±atet-seO .et06{,r.u-. . stfln.cn at art* xLllxvi worn

x i-r j , rtt kb .^Beaaai ®oc-fi*n..>rUfc Blncaw® anonev-oi'sojfn a®°°

< D ■ ’ ' '

C«x) $ ' "TC

xcM: ,c *u, *lt i-ioriciioc ocU lo ncltf^ulPn aiU lari? n«« o/ - 27 -

to bind ammonia has occurred. Since most of the ammonia determinations

in this study were performed in the postprandial state, it is conceivable

that the peripheral sites might be more nearly saturated with ammonia in

the cirrhotic group. Unfortunately, this study does not directly answer

these questions.

Some of the results observed in this study may be accounted for

on the basis of the abnormal flow patterns which occur in cirrhotic

patients. Palmar erythema which is frequently found In cirrhotic patients

is thought to represent arterio-venous anastomoses in the hand. Silverstein

first showed that the abnormally low arterio-venous difference of oxygen

saturation in cirrhotic patients with palmar erythema could be reverted

to normal by exclusion of the hand from the forearm circulation (29).

Fisher and coworkers confirmed these studies and demonstrated a decreased arterio-venous ammonia difference in cirrhotic patients with palmar

erythema (30). After exclusion of the palmer circulation in these patients

the arterio-venous difference returned to normal. Exclusion of the hand

in cirrhotic patients without palmer erythema, however, resulted in no

significant change in oxygen saturation or ammonia content. Presumably during exclusion of the hand, arterial blood passes through the capillary bed instead of directly entering the venous system through the arterio¬ venous shunts In the palm. Thus the arterio-venous shunting of blood

"around1’ the muscle tissue might result in higher post-exercise ammonia values in cirrhotic patients with palmar erythema than in other subjects.

This difference might possibly explain why cirrhotic patients appear to liberate ammonia at lower exercise levels than do normals. ejbn ■ rife) t> tl-ocj , wt * «t * wm o?

.. , ; ■ • Ti sinJ (it

Hi slaeowe eica -'.o yri^JLa u*i ifetaec ^'

.i(,v .fj,.

. in J: :i: •.• r ." t

. . . , . I J ■ ' " • : •' : 0

. ■ • • •...•• v. . •: ■■■ -

,.m i, ■«: olJoitolo ai ten** imttpvii i .w*ti*y,r

-

n .. , x > •( • ■»atne**.£f> ^yoa&v-oiTs.t'ta vol tllittivtad.t s> * 1 tav-. r!.. l£"i. i

jt> •/:» imls? tin * sSa»it*q i : ■ . w&inutfa

■ J .-'■••

-_■ . • aft • •,, no i .. >n i t ' ■ ■ " *6 " '*■ ,i!

to _

• ••' rrotsaiol* 'ial'iA .(Of) fisodlx*1^

0 j a eanoieftli £> euoaev-

en n ‘ ftojiu: o-x t

,n . ■ . ■ - - • «*&> ^Dliin^ta

v-i ilic r> erSl (fetroirf* 33onsq ioold ttei'*i ed* ’it notai/Iox© aol-su*

• n . ancfrev - ©ill SQi-V. *:v> %L&**>lU ' .. .

j a |aa fcrt^M ' ■ • ' ttpm

. t. ,. : j..um Irifciiw ©weelJ il&Um

a t ' ■•" ' - ■• ' ' ' ': ' *

r 7 ~ . ;:r •• ;-«w: r -cj -.Ut 'vilo >ytir n.'*’I:;xv \.i.d±*• =?o

. lftcnon :-.ft nartl aj.*v*I : i -^x, vnroi 1 tOtom* oStn^SU - 28 -

Only six of seventeen cirrhotic patients studied herein had palmar erythema. In these patients there seemed to be no correlation between the presence of palmar erythema and the degree of response of blood ammonia following exercise.

It is of interest that Abelmann and Hutcheson were able to demon¬ strate greater peripheral blood flow in the lower extremities of cirrhotic patients both at rest and during exercise (31)* A rapid blood flow with increased arterio-venous shunting might have several effects on the ammonia content of venous blood after exercise. In addition to the effect of shunting arterial blood directly into the venous system, other possible effects might be postulated. A greater blood flow might dilute the ammonia liberated after exercise and actually result in lower venous ammonia values than would occur with equivalent exercise and a smaller total blood flow. Since it has been observed that maximum elevations in venous blood ammonia may not occur for several minutes after the cessation of exercise (*+), the rate of blood flow may be important in determining when peak elevations in venous blood ammonia appear in antecubital venous blood. Certainly blood flow measurement would be helpful in interpreting the results observed in this study.

Some authors have suggested that there is a direct relationship between the oxygen saturation and the ammonia concentration of blood.

Iber and Chalmers oxygenated venous blood in vitro and found significant rises in ammonia content (32). Faloon and his associates demonstrated a rise in blood ammonia, after passage through the lungs, which again suggested this possibility {33)• However, recent evidence by Beartl et al. indicates that oxygen saturation per se does not directly alter the ammonia of blood (3l). ni -■ : j . i t : r ' i d 1 ;o ' n

i j;j-,r ic: '.a a o.. • -r: xij ..da .'.trc n. . ’X'wi.sq

. ...JC. ;v> nr (B riTi’.'i !’q :o o-.rr.. >C:*tq o :i v\/ic

. : ..ai'v - : ••• r< U.

-aoi»»i) od :■ cxiW croi ••foljuE In.8 nnwiXatf^ dn/:d '-‘.el ai to si dl

■ ... ©darrda

. ( : -i.

