Cycle 10 Approved Programs

Total Page:16

File Type:pdf, Size:1020Kb

Cycle 10 Approved Programs Cycle 10 Approved Programs First Name Last Name Proposal TypeInstitution Country Science Category Title Nahum Arav AR UC Davis United States AGN/Quasars AGN outflows: Ionization Equilibrium and Abundances in Seyfert UV absorbers John Bahcall GO Institute for Advanced Study United States Hot Stars Observing the Next Nearby Supernova Jack Baldwin AR Michigan State University United States AGN/Quasars Probing the High Redshift Universe with Quasar Emission Lines Bruce Balick GO University of Washington United States ISM and Circumstellar Matter Outflow Collimation in Bipolar Symbiotic Nebulae John Bally GO University of Colorado United States Star Formation Are there Large Dust Grains in Orion's Proto-Planetary Disks? Jill Bechtold GO Steward Observatory United States Quasar Absorption Lines and IGM Molecular Hydrogen in the Damped LyAlpha Absorber of Q1331+170 Jill Bechtold GO Steward Observatory United States Quasar Absorption Lines and IGM The Pattern of Heavy Element Abundances in a Damped LyAlpha Galaxy Robert Becker GO University of California, Davis United States Quasar Absorption Lines and IGM Identifying Damped Lyman-alpha Galaxies at z~1 James Bell GO Cornell University United States Solar System A Global Search for Alteration Minerals on Mars G. Fritz Benedict AR University of Texas at Austin United States Cold Stars Calibrating the Optical Field Angle Distortions of FGS1r G. Fritz Benedict GO University of Texas United States Cold Stars FGS Astrometry of the Extrasolar Planet of Epsilon Eridani Philip Bennett GO University of Colorado United States Cold Stars Mapping the Chromosphere of the K Supergiant in the Eclipsing Binary 31 Cygni Matthew Bershady GO University of Wisconsin-Madison United States Galaxies Galaxy Mass and the Fate of Luminous, Blue Compact Galaxies at z~0.6 Francesco Bertola GO Dipartimento di Astronomia, Universita di Italy Galaxies Accurate determination of the BH mass in early-type disk galaxies Padova Luciana Bianchi GO The Johns Hopkins University United States ISM and Circumstellar Matter The UV interstellar extinction in nearby galaxies: M33 John Biretta GO Space Telescope Science Institute United States AGN/Quasars Proper Motions in Extragalactic Optical Jets William P. Blair GO The Johns Hopkins University United States ISM and Circumstellar Matter Transition from Non-radiative to Radiative Shocks in the Cygnus Loop Torsten Boeker SNAP Space Telescope Science Institute United States Galaxies A Census of Nuclear Star Clusters in Late-Type Spiral Galaxies: II - Spectroscopy and Stellar Populations Howard E. Bond AR Space Telescope Science Institute United States Stellar Populations Post-AGB Stars and the Population II Distance Ladder Howard E. Bond GO Space Telescope Science Institute United States Hot Stars Sakurai's Novalike Object: Real-Time Monitoring of a Stellar Thermal Pulse Howard E. Bond GO Space Telescope Science Institute United States Hot Stars Dynamical Masses of White Dwarfs from Resolved Sirius-Like Binaries David V. Bowen SNAP Princeton Observatory United States ISM and Circumstellar Matter A SNAPshot Survey of Absorption Lines from High Velocity Clouds in the Milky Way Joel Bregman GO University of Michigan United States Galaxies Ultraluminous X-Ray Sources and Intermediate Mass Black Holes Michael Brown GO Caltech United States Solar System A Search for Kuiper Belt Object Satellites Thomas M. Brown GO Goddard Space Flight Center United States Stellar Populations The Late Evolution of Low-Mass Stars: a Deep UV Color-Magnitude Diagram of M32 Thomas M. Brown GO Goddard Space Flight Center United States Galaxies Star Formation Triggers and Chemical Reprocessing in I Zw 18 Martin Bureau GO Sterrewacht Leiden The Netherlands Galaxies Black Holes and Bars: A Recipe for Making Bulges? Nuria Calvet GO Smithsonian Astrophysical Observatory United States Star Formation Accretion in the planet-forming disks of the TW Hya association Daniela Calzetti GO Space Telescope Science Institute United States Galaxies Calibrating Star Formation: The Impact of Environment Andrew Cameron GO University of St Andrews United Kingdom Cold Stars The densely spotted photospheres of active cool stars Cycle 10 Approved Programs First Name Last Name Proposal TypeInstitution Country Science Category Title Rupali Chandar AR The Johns Hopkins University United States Stellar Populations Are Young