Bioinformatics Is a New Discipline That Addresses the Need to Manage and Interpret the Data That in the Past Decade Was Massively Generated by Genomic Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatics 1
Bioinformatics 1 Bioinformatics School School of Science, Engineering and Technology (http://www.stmarytx.edu/set/) School Dean Ian P. Martines, Ph.D. ([email protected]) Department Biological Science (https://www.stmarytx.edu/academics/set/undergraduate/biological-sciences/) Bioinformatics is an interdisciplinary and growing field in science for solving biological, biomedical and biochemical problems with the help of computer science, mathematics and information technology. Bioinformaticians are in high demand not only in research, but also in academia because few people have the education and skills to fill available positions. The Bioinformatics program at St. Mary’s University prepares students for graduate school, medical school or entry into the field. Bioinformatics is highly applicable to all branches of life sciences and also to fields like personalized medicine and pharmacogenomics — the study of how genes affect a person’s response to drugs. The Bachelor of Science in Bioinformatics offers three tracks that students can choose. • Bachelor of Science in Bioinformatics with a minor in Biology: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Computer Science: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Applied Mathematics: 120 credit hours Students will take 23 credit hours of core Bioinformatics classes, which included three credit hours of internship or research and three credit hours of a Bioinformatics Capstone course. BS Bioinformatics Tracks • Bachelor of Science -
13 Genomics and Bioinformatics
Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 799 13 GENOMICS AND BIOINFORMATICS Spencer Muse, PhD Chapter Contents 13.1 Introduction 13.1.1 The Central Dogma: DNA to RNA to Protein 13.2 Core Laboratory Technologies 13.2.1 Gene Sequencing 13.2.2 Whole Genome Sequencing 13.2.3 Gene Expression 13.2.4 Polymorphisms 13.3 Core Bioinformatics Technologies 13.3.1 Genomics Databases 13.3.2 Sequence Alignment 13.3.3 Database Searching 13.3.4 Hidden Markov Models 13.3.5 Gene Prediction 13.3.6 Functional Annotation 13.3.7 Identifying Differentially Expressed Genes 13.3.8 Clustering Genes with Shared Expression Patterns 13.4 Conclusion Exercises Suggested Reading At the conclusion of this chapter, the reader will be able to: & Discuss the basic principles of molecular biology regarding genome science. & Describe the major types of data involved in genome projects, including technologies for collecting them. 799 Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 800 800 CHAPTER 13 GENOMICS AND BIOINFORMATICS & Describe practical applications and uses of genomic data. & Understand the major topics in the field of bioinformatics and DNA sequence analysis. & Use key bioinformatics databases and web resources. 13.1 INTRODUCTION In April 2003, sequencing of all three billion nucleotides in the human genome was declared complete. This landmark of modern science brought with it high hopes for the understanding and treatment of human genetic disorders. There is plenty of evidence to suggest that the hopes will become reality—1631 human genetic diseases are now associated with known DNA sequences, compared to the less than 100 that were known at the initiation of the Human Genome Project (HGP) in 1990. -
Genomics and Its Impact on Science and Society: the Human Genome Project and Beyond
DOE/SC-0083 Genomics and Its Impact on Science and Society The Human Genome Project and Beyond U.S. Department of Energy Genome Research Programs: genomics.energy.gov A Primer ells are the fundamental working units of every living system. All the instructions Cneeded to direct their activities are contained within the chemical DNA (deoxyribonucleic acid). DNA from all organisms is made up of the same chemical and physical components. The DNA sequence is the particular side-by-side arrangement of bases along the DNA strand (e.g., ATTCCGGA). This order spells out the exact instruc- tions required to create a particular organism with protein complex its own unique traits. The genome is an organism’s complete set of DNA. Genomes vary widely in size: The smallest known genome for a free-living organism (a bac- terium) contains about 600,000 DNA base pairs, while human and mouse genomes have some From Genes to Proteins 3 billion (see p. 3). Except for mature red blood cells, all human cells contain a complete genome. Although genes get a lot of attention, the proteins DNA in each human cell is packaged into 46 chro- perform most life functions and even comprise the mosomes arranged into 23 pairs. Each chromosome is majority of cellular structures. Proteins are large, complex a physically separate molecule of DNA that ranges in molecules made up of chains of small chemical com- length from about 50 million to 250 million base pairs. pounds called amino acids. Chemical properties that A few types of major chromosomal abnormalities, distinguish the 20 different amino acids cause the including missing or extra copies or gross breaks and protein chains to fold up into specific three-dimensional rejoinings (translocations), can be detected by micro- structures that define their particular functions in the cell. -