• - ■ . . vast t -1

•j noidii -i. . - io- jr*>oit o • ' d dnoo -rtf no

. P aXStmdB \o ®£d

i j . d Li. . . ■ . j . . . -

■ r. i ■ . ' if

. : , ,J. ■ iuew 1! ,1J rJ- Wt ' 1. ’ ' •

• , - ■ " v- :

• e&SQffltt» t>:;oj.cf swone* Si -r.ncidr.v p

ac von cooid do vJ«•. arid- ,(A) wivs**© 1o noidnaaao .rid Pet’ka

- ■ - _ ■ ■ - ■ . Way Ri "

il n ili • & stride' * edn t fiJ 1 • - • "

i-tinoidfi to&tlk s <»1 ®*©fid d b-od •:• <2S$8»© ©v&ri t-sorida* as»3

•to noia -dn. - its • as aoidowdea n^xo o.*t flMMtstf

_ ;j • • r ; • ;.auo'.t .or o*sdiv atx . ksjobov od.eaie5i.vtc a'Jeoues.iO

a be • idancfflei oedriooeeu elri Jar .( ) dfl«dno^ ai ©Mi*

B : . lilw % :.y:nul l'd tX'-.uo'srld *K»dt * , filnom&ns .■.•■ oir ni -■• - *

j-. ;. . . • *0 •i • ( .* ) .■.J' liidl&f.'OC oi*\d •'

.rid *. j.. >■ v.Idoo'.tifc "on e -b yo *«jq tioidc*5.;;ds0 ae^^xc d'•’•rid ©edcolyni

. (Af ) .ool-.i 'to - 29 -

There are broad variations in the venous drainage pattern from

the muscle mass in the forearm. It has been estimated that at least

80$ of the total blood flow in the forearm is from muscular sites (35).

Local exercise increases the blood flow in an extremity, presumably due to vasodilatation of vessels chiefly in muscle tissue (36). Much of the blood from the muscles joins the superficial venous system

through a large communicating vein at the antecubital space. Although

the composition of antecubital venous blood varies according to the proportion of blood from cutaneous and muscle sites, this factor has been assumed to vary in a random fashion.

Systemic arterial ammonia levels did not change appreciably

immediately after exercise. This stability of the arterial blood ammonia in the presence of considerable peripheral release of ammonia suggests a rapid dilution or clearance of the released ammonia in the five sub¬ jects studied. In this regard, it is of interest that the venous blood ammonia level in the opposite resting arm did not increase significantly in a series of subjects after severe exercise of a forearm.

Diamox, which has been implicated in the precipitation of hepatic coma, has been shown to block the peripheral uptake of ammonia by peripheral tissues tk the extremity (22). This observation suggested that the carbonic anhydrsse inhibitor Diamox might also alter the peripheral release of ammonia following exercise in cirrhotic patients.

In this study Diamox had no demonstrable effect on the peripheral release of ammonia following exercise.

Changes in other parameters such as venous pH, oxygen saturation, electrolytes, serum glutamic oxaloacetic transaminase were measured -

,:0*.; ,r. eni-'ll :.y -nov Adi .ni sxmi-J ex**.".? o• •- v. o •*>

- , j «,:•! > tK,™ -tii i.j^botio! mf ni. z&m •-loearo ad*

... . • . . yf ■ ■ ; : . ■ 0 . ’■ ■ $g i &

Y> . y ,. # jtm-nJx* an at woII fcoolrf erf* e'aaeOToni oai:•■■»« -^oj

fi .{, ) ,,u; li •».' JtuMf o.i Utelrfo «?xoHS,.v lo ijclTf,r*iii3oe®v.o* aui

. .1 1 .' M — ‘ 1

nia ttt * * 1

. , - ■ ' ■ • ■ ' !

f. .. .,■■;■ . i;.j• . -j-•.!:• u.-j auoex7£‘*wo MO-ft O' .0 n>Ltocg-;:

:■ . r •' * ni 'v oi i? r -

r ■ ■ ' ' ‘

. „ ■ . - / . ‘ ' '• '

in ■ to . .* !»• - H " ’ : ®J

, t ■ t A. - ° « ■ '

,oid ircnev « a?0®t

:■ - ' '■ « J :; ’

• , . ' - -. • J ■ ■ ; u ' ' ■' ® •’

; j .(( *xc aoi7-’JloIvomo &■•:■■> ni Owod e’cl *.i *iriw

.. *1 .. ** -■ mi ■ •-

■ °-

e 7 ,J.« 9 tdHJt" so-IT Slid **«i tot dUlOttBO ,,,t ***

uorfnto ni •fttDf- *e gnivc.i.l Lx.®." to 8W^1

■ , - , ; B ' ■' * '

jg.j -7*7e; i.j .aivolioi .’in .••flan# •>

.n,.*t,- . n .\.:;o , ■ w*,. « t1™*- WW ni <■

,■ ,.,V oeootawamd old > u' tnta ,a»*xiC^=^ - 30

before and immediately after exercise in order to acquire data which

might shed additional light on the significance and mechanism of the

peripheral release of ammonia with exercise.