Globular Clusters Forming in Quiescent Spiral Galaxies? Scott Chapman GO Carnegie Observatories United States Galaxies Using Optically Faint Radio Sources to Pinpoint Dusty Proto-galaxies David Charbonneau GO Harvard-Smithsonian Center for United States Star Formation Direct Detection of an Extrasolar Planet in Reflected Light Astrophysics Jane Charlton AR The Pennsylvania State University United States ISM and Circumstellar Matter Looking Out From the Galaxy Andrew Connolly AR University of Pittsburgh United States Galaxies Galaxy Spectral Energy Distributions at High Redshift James Cordes GO Cornell University United States Hot Stars Evolution of the Bow Shock in the Guitar Nebula Romano Corradi GO Isaac Newton Group of Telescopes Spain ISM and Circumstellar Matter Expansion distances to the symbiotic Miras He 2-104 and He 2-147 Arlin Crotts AR Columbia University United States Quasar Absorption Lines and IGM Transverse Structure in the Lyman Alpha Forest and a Program to Measure the Cosmological Constant Arlin Crotts GO Columbia University United States Hot Stars The UV Light Echo of Shock Breakout During SN 1987A Dale Cruikshank GO Ames Research Center United States Solar System Composition of Saturn's rings, and its variation with location Kris Davidson GO University of Minnesota United States Hot Stars Critical spectroscopic variations in Eta Carinae Constantine Deliyannis GO Indiana University, Department of United States Cold Stars Boron Constraints on Slow Mixing in Low Mass Stars Astronomy Constantine Deliyannis GO Indiana University United States Cold Stars Boron in G64-12: Higher Big Bang Lithium or Signature of the Nu-Process? S. George Djorgovski SNAP California Institute of Technology United States AGN/Quasars A Snapshot Survey of the Optically Selected Type-2 Quasars Andrew Dolphin AR National Optical Astronomy Observatories United States Galaxies Properties of Young Clusters in Spiral Galaxies Laurent Drissen GO Universite Laval Canada Hot Stars Physical Parameters of the Erupting Luminous Blue Variable NGC 2363-V1 Philip Dufton GO Queen's University of Belfast United Kingdom Hot Stars The iron abundance in the Magellanic Clouds and Bridge James Dunlop GO University of Edinburgh United Kingdom AGN/Quasars Measuring the masses of high-z quasar host galaxies Harald Ebeling GO Institute for Astronomy United States Cosmology Measuring the mass distribution in the most distant, very X-ray luminous galaxy cluster known Richard Ellis SNAP California Institute of Technology United States Cosmology Imaging the Host Galaxies of High Redshift Type Ia Supernovae Debra Elmegreen AR Vassar College United States Galaxies Archival Study of Acoustic Nuclear Spirals in Galaxies Thomas Erben GO Max-Planck-Institut f. Astrophysik Germany Cosmology Resolving the Puzzling Dark Mass Concentration in Abell 1942 Nancy Remage Evans GO Center for Astrophysics United States Cold Stars Cepheid Masses: Y Car Robin Evans AR Gibbel Corporation United States Solar System Asteroid Trails in the HST Archive II Emilio Falco GO Smithsonian Astrophysical Observatory United States Cosmology HST Imaging of Gravitational Lenses Paul D. Feldman GO The Johns Hopkins University United States Solar System Spectroscopic Imaging of the Atmosphere of Callisto Henry Ferguson GO Space Telescope Science Institute United States Galaxies Investigating the Formation History of Spiral Galaxy Halos Pierre Ferruit GO CRAL -- Observatoire de Lyon France AGN/Quasars Probing the structure of the shocks in the narrow line region of M 51 Andrew Fruchter GO Space Telescope Science Institute United States Galaxies The Origin and Physics of Gamma-Ray Bursts Michael Garcia GO Smithsonian Astrophysical Observatory United States Galaxies Black Hole X-ray Transients and X-ray Binaries in M31 Cycle 10 Approved Programs First Name Last Name Proposal TypeInstitution Country Science Category Title Peter Garnavich SNAP University of Notre Dame United States ISM and Circumstellar Matter Light Echos and the Nature of Type Ia Supernovae Donald Garnett GO University of Arizona United States ISM and Circumstellar Matter Giant H II Regions and the Connection with Starbursts and Diffuse Ionized Gas Mike Gladders GO University of Toronto Canada Cosmology A New High-z Galaxy Cluster with Extraordinary Lensed Arcs From Multiple Sources Carol Grady GO Eureka Scientific United States Star Formation T Tauri Star Coronagraphic Survey: A PMS Protoplanetary Disk Census Michael Gregg