Gene Prediction and Genome Annotation
A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge -
Applications of Digital Image Processing in Real Time World
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 12, DECEMBER 2019 ISSN 2277-8616 Applications Of Digital Image Processing In Real Time World B.Sridhar Abstract :-- Digital contents are the essential kind of analyzing, information perceived and which are explained by the human brain. In our brain, one third of the cortical area is focused only to visual information processing. Digital image processing permits the expandable values of different algorithms to be given to the input section and prevent the problems of noise and distortion during the image processing. Hence it deserves more advantages than analog based image processing. Index Terms:-- Agriculture, Biomedical imaging, Face recognition, image enhancement, Multimedia Security, Authentication —————————— —————————— 2 REAL TIME APPLICATIONS OF IMAGE PROCESSING 1 INTRODUCTION This chapter reviews the recent advances in image Digital image processing is dependably a catching the processing techniques for various applications, which more attention field and it freely transfer the upgraded include agriculture, multimedia security, Remote sensing, multimedia data for human understanding and analyzing Computer vision, Medical applications, Biometric of image information for capacity, transmission, and verification, etc,. representation for machine perception[1]. Generally, the stages of investigation of digital image can be followed 2.1 Agriculture and the workflow statement of the digital image In the present situation, due to the huge density of population, gives the horrible results of demand of food, processing (DIP) is displayed in Figure 1. diminishments in agricultural land, environmental variation and the political instability, the agriculture industries are trying to find the new solution for enhancing the essence of the productivity and sustainability.―In order to support and satifisfied the needs of the farmers Precision agriculture is employed [2]. -
Gene Structure Prediction
Gene finding Lorenzo Cerutti Swiss Institute of Bioinformatics EMBNet course, September 2002 Gene finding EMBNet 2002 Introduction Gene finding is about detecting coding regions and infer gene structure Gene finding is difficult DNA sequence signals have low information content (degenerated and highly unspe- • cific) It is difficult to discriminate real signals • Sequencing errors • Prokaryotes High gene density and simple gene structure • Short genes have little information • Overlapping genes • Eukaryotes Low gene density and complex gene structure • Alternative splicing • Pseudo-genes • 1 Gene finding EMBNet 2002 Gene finding strategies Homology method Gene structure can be deduced by homology • Requires a not too distant homologous sequence • Ab initio method Requires two types of information • . compositional information . signal information 2 Gene finding EMBNet 2002 Gene finding: Homology method 3 Gene finding EMBNet 2002 Homology method Principles of the homology method. Coding regions evolve slower than non-coding regions, i.e. local sequence similarity • can be used as a gene finder. Homologous sequences reflect a common evolutionary origin and possibly a common • gene structure, i.e. gene structure can be solved by homology (mRNAs, ESTs, proteins, domains). Standard homology search methods can be used (BLAST, Smith-Waterman, ...). • Include ”gene syntax” information (start/stop codons, ...). • Homology methods are also useful to confirm predictions inferred by other methods 4 Gene finding EMBNet 2002 Homology method: a simple view Gene of unknown structure Homology with a gene of known structure Exon 1 Exon 2 Exon 3 Find DNA signals ATG GT {TAA,TGA,TAG} AG 5 Gene finding EMBNet 2002 Procrustes Procrustes is a software to predict gene structure from homology found in pro- teins (Gelfand et al., 1996) Principle of the algorithm • . -
From the Human Genome Project to Genomic Medicine a Journey to Advance Human Health