Venous blood pH decreased immediately after exercise in all

patients in this study. It has been suggested that blood pH may be

Important in the toxicity of ammonia (37, 38, 39). Ammonium salts are

thought to be more toxic in the presence of alkalosis due to enhanced

permeability of the blood-brain barrier to ammonia. In addition, in

alkalosis the venous ammonia may be relatively low In spite of high arterial levels due to Increased tissue uptake (39)* In acidosis the reverse holds true. Recent studies by Stabenau et al. have demonstrated

the importance of the pH gprsdient between the blood and the intracellular

tissue in the distribution of ammonia (10). Their investigations confirmed

the theoretic concept that ammonia tends to diffuse from the more alkaline

to the more acid compartment. In view of the relative intracellular acid¬ osis of muscle during and after exercise, it is apparent that the observed changes in venous ammonia concentration could not be explained by the pH gradient alone. It seems apparent that large amounts of ammonia are actually formed during the energy-yielding reactions of muscular activity.

The venous oxygen saturation was observed to fall In six patients

immediately after muscular exercise. Two of the cirrhotic patients did not exhibit a fall in oxygen saturation after exercise. One of these patients (W.P.) had significant palmar erythema. It seems unlikely that changes in venous oxygen saturation per se explain the rises in venous ammonia found immediately after exercise. Nevertheless the relation of • -: - tlflgl < - i [jsnoiJlH>a 6eris iibtlw

, ■•» *tr:e :'jr ±r»< H 1Vi'S ’C

,; *j • 2 y; . : : if ' Q t< • : ’ J'

■ c <,o : r Mr ro. m>-•' • <* *1 -Y.'^ >*«** «£*noi*.*K.

I ■ ( . ) 1

,- nil. n. ,;•)• i; '•■ oij .y j fjO'T-. e 5'ic 'i i ni oix'.t oi / yjoili

n

j ... rjj; - ^..gvUf id y. ■ Inoah* -;.icn?v o/.i i- o.i

l,r0oi . ( ) ewtsiJ bseftenoni oJ- 6wl

..• sne« I • J '•

. ■ ri' i oid or 1 aBewted :>«■ *•.:••••• Sc . ■> j- -

• ■ : ) j- .' ■ ■ W ■ tmmM

- r ■ . if til ;; •; (6c i ' 1 • ' • 1 - ' °®d'

a t . ■ • . ft* a tlUXBfr ion • - 0:

... * • a®

i• ;,ri .;on - 1 ':o • . 0 • • • . •'

• . , SfOfB ■ .i ■ ’■-■•' • ' ■

i i 1 ■ ' t% . r Mfc* - - •

h ' < ' . o I. J /•■ , ' J ' ■ . OOI1

. , . H - F>ei£>*s»x,p iriuvcan

j ',o jfi . -e io'iaxo Tytt p noi.tcic/Be n ’oc^o ill 1*- -l s fditixw ten j ncr j ■ (■ • )

r.; 1-: t j riliHcxo >v noit-nui^e fl®|j . ;i

, , i esD ? ■ . - ™° ■ ■ - 31 -

oxygen supply to the production of ammonia by muscle tissue is important

and will be discussed later.

Venous blood CO..., content increased immediately after exercise in

all patients as was anticipated. There were no consistent changes in

venous sodium, potassium, chloride, or nngnesium following exercise.

In order to investigate the possibility that ammonia might be

released from muscle sites by the process of transamination, SGOT levels

were studied in venous blood before and immediately after exercise. No

significant changes were found.

A mechanism for the elevation of blood ammonia with muscle contrac¬

tion was worked out by Embden and Farms beginning in 1927- Embden

discovered the substance adenylic acid in extracts of frog muscle at

rest (2). After muscle contraction he found a decrease in adenylic

acid and an increase in inosinic acid. He suggested that adenylic acid was

deaminated to inosinic acid during muscle contraction with the concomi¬

tant liberation of one mole of ammonia. Embden thought that the ammonia

remained in the muscle for reamimtion during the during the resting

phase.

Perms and coworkers established that ammonia escapes into tissue

fluid and venous blood following muscle contraction (3). In addition he

found that muscle forced to contract to the point of fatigue gave off an amount of ammonia exactly equivalent to the amount of adenine nucleo¬

tide converted to inosinic acid (ll). However, he found that muscle forced

to contract occasionally under conditions which avoid fatigue liberates more ammonia than can be accounted for on the basis of the above trans¬

formation. He concluded that the extra ammonia was derived from adenine

nucleotide which had been regenerated between experimental contractions. irr r cocci d u ... U ■■tncm-'i to nc tJ-. uIonq rM ct \Iqcur a ;ruc

,'J t. J iv 3C>fC jt.r ei J. .Civ

ri» •_ ■ -i v,i t I. a.fwjt -O. .•. ii .tn-'Jnoo iJ toolc zjcctoV

r. Bflt 0 on eiev ©ierfT . be*«crl?Jbtnfl a** an etaaidaq XI*

■ • tsu ‘ • < . «‘ >

,( ,• - .in-. -Xootw< Xr :* o* iei/r.o al

j _c, 2 .J gji ■ ,. ■ i " BlflWB '• ; ’• .