SNAP University of California, Davis United States Galaxies A Next Generation Spectral Library of Stars Jonathan Grindlay AR Harvard-Center for Astrophysics United States Stellar Populations A Complete Study of Binaries and X-ray Sources in the Globular Cluster 47 Tucanae Paul Groot GO Harvard-Smithsonian Center for United States Hot Stars The Distances to AM CVn stars Astrophysics Edward Guinan GO Villanova University United States Cold Stars LMC Eclipsing Binaries with Cepheid Components: The Key to the Extragalactic Distance Scale Edward Guinan GO Villanova University United States Cold Stars The Best Brown Dwarf Yet?: FGS Astrometry of the Companion to the Hyades Eclipsing Binary V471 Tau Theodore
Recommended publications
  • An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
    The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Captain Marvel: Death of Captain Marvel Free
    FREE CAPTAIN MARVEL: DEATH OF CAPTAIN MARVEL PDF Jim Starlin,Steve Englehart,Doug Moench | 128 pages | 22 Jan 2013 | Marvel Comics | 9780785168041 | English | New York, United States Death of Captain America | Marvel Database | Fandom Captain Marvel is the name of several fictional Captain Marvel: Death of Captain Marvel appearing in American comic books published by Marvel Comics. Most of these versions exist in Marvel's main shared universeknown as the Marvel Universe. In order to retain its trademark, Marvel has published a Captain Marvel title at least once every few years since, leading to a number of ongoing serieslimited seriesand one-shots featuring a range of characters using the Captain Marvel alias. Mar-Vell eventually wearies of his superiors' malicious intent and allies himself with Earth, and the Kree Empire brands him a traitor. From then on, Mar-Vell fights to protect Earth Captain Marvel: Death of Captain Marvel all threats. He was later revamped by Roy Thomas and Gil Kane. Having been exiled to the Negative Zone by the Supreme Intelligencethe only way Mar-Vell can temporarily escape is to exchange atoms with Rick Jones by means of special wristbands called Nega-Bands. The process of the young man being replaced in a flash by the older Captain Marvel: Death of Captain Marvel was a nod to the original Fawcett Captain Marvel, which had young Billy Batson says the magic word "Shazam" to transform into the hero. With the title's sales still flagging, Marvel allowed Jim Starlin to conceptually revamp the character, [6] although his appearance was little changed.
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • 5. Cosmic Distance Ladder Ii: Standard Candles
    5. COSMIC DISTANCE LADDER II: STANDARD CANDLES EQUIPMENT Computer with internet connection GOALS In this lab, you will learn: 1. How to use RR Lyrae variable stars to measures distances to objects within the Milky Way galaxy. 2. How to use Cepheid variable stars to measure distances to nearby galaxies. 3. How to use Type Ia supernovae to measure distances to faraway galaxies. 1 BACKGROUND A. MAGNITUDES Astronomers use apparent magnitudes , which are often referred to simply as magnitudes, to measure brightness: The more negative the magnitude, the brighter the object. The more positive the magnitude, the fainter the object. In the following tutorial, you will learn how to measure, or photometer , uncalibrated magnitudes: http://skynet.unc.edu/ASTR101L/videos/photometry/ 2 In Afterglow, go to “File”, “Open Image(s)”, “Sample Images”, “Astro 101 Lab”, “Lab 5 – Standard Candles”, “CD-47” and open the image “CD-47 8676”. Measure the uncalibrated magnitude of star A: uncalibrated magnitude of star A: ____________________ Uncalibrated magnitudes are always off by a constant and this constant varies from image to image, depending on observing conditions among other things. To calibrate an uncalibrated magnitude, one must first measure this constant, which we do by photometering a reference star of known magnitude: uncalibrated magnitude of reference star: ____________________ 3 The known, true magnitude of the reference star is 12.01. Calculate the correction constant: correction constant = true magnitude of reference star – uncalibrated magnitude of reference star correction constant: ____________________ Finally, calibrate the uncalibrated magnitude of star A by adding the correction constant to it: calibrated magnitude = uncalibrated magnitude + correction constant calibrated magnitude of star A: ____________________ The true magnitude of star A is 13.74.