From the Human Genome Project to Genomic Medicine A Journey to Advance Human Health Eric Green, M.D., Ph.D. Director, NHGRI The Origin of “Genomics”: 1987 Genomics (1987) “For the newly developing discipline of [genome] mapping/sequencing (including the analysis of the information), we have adopted the term GENOMICS… ‘The Genome Institute’ Office for Human Genome Research 1988-1989 National Center for Human Genome Research 1989-1997 National Human Genome Research Institute 1997-present NHGRI: Circa 1990-2003 Human Genome Project NHGRI Today: Characteristic Features . Relatively young (~28 years) . Relatively small (~1.7% of NIH) . Unusual historical origins (think ‘Human Genome Project’) . Emphasis on ‘Team Science’ (think managed ‘consortia’) . Rapidly disseminating footprint (think ‘genomics’) . Novel societal/bioethics research component (think ‘ELSI’) . Over-achievers for trans-NIH initiatives (think ‘Common Fund’) . Vibrant (and large) Intramural Research Program A Quarter Century of Genomics Human Genome Sequenced for First Time by the Human Genome Project Genomic Medicine An emerging medical discipline that involves using genomic information about an individual as part of their clinical care (e.g., for diagnostic or therapeutic decision- making) and the other implications of that clinical use The Path to Genomic Medicine ? Human Realization of Genome Genomic Project Medicine Nature Nature Base Pairs to Bedside 2003 Heli201x to 1Health A Quarter Century of Genomics Human Genome Sequenced for First Time by the Human Genome Project -
Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India Meera Yadav University of Delhi, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln 2015 Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India meera yadav University of Delhi, [email protected] Manlunching Tawmbing Saha Institute of Nuclear Physisc, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons yadav, meera and Tawmbing, Manlunching, "Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India" (2015). Library Philosophy and Practice (e-journal). 1254. http://digitalcommons.unl.edu/libphilprac/1254 Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India Dr Meera, Manlunching Department of Library and Information Science, University of Delhi, India [email protected], [email protected] Abstract Information plays a vital role in Bioinformatics to achieve the existing Bioinformatics information technologies. Librarians have to identify the information needs, uses and problems faced to meet the needs and requirements of the Bioinformatics users. The paper analyses the response of 315 Bioinformatics users of 15 Bioinformatics centers in India. The papers analyze the data with respect to use of different Bioinformatics databases and tools used by scholars and scientists, areas of major research in Bioinformatics, Major research project, thrust areas of research and use of different resources by the user. The study identifies the various Bioinformatics services and resources used by the Bioinformatics researchers. Keywords: Informaion services, Users, Inforamtion needs, Bioinformatics resources 1. Introduction ‘Needs’ refer to lack of self-sufficiency and also represent gaps in the present knowledge of the users. -
Establishing the Basis for a CIS (Computer Information Systems) Undergraduate Program: on Seeking the Body of Knowledge
Information Systems Education Journal (ISEDJ) 13 (5) ISSN: 1545-679X September 2015 Establishing the Basis for a CIS (Computer Information Systems) Undergraduate Program: On Seeking the Body of Knowledge Herbert E. Longenecker, Jr. [email protected] University of South Alabama Mobile, AL 36688, USA Jeffry Babb [email protected] West Texas A&M University Canyon, TX 79016, USA Leslie J. Waguespack [email protected] Bentley University Waltham, Massachusetts 02452, USA Thomas N. Janicki [email protected] University of North Carolina Wilmington Wilmington, NC 28403, USA David Feinstein [email protected] University of South Alabama Mobile, AL 36688, USA Abstract The evolution of computing education spans a spectrum from computer science (CS) grounded in the theory of computing, to information systems (IS), grounded in the organizational application of data processing. This paper reports on a project focusing on a particular slice of that spectrum commonly labeled as computer information systems (CIS) and reflected in undergraduate academic programs designed to prepare graduates for professions as software developers building systems in government, commercial and not-for-profit enterprises. These programs with varying titles number in the hundreds. This project is an effort to determine if a common knowledge footprint characterizes CIS. If so, an eventual goal would be to describe the proportions of those essential knowledge components and propose guidelines specifically for effective undergraduate CIS curricula. Professional computing societies (ACM, IEEE, AITP (formerly DPMA), etc.) over the past fifty years have sponsored curriculum guidelines for various slices of education that in aggregate offer a compendium of knowledge areas in ©2015 EDSIG (Education Special Interest Group of the AITP) Page 37 www.aitp-edsig.org /www.isedj.org Information Systems Education Journal (ISEDJ) 13 (5) ISSN: 1545-679X September 2015 computing. -
Health Informatics Principles