)W © WOW * ai *13W

. a.-.- t >* v; ;o%'rr d ;/a ol i resli

.. J.Q ]’w Blaoatta ■ > • ■ ■>■ ■ n .■

r • . - • «d r- ; erf?, ru ; Y,( Xuo tK-. -eov «? w noi;

. .• T - S -x © nJ t >1 BU • ' ; ■ " • ** ' ' w '

■ .,. : ... • x 3 m 4 .(s> #er

• 3 ire © laieofl. al w* al i *

.. i . if1. . ^ j ij'Lw n ./m.dio-'.rJ6i -rtltub ' tes? .’nlsont >' X b©^ ?alflje&b

- , MB • " ' •' ' •:

■ .. - .. - ■ : 00 X ■ • ' a’: ■'

.©S^riq

c fl . ■ • • n

r, ( s n J c i Bln £©* * ° r n

V;o sir , .w«.XJ1 eloeiw tedl baaoi

v \ nxn'je : ‘to jm ©rf* oJ tnoisvliiys VHinow;*?. lo tnu-.v: ■ n-

x . ■ -

■ s fclov ■ ■ iiil«© ■ » tw -* -

, 1 ,v . ■ ■ ' ' .- 1 xnu • f 'J

■•iJ-n • lire* ; i >vX*t0b r'-w elaonano miy.Q ^ri-X ubtuLoaoo ©H .noi’lxwiol

a.lj-) -.Xaos i ;n «:ivyk© neowXed hot ..lenev©1 need btn ci-idv sbitoelotm - 32 -

Parnas and his group found that substances like iodoacetlc acid

and sodium fluoride which are known to inhibit the anaerobic break¬

down of glycogen to lactate increased ammonia production from isolated

muscle preparations after exercise and decreased lactate formation (h2).

Parnas suggested that a failure of any part of the energy producing

part of muscle promoted the increased deamination of adenine compounds.

A summary of current concepts about the enzymatic reactions involved

in the transfer of energy for muscle contraction may clarify these relationships (h3). The conventional symbols* for high energy phosphate compounds will be used throughout this discussion.

ATP is thought to be the immediate source of energy for muscle contraction according to Reaction I.

I. ATP --* ADP f- Phosphate

Muscle is unusual in comparison with other tissues because large amounts of energy must be delivered almost instantaneously. The amount of ATP in resting skeletal muscle is insufficient to last for more than one half second of intense activity. Consequently the muscle is endowed with two well described mechanisms for the rapid regeneration of ATP. In the first of these creatine kinase catalyzes the transfer of phosphate from phosphocreatine to ADP to allow the resynthesis of ATP according to

Reaction II.

* ATP -- Adenosine Triphosphate ADP -- Adenosine Diphosphate AMP -- Adenosine Monophosphate or Adenylic Acid . ■ : ; soon , • . ' ba rr

_ . do" a j li'.ai A r ‘i'1 ii .1 A i >■ i. u\ o :..i-

; ; v , a I • F .

•• n ' if. ■ ■ . j . m

i c . •• ■ j ■ ... &*fwJLi&1 b t •riJ • tfoeggn

l . , . , : : a' ■ j fl: . 1 ■ ■ ■ • • ■ - ‘

■ - 1 i ■ J • fXI R

if:r ;, -■ v i fK .* J-r "-,:Jno- '.i oBjjWf not \yzoa* lo lelf-ar-xt al

• ( ) '

‘ i ■ - , . ti

:'i ,-\ n.'i lo sW■ &JU'itBunaiir •> o* J•»' : r> ’J ^

. ; a.- tta t*! oJ rl *scoo • nr jfc* :.jrc-tw.o

. ...

wire i }; - . i ‘ :

A XfO 'u j ■ 1 : '

, !i : i li si J** 1

j; ;ur if “ v Jyi jUi. ifciic-J ici- Jiii tuoj j , . n j ' i • J >t 'tci • wilt

j ( ,,( ■ • .j ■ a •% I- • t- ■ $nl a-nlt■ >• j : '•

, lo ' -• f: > '.r . o i I ■ ' ■ / : . j • u

. i v nc i* -?»f.

.j- irr -.crv^l-xT '• ' — ^T>. * fjrtii 'OOi \ j-.ly.rf \ ”c j- • sqf odccrr A :i' -mt-'r-h — - 33 -

II. ADP -b Phosphocreatine ^ ATP 4- Creatine 4- Phosphate

In the second muscle glycogen is metabolized according to the Myerhof-

Embden glycolytic scheme to yield lactic acid and three moles of ATP

(Reaction III).

III. 3ADP -P Glycogen ~c-—^ 3^TP 4 2Lactic Acid

Even in the presence of abundant oxygen the contraction of muscle results in the production of much lactic acid. When the total supply of glycogen and phosphocreatine is exhausted under anaerobic conditions,

ATP is degraded to inosinic acid according to Reactions I, IV and V.

I. ATP ^^ ADP Hh Phosph8 te

IV. 2ADP -* ATP 4~ AMP 4 Phosphate

V. AMI' Inosinic Acid -f Ammonia

m2 OH

m3

In contrast to Reactions I through IV which involve the transfer of high energy phosphate bonds. Reaction V the deamination of adenylic acid is not important in energy transfer. The significance of this reaction in muscle metabolism is unknown.

There are some interesting experiments relating ammonia toxicity to a decreased synthesis of acetylcholine. Torda and Wolff collected blood serum from the working arm of humans end noted that this serum .II

■ j l> tlJbiooo . Lodntem i . iM j <

me i-r: . L'-'-i bleJhc o.r aorefi . n

. (II noil- )

f • . ' i • . • •> S3 • ■ -

vjf.T ■ > n: :. j" • hio i? tap nur to ©ones)/CU ai at. -,3

I

■ - n • jj i . ■ aegoot

... ,noi j-.-'; • od 161000 olaieofti ol 6©fc»ig©6

U-. IT k

etBfiqBOiti - \M.< -r iuAc; . I

HinotuwA. 61 o I oiat«onl -v SMA .