    [Show full text]
  • New Globular Cluster Age Estimates and Constraints on the Cosmic Equation of State and the Matter Density of the Universe
    1 New Globular Cluster Age Estimates and Constraints on the Cosmic Equation of State and The Matter Density of the Universe. Lawrence M. Krauss* & Brian Chaboyer *Departments of Physics and Astronomy, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH USA 44106-7079; Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH. USA New estimates of globular cluster distances, combined with revised ranges for input parameters in stellar evolution codes and recent estimates of the earliest redshift of cluster formation allow us to derive a new 95% confidence level lower limit on the age of the Universe of 11 Gyr. This is now definitively inconsistent with the expansion age for a flat Universe for the currently allowed range of the Hubble constant unless the cosmic equation of state is dominated by a component that violates the strong energy condition. This solidifies the case for a dark energy-dominated universe, complementing supernova data and direct measurements of the geometry and matter density in the Universe. The best-fit age is consistent with a cosmological constant-dominated (w=pressure/energy density = -1) universe. For the Hubble Key project best fit value of the Hubble Ω Constant our age limits yields the constraints w < -0.4 and Ωmatter < 0.38 at the 68 Ω % confidence level, and w < -0.26 and Ωmatter < 0.58 at the 95 % confidence level. Age determinations of globular clusters provided one of the earliest motivations for considering the possible existence of a cosmological constant. By comparing a lower limit on the age of the oldest globular clusters in our galaxy--- estimated in the 1980 s to be 15-20 Gyr---with the expansion age, determined by measurements of the Hubble constant, an apparent inconsistency arose: globular clusters appeared to be older than 2 the Universe unless one allowed for a possible Cosmological Constant.
    [Show full text]
  • The Ellipticities of Globular Clusters in the Andromeda Galaxy
    ASTRONOMY & ASTROPHYSICS MAY I 1996, PAGE 447 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 116, 447-461 (1996) The ellipticities of globular clusters in the Andromeda galaxy A. Staneva1, N. Spassova2 and V. Golev1 1 Department of Astronomy, Faculty of Physics, St. Kliment Okhridski University of Sofia, 5 James Bourchier street, BG-1126 Sofia, Bulgaria 2 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko chauss´ee, BG-1784 Sofia, Bulgaria Received March 15; accepted October 4, 1995 Abstract. — The projected ellipticities and orientations of 173 globular clusters in the Andromeda galaxy have been determined by using isodensity contours and 2D Gaussian fitting techniques. A number of B plates taken with the 2 m Ritchey-Chretien-coud´e reflector of the Bulgarian National Astronomical Observatory were digitized and processed for each cluster. The derived ellipticities and orientations are presented in the form of a catalogue?. The projected ellipticities of M 31 GCs lie between 0.03 0.24 with mean valueε ¯=0.086 0.038. It may be concluded that the most globular clusters in the Andromeda galaxy÷ are quite spherical. The derived± orientations do not show a preference with respect to the center of M 31. Some correlations of the ellipticity with other clusters parameters are discussed. The ellipticities determined in this work are compared with those in other Local Group galaxies. Key words: globular clusters: general — galaxies: individual: M 31 — galaxies: star clusters — catalogs 1. Introduction Bergh & Morbey (1984), and Kontizas et al. (1989), have shown that the globulars in LMC are markedly more ellip- Representing the oldest of all stellar populations, the glo- tical than those in our Galaxy.