Health Informatics Principles Foundational Curriculum: Cluster 4: Informatics Module 7: The Informatics Process and Principles of Health Informatics Unit 2: Health Informatics Principles FC-C4M7U2 Curriculum Developers: Angelique Blake, Rachelle Blake, Pauliina Hulkkonen, Sonja Huotari, Milla Jauhiainen, Johanna Tolonen, and Alpo Vӓrri This work is produced by the EU*US eHealth Work Project. This project has received funding from the European Union’s Horizon 2020 research and 21/60 innovation programme under Grant Agreement No. 727552 1 EUUSEHEALTHWORK Unit Objectives • Describe the evolution of informatics • Explain the benefits and challenges of informatics • Differentiate between information technology and informatics • Identify the three dimensions of health informatics • State the main principles of health informatics in each dimension This work is produced by the EU*US eHealth Work Project. This project has received funding from the European Union’s Horizon 2020 research and FC-C4M7U2 innovation programme under Grant Agreement No. 727552 2 EUUSEHEALTHWORK The Evolution of Health Informatics (1940s-1950s) • In 1940, the first modern computer was built called the ENIAC. It was 24.5 metric tonnes (27 tons) in volume and took up 63 m2 (680 sq. ft.) of space • In 1950 health informatics began to take off with the rise of computers and microchips. The earliest use was in dental projects during late 50s in the US. • Worldwide use of computer technology in healthcare began in the early 1950s with the rise of mainframe computers This work is produced by the EU*US eHealth Work Project. This project has received funding from the European Union’s Horizon 2020 research and FC-C4M7U2 innovation programme under Grant Agreement No. -
Blockchain Database for a Cyber Security Learning System
Session ETD 475 Blockchain Database for a Cyber Security Learning System Sophia Armstrong Department of Computer Science, College of Engineering and Technology East Carolina University Te-Shun Chou Department of Technology Systems, College of Engineering and Technology East Carolina University John Jones College of Engineering and Technology East Carolina University Abstract Our cyber security learning system involves an interactive environment for students to practice executing different attack and defense techniques relating to cyber security concepts. We intend to use a blockchain database to secure data from this learning system. The data being secured are students’ scores accumulated by successful attacks or defends from the other students’ implementations. As more professionals are departing from traditional relational databases, the enthusiasm around distributed ledger databases is growing, specifically blockchain. With many available platforms applying blockchain structures, it is important to understand how this emerging technology is being used, with the goal of utilizing this technology for our learning system. In order to successfully secure the data and ensure it is tamper resistant, an investigation of blockchain technology use cases must be conducted. In addition, this paper defined the primary characteristics of the emerging distributed ledgers or blockchain technology, to ensure we effectively harness this technology to secure our data. Moreover, we explored using a blockchain database for our data. 1. Introduction New buzz words are constantly surfacing in the ever evolving field of computer science, so it is critical to distinguish the difference between temporary fads and new evolutionary technology. Blockchain is one of the newest and most developmental technologies currently drawing interest. -
An Introduction to Cloud Databases a Guide for Administrators
Compliments of An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram & Sam Alapati REPORT Break free from old guard databases AWS provides the broadest selection of purpose-built databases allowing you to save, grow, and innovate faster Enterprise scale at 3-5x the performance 14+ database engines 1/10th the cost of vs popular alternatives - more than any other commercial databases provider Learn more: aws.amazon.com/databases An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Beijing Boston Farnham Sebastopol Tokyo An Introduction to Cloud Databases by Wendy A. Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Copyright © 2019 O’Reilly Media Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more infor‐ mation, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Development Editor: Jeff Bleiel Interior Designer: David Futato Acquisitions Editor: Jonathan Hassell Cover Designer: Karen Montgomery Production Editor: Katherine Tozer Illustrator: Rebecca Demarest Copyeditor: Octal Publishing, LLC September 2019: First Edition Revision History for the First Edition 2019-08-19: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. An Introduction to Cloud Databases, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views.