o *j /• • t o' i ■ ■ J.-; - >i ioirlv' VI r- uo*-\ )• no‘ f :-■ ot trtpi.tno al

t! ' oJt-L .n©-. To noiv n.Ni 00 urfJ- V aoitruoR .elnoc! eJerfcxoxq; Haiono fli nojtt < o >1 • 1 in i p; f1 ■ • a ;' -• r 0 1011

.ci :m-nu 1 n- Hoc I- -t oio jj.it

: n •_!«>'• uJ: / • ..01 Jaomlioqxe vaJtr^i^tni ©woe -'-i* ©o'&ril

t; -jj.;Q-. -I’iioW !:a!* ibiof en.tlr riolVoofi to cieonta^s 6©bp«ioo6 a ot

jtrft t 1 i • Ion * ii : ai "tnd To mif gnll£"tow exit crjoil erwi^e boold - 3*4 -

decreased the synthesis of acetylcholine from isolated muscle preparations which were stimulated electrically along its motor nerve (44), Ammonium salts had a similar effect on muscle preparations resulting in a curare like paralysis at the nyoneural Junction. It is intriguing to speculate that the ammonia released by the deamination of adenylic acid may be partially responsible for the signs of fatigue following muscle contrac¬ tion. Recently Ulshafer has likewise postulated that ammonium salts interfere with acetylcholine synthesis in the brain with the resultant production of the signs of hepatic come (45).

The mechanism of the resynthesis of ATP from inosinic acid is not well understood. Inosinic acid probably serves as a precursor for adenylic acid. In vivo experiments in rats show the rapid incorporation of N'5'" labeled ammonium salts into the 6-amino group of adenylic acid (43).

Since much ammonia escapes from muscle tissue during exercise, other sources of nitrogen may be important in the regeneration of ATP from inosinic acid during the resting phase after fatiguing exercise.

The peripheral release and uptake of ammonia is an interesting but neglected area of ammonia metabolism with important implications relating to the mechanism and clinical management of patients In impending hepatic coma. These studies on the peripheral release of ammonia suggest many facets for further Investigation.

Summary and Conclusions

Venous blood, ammonia, content was studied following graded amounts of muscular exercise of a forearm in normal subjects, control patients no 11 aj o t hi • nlXorfoXV apifc 'io Ric.eci^rtY,? etfcf f»s*o«yto«fe

tiro i< . ( .'..) v.’V'’.n •roJ'o® ©k 1 u,ijoIa vrXX®oI'X-tooX© fce.l e.Cjjanilw otbv rioitfw

y $ ni ;•.' ■■ 1 i;rj a • • ' ' ' ■ t • ti-

ClJ ’ I £1 J ' . - 1 S ::

ro no I j! ■ j '■ . 1 . / tfl is •. & Mf

|£ltw fo >i ' ■ ' 'V. O 1 1 V •' ' .

, u/ifloctwa r . i ■ id 1© ill .. o. a ;

n . :. . -. i J'' ’ i

. {". ) jot, ;U o: { 'jo ©i J io no.^ou.'oiot

.o,-. ala©j&frrtB

i . hooXe'xetinu Haw

O' i - • ; votie J •• nl n «tt. :.o ovi.v it . . ’oo ■. ■n-).i

.( ) ; . ;■ liter?- iJ lljj • I lO

. . . nl r ' ©loam - 1 lc bb riou i'

1 • 11

, >rr ■) rr i f * f;;? . Pile, vciiteoi ovl juiiuifi Mob olnl -oni

. • n 1 ■' ■ rro leu is

' ■ tic - ■ In ■ 1

n' ' tv ■ - vl til I 1 •

i . i »eeeX»i > !:*s ■ ; ■ ■ ' •' ' '

,ii •ilo^vni 'i^tfrxu- -•s.o'i al •» inu-.j

)' ■: tO Cl* i

1U< • 1c elci ■ rieoa Unon 1 •> u a I

11 X J i no .r .x.n-r.ii at son ieio" h xu lonexo 'lalwc-auifl xo - 35 -

without liver disease, and cirrhotic patients. After mild and moderate

exercise the cirrhotic patients demonstrated increased ammonia content

in venous blood immediately following exercise compared to control

patients. After severe fatiguing exercise both control and cirrhotic

patients exhibited equivalent elevations in venous blood ammonia

immediately following exercise. No significant change was noted in

the venous blood ammonia level in the opposite resting forearm. Arterial

blood ammonia levels did not change significantly in five subjects after

severe muscular exercise.

Changes in oxygen saturation, pH, serum electrolytes, and serum

glutamic oxaloacetic transaminase were studied in venous blood before and immediately after severe exercise of a forearm. There was a signifi¬

cant decrease in the mean oxygen saturation, pH, and carbon dioxide

content. There were no changes observed in serum sodium, potassium, magnesium, and serum glutamic oxaloacetic transaminase.

The drug acetazolamide did not seem to alter the peripheral release of ammonia in cirrhotic patients during muscle exercise.