    [Show full text]
  • NOVAVERSES ISSUE 5D
    NOT ALL UNIVERSES ARE THE SAME NO: 5 NOT ALL UNIVERSES ARE THE SAME RISE OF THE CORPS Arc 1: Whatever Happened to Richard Rider? Part 1 WRITER - GORDON FERNANDEZ ILLUSTRATION - JASON HEICHEL and DAZ RED DRAGON PART 3 WRITER - BRYAN DYKE ILLUSTRATION - FERNANDO ARGÜELLO STARSCREAM PART 5 WRITER - DAZ BLACKBURN ILLUSTRATION - EMILIANO CORREA, JOE SINGLETON and DAZ DREAM OF LIVING JUSTICE PART 2 WRITER - BYRON BREWER ILLUSTRATION - JASON HEICHEL Edited by Daz Blackburn, Doug Smith & Byron Brewer Front Cover by JASON HEICHEL and DAZ BLACKBURN Next Cover by JOHN GARRETSON Novaverses logo designed by CHRIS ANDERSON NOVA AND RELATED MARVEL CHARACTERS ARE DULY RECOGNIZED AS PROPERTY AND COPYRIGHT OF MARVEL COMICS AND MARVEL CHARACTERS INC. FANS PRODUCING NOVAVERSES DULY RECOGNIZE THE ABOVE AND DENOTE THAT NOVAVERSES IS A FAN-FICTION ANTHOLOGY PRODUCED BY FANS OF NOVA AND MARVEL COSMIC VIA NOVA PRIME PAGE AND TEAM619 FACEBOOK GROUP. NOVAVERSES IS A NON-PROFIT MAKING VENTURE AND IS INTENDED PURELY FOR THE ENJOYMENT OF FANS WITH ALL RESPECT DUE TO MARVEL. NOVAVERSES IS KINDLY HOSTED BY NOVA PRIME PAGE! ORIGINAL CHARACTERS CREATED FOR NOVAVERSES ARE THE PSYCHOLOGICAL COSMIC CONSTANT OF INDIVIDUAL CREATORS AND THEIR CENTURION IMAGINATIONS. DOWNLOAD A PDF VERSION AT www.novaprimepage.com/619.asp READ ONLINE AT novaprime.deviantart.com Rise of the Nova Corps obert Rider walked somberly through the city. It was a dark, bleak, night, and there weren't many people left on the streets. His parents and friends all warned him about the dangers of 1 Rwalking in this neighborhood, especially at this hour, but Robert didn't care.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • Sebastien GUILLOT Post-Doctoral Fellow at IRAP
    Sebastien GUILLOT Post-doctoral Fellow at IRAP 9, avenue du Colonel Roche, BP 44346. 31028 Toulouse Cedex 4 [email protected] Citizenship: French Date of birth: August 6th, 1984 www.astro.puc.cl/~sguillot/ Research Interests Neutron stars, dense matter physics, High-energy phenomena, X-ray binaries and accretion physics, globular clusters Employment Institut de Recherche en Astrophysique et Planétologie, Toulouse, France 2018 CNES Post-doctoral Fellow Pontificia Universidad Católica de Chile, Instituto de Astrofísica 2015 – 2017 FONDECYT Post-doctoral Fellow McGill University, Physics Department 2014 – 2015 Post-doctoral researcher and outreach coordinator Education PhD in astrophysics, McGill University – Vanier Graduate Scholar 2014 Master in physics, McGill University 2009 Bachelor of Science (with distinctions), University of Victoria (BC, Canada) 2007 Euro-American Institute of Technology (EAI Tech, Sophia-Antipolis, France) 2001 – 2003 Note: Two-years preparation program in Astrophysics with courses in French/English, before transferring to UVic Other Research Experience Joint Institute for Laboratory Astrophysics, U. of Colorado (Supervisor: Rosalba Perna) 2013 Research Internship – 2 months, funded by FRQNT International Internship Award). Harvard-Smithsonian Centre for Astrophysics (Supervisor: Alyssa Goodman) 2006 Research Assistant with the COMPLETE team. Sub-mm observations of molecular clouds – 3 months. McGill University, Physics Department (Supervisor: Gil Holder) 2005 Research Assistant. Theoretical Cosmology (weak
    [Show full text]
  • Dust and CO Emission Towards the Centers of Normal Galaxies, Starburst Galaxies and Active Galactic Nuclei, I
    A&A 462, 575–579 (2007) Astronomy DOI: 10.1051/0004-6361:20047017 & c ESO 2007 Astrophysics Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei, I. New data and updated catalogue M. Albrecht1,E.Krügel2, and R. Chini3 1 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomisches Institut der Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 NA7, 44780 Bochum, Germany Received