Ammonia is released from muscle during muscular exercise from the breakdown of adenine monophosphate to inosinic acid during the utilization

of adenosine triphosphate as a source of energy. a., ' ?»Lo.i ft r>ii"0 'isJ"/' .?j"n c i it 1 J'ori’x’.:io *-flt ) - • ' V •

,. fgg ■ i j • ' CJQJff >1 ' - ' •' - •'

j-,; j ,■ i . n toLXol ' .'taJt t.viwtil fcooAti ofionC'V ftl

; c« I ijnv> -tout? esit.'iavi n’usLtfi’i ort«tv©a itJ'!* .«*£>©! J-aq

.nor ;j:■* i o ■ r. a-;'; (!■ 'uioltc.vei i ?cr• iJt«|-> o -d-icfidiJ’n&iJac

nl n c. v a-n [{.• J a >i imac oW . ©eloi'xa y.alwclv 1 ^l©jai bartuiJ:

... <1ogotg • < ; - •

. ■ . - ■ tflgj 0B i . i H

. . : ■ ) i - ■ ! ■ ' •

. • j H ■ B a

; r nOTft aoid sHi-tu

■ J d > f. ioa»tea Q - 36 -

Bibliography

1. Luck, J. M., Thacker, G., and Marrack, J. Ammonia in the blood of epileptics. Brit. J, Exper. Path. 6s 276-279, 1925-

2. Embden, G, Neue untersuchungen uber die tatigkeitssubstanzen der guergestreiften muskulatur und den chemismus der muskelkontrakton. Klin. Wchnschr. 6: 628-631, 1927-

3. Parnas, J. K., Mozolowski, W., and Lewinski, W. Uber den aramoniakgehalt und die ammoniakilaung im blute. ix. mitterlung: der zusammenhang des blutammoniaks mit der muskelarbeit. Biochem. Ztschr. 188: 15-23, 1927.

1. Schwartz, A. E., Lawrence, W., Jr., and Roberts, K. E. Elevation of peripheral blood ammonia following muscular exercise. Proc. Soc. Exper. Biol. & Med. 98: 5^8-550, 1958.

5. McDermott, W. V., Jr., Admas, R. D., and Riddell, A. G. Ammonia metabolism in man. Ann. Surg. llO: 539-556, 195*+•

6. White, L. P., Phear, E. A., Summerskill, W. H. J., and Sherlock, S. Ammonium tolerance in liver disease: observations based on catheteriza¬ tion of the hepatic veins. J, Clin. Invest. 3^: 158-168, 1955-

7. Bessman, S. P., and Bessman, A. N. Cerebral and peripheral uptake of ammonia in liver disease with hypothesis for mechanism of hepatic coma. J. Clin. Invest. _33: 622-628, 1955*

8. Bessman, S. P., and Bradley, J. E. Uptake of ammonia by muscle: its implications in ammoniagenic coma. New England J. Med. 253: llll- 1117, 1955.

9. Tyor, M. P., and Wilson, W. P, Peripheral biochemical changes associated with the intravenous administration of ammonium salts in normal subjects. J. lab. & Clin. Med. : 592-599, 1958.

10. Webster, L. T., Jr., and Gabuzda, G. J. Ammonium uptake by the extremity and brain in hepatic coma. J. Clin. Invest. 37: 111- k2k, 1958.

11. Schwartz, R,, Phillips, G. B., Gabuzda, G. J., and Davidson, C. S. Blood ammonia and electrolytes in hepatic coma. J. Lab. & Clin. Med. 12; I99-5O8, 1953.

12. Singh, I. D., Barclay, J. A., and Cooke, W, T. Blood ammonia levels in relation to hepatic coma and the administration of glutamic acid. Lancet 266: 1004-1007, 195*+. . • - 3 • 1 • ^ - : . 1 . ■ * . tl I ■ ' •

■, ) » i a 9u«JI tn» • na £ £j \ ,! nw 0 '■• ■•■•' t©1

. IS •' ' • ■ ..a : ' • jt ‘ • : * ■ • •• U ■ ' • flG 1

id • - a . w ■ ■ • -- 1 i Ulo k oo : . • ■ o; fi ■ -

. . . - ■ . iod

• • . . «• • • • J ‘ . ‘ • i - ! • ' . . r, ' . [» v •• •/ ’ '

a‘ . ■ . : • • ' ' - i .... . •'/: r :■ »vJLI ni to i * 'i - L IB

.0 .j I £/W I ' G ).'• T'.'i 'Qfi f'f.fOO ' f: . U . 1 ■ • L( .*1 if ■ . eeet

n . • • . . : .. . • * ■ ti< ndJ j b tn' J-fonev tni • - : ■ boM ■ * * ; b • - .i'

" i -J ;fl , . • ■ • • i- *'•' . 1 / . j >'1 : ' .’"fl a’ ' •y?c. . •*! «sc • nnJtS'rd > . ft'VI ,^3**

J . ' • • | .. an :

O . . ... i •..) o / :r i ' - ’ cti

’ ; . ■< ( 00 : ■ > ■ - 37 -

13- Seegmiller, J. E., Schwartz, B., end Davidson, C. S. The plasms, "ammonia" and glutamine content in patients with hepatic coma. J. Clin. Invest. 33: 984-988, 1954.

14. Summerskill, W. E. J., Wolfe, S. J., and Davidson, C. S. The metabolism of ammonia and alpha keto acids in liver disease and hepatic coma. J. Clin. Invest. ^6: 361-372, 1957-

15. Bessman, A. N., and Mirick, G. S. Blood ammonia levels following the ingestion of casein and whole blood. J. Clin. Invest. 37: 990- 998, 1958.

16. McDermott, W. V., Jr., and Adams, R. D. Episodic stupor associated with Eck fistula in human with particular reference to metabolism of ammonia. J. Clin. Invest. 1-9, 1954.

17. McDermott, W. V., Jr., Wareham, J., and Riddell, A. G. Bleeding esophageal varices, a study of the causes of the associated hepatic coma. Ann. Surg. 144: 348-335, 1956.

18. Phillips, G. B., Schwartz, R., Gabuzda, G. J., Jr., and Davidson, C. S. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. New England J. Med. 47: 239-246, 1952.

19. Phear, E. A., Ruebner, B., Sherlock, S., and Summerskill, W. H. J. Methionine toxicity in liver disease and its prevention by chlortetra¬ cycline. Clin. Sc. 15: 93-117, 1956.

20. Webster, L. T., Jr., and Davidson, C. S. Production of impending hepatic coma by carbonic anhydrase inhibitor, diamox. Proc. Soc. Exper. Biol. & Med. 91: 27-31, 1956.

21. Mackie, J. E., Stormont, J. M., Hollister, R. M., and Davidson, C. S. Production of impending hepatic coma by chlorothiazide and its prevention by antibiotics. Clin. Res. Proc. 6: 301, 1958.

22. Dawson, A. M., de Grotte, J., Rosenthal, W. A., and Sherlock, S. The effect of diamox on ammonia metabolism in liver disease. Clin. Sc. 16: 413-420, 1957.

23. Seligson, D., and Hirshara, K. The measurement of ammonia in whole blood, erythrocytes, and plasma. J. Lab. & Clin. Med. 4£: 962- 974, 1957.

24. Peters, J. P., and Ven Slyke, D. S. Quantitative Clinical Chemistry, Volume II, Methods, Baltimore, Williams & Wilkins Co., 1932.

25. Shales, 0., and Shales, S. S. A simple and accurate method for the determination of chloride in biological fluids, J. Biol. Ckem, 140: 879-884, 1941. V'

• . . : 1 • • • • ■ • ' ' • - tv aJ at iflftfnc n la : . •

, a . . . o r , . . n

niw v . roJ ■ i n ■! .'■) .3^ it:' • "/i- t.K . . tr a:r s u . * . : I o v* la it v *!<• a-.'iv 03x11 or- .Beci

. 1 o jji , . • - ‘ • • • ■ . OX - rol 1 n- i. .. : ; , . ...

) , j i . . [» . • • > " :Y 1 o .j urn 9t& iO vijtrta s ^eotnev : , £ : . 0 cj .ita 00

03 t.tcl • • ti 3 . ■ ■ ■ • ■ .81 • • ; ri^iw ainellaq cti sraoo oltsq;«d * M*°* 1 ■ ( . .aeon 1 non v.\ . -p

. j ' tiooX*x»i(c . ,• • f • • • ** • a ~rttciilfi va .fO/j*tO ' >'v.o *.i at : - t: 'lovM ni t;*XoXxod eaiaoi . : . . n ■' ■

. ..! : ■3 T :'■; .■ ■ ' r • . .0 tvs ip , , 00 : . xcasei & ^ttod’ld nr n • via tf*£ > r ' JO . i;-'2Cr? >rf V ->■ M • XOI .iscxvi

ioaMvs 0 • I . . • ^ r -M T. .1 . . . . . ell '.a s sills sitfeto* 5 : s k>: >i - • o l vnl bn ;Q •••. ’ i" nci- iuixt'i. : .so . r: ' .

.SS fi - . ... ttfasao . ,3» . ■ t ■ 5) . • M . ,aosv .1 961 t&Vii oi j:1 I & stnoamrs no xoarsiJb ‘. o to©3fto [ . :

[< • t ■ r.f(,, v- to in mjan.em ri'I . ' 1 • ■ u £ M .n; u) 1 \ X -1 - ■ * • . v -1 , yp

. X» . led , vtcisiorertO vlati i a . o 0 Jl . )£orrj .' .

jfil • o' tor:/ -'n vir t's . .■•■lix.'; Isolgoloid nl olitol.io lo xsoltenlirxeisfc •. j> - Y - 38 -

26. Orange, M., and Rhein, H. C. Microestimstion of magnesium in "body fluids. J. Biol. Chem. l8£: 379-386, 1951.

27. A simplified method for the clinical determination of serum glutamic- oxalacetlc transaminase. Technical Bulletin No. 5^5, Sigma Chemical Co., St. Louis, 1958.

28. Clemmens, R, L., Shear, S. B., and Bessman, S. P. Ammonia in the "blood in newborn infants. Pediatrics 21: 22-26, 1958.

29. Silverstein, E. Peripheral venous oxygen saturation in patients with and without liver disease. J. Lab. & Clin. Med. bjj 513- 518, 1956.

30. Eisher, C. J., Eich, R., and Faloon, W. W. Arteriovenous shunting in palmar erythema; the effect upon blood ammonia determinations. J. Lab. & Clin. Med. 51: 118-123, 1958.

31. Abelmann, W. H., and Hutcheson, J. M., Jr. Peripheral blood flow in patients with cirrhosis of the liver at rest and during leg exercise. Clin. Res. Proc. 4_: 147-148, 1956.

32. Iber, F. L., and Chalmer, T. C. Biochemical observations on the use of 1-glutamic acid in the treatment of hepatic coma. J. Clin, invest. 36: 706-712, 1957-

33. Faloon, W. W., Auchincloss, J. H., Eich, R., and Gilbert, R. Ammonia metabolism in cirrhotic patients with portacaval shunts. J. Clin. Invest. 701-702, 1956.

34. Baertl, J. M., Gillespie, D. G., Webster, L. T., and Gabuzda, G. J. Relation of arterial ammonium concentration to oxygen saturation in patients with cirrhosis with and without cyanosis. Gastroenterology 34: 1040, 1958.

35. Andres, K. L., Sierler, H. M., Anderson, W. N., Stains by, G. C., Ghrazyib, A. S., and Lilienthal, J. L. Measurement of blood flow and volume in the forearm of man; with notes on the theory of indicator-dilution and on the turbulence, hemolysis, and vasodilata¬ tion by intra-vascular injection. J. Clin. Invest, ^3: 482-504, 1954.

36. Freis, E. D,, and Schnapper, H. W. The effects of a variety of hemodynamic changes on the rapid and slow components of the circulation in the human forearm. J. Clin. Invest. JTj: 838-845, 1958.

37. Jacquez, J. A., Poppell, J. W., Vanamee, P., Lawrence, W., Jr., and Roberts, K. E. The significance of the partial pressure of ammonia Jo ammc«u toxicity. Clin. Res. Proc. 5: 20, 1957. • •; i J . ; .: n1 a .... im

: ■ . . I . .

' . .joT . seertlxifipen&'ii oi^O

• .in-,.: \ . .rc • !-H . • •. . . . . i : ; ' j : ai ' -i

i i. i ’ ncJtJ " n • • ~,xo 1 • • • . - : ; . n j. > . c ■ S . lv

• • • .0 ii i •' •',r’ ni

. :

w _L " . , '! x'l - * » • ' • ^ ■ - C . . • - a f- 3 'i "fti , - '1 J ' I ... -.v . : . •

J ■; j . . . *t» (tO J ■ • • ' - .11 -i , ,1 tn i&b al toe n - ■ to . J , i ^ . t iuTOi

.. • . ■ • , .. , ' 7 J :x«] 0 • •' ' ' . T :; . 7 . vn .

. . J • >n’s' o; aoi!1.; • i. i \ j . ' HOi i ».l ■ .on^v ' Juoi.s tv xn ■ • «•■ ..or. - 'i' 1 .tw o/a :

. . ■. i J . : J . . 1 ■■■'• r, ) . j no • a :a-'m ar suiot ad-7 a1 <*?aiov >fl" j ' sv 1 ,'it j, , •: :i ii jj'.- 7 no noxd - • >lbctl : . ' *« . f.' • a

.o . .-..on 1 • • • - . j -.ia -aoc mo. i ■ ■ t . ’ • : j 1

IV',' i ...■ • ■ • 1 ...O’ .< ; . ' . ' ■ - 39 -

38. Lawrence, W., Jr., Jacquez, J. A., Dienet, S. G., Poppell, J. W., Randall, E. T., and Roberts, K. E. The effect of changes in blood pH on the plasma total ammonia level. Surgery 42: 5O-6O, 1957*

39. Warren, K. S., and Nathan, D. G. The passage of ammonia across the blood-brain barrier and its relation to blood pH. J. Clin. Invest. 37: 1724-1728, 1958.

1+0. Stabenau, J. R,, Warren, K. S., and Rail, D. P. The role of pH gradient in the distribution of ammonia between blood and cerebro¬ spinal fluid, brain and muscle. J. Clin. Invest. j8: 373“383, 1959*

11. Parnas, J. K. Uber den purinstoffwechsel dee muskels und uber die muttersubstanz dee im muskel entstenhenden ammoniaks. Klin. Wchuschr. 7: 2011-2012, 1928.

1+2. Parnas, J. K., Ostern, P., and Mann, T. Uber die verkettung der chemischen vorgange im muskel. Biochem. Ztschr. 272: 64-70, 1934.

1+3. White, A., Handler, P., Smith, E. L., and Stetten, D., Jr., Principles of Biochemistry, New York, McGraw-Hill, 1954.

44. Torda, C., and Wolff, H. G. Apparent curare effect of substances that decrease acetylcholine synthesis. A. J. Physio. 147: 384-390, 1946.

45. Ulshafer, T. R. The measurement of changes in acetylcholine level (ACh) in rat brain following ammonium ion intoxication and its possible bearing on the problem of hepatic coma. J. Lab. & Clin. Med. 52: 718-723, 1958...... r,o . . ) . . (i i ,. . . - I '■ "> . ■ E • ■ • ool( al segn o j •. . : i ■ • v-Jtaoem» i-’Jot -.m&lq erf* no He

ieov.>s M ncwci r 'io -jvyse'jecj srfT tfeH (ii .. . . • .u'.).'. . o X( o n -1 ■ • a| : faevn

- i i • ■- .- - •• d .1 • c ■ lino •• 1 ;o a -l vud !:• :*sl c 9iiJ ni hiolbBT® 1 ■ nJ . j c, . lea j , -

1 j tr a ■ a ■ un •' . ri 'J i i s " .Horn . .IO .-IjO:' :Y

a.T) j tj. ’i- v -i.: i. ~ &dU .1. ■ • - • ; :9 naoe.t

■ j .. xn&Jd . . a . , ' JnM - H , ,7. ,iirofiooifi Tco

pJ’SC'i/S ’ O JD0l x3 tnvd fii'.o'1: ,»8»-©ioeJh tstW t . • ! ' . .d4£I

J . . nilorfr '.v-: 8-J9 al i flEffa J€ . % .T \i j X .;>■ n i .!• -'oi: otfi*: tnomatB |di- oXJ aJta'K ■ a (■ ' : _ •( ;.o ra .■ 6 *20 sHl no rci'xi’ad eldtc-joo ■ . • • >

YALE MEDICAL LIBRARY

Manuscript Theses

Unpublished theses submitted for the Master's and Doctor's degrees and deposited in the Yale Medical Library are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but passages must not be copied without permission of the authors, and without proper credit being given in subsequent written or published work.

This thesis by has been used by the following persons, whose signatures attest their acceptance of the above restrictions.

NAME AND ADDRESS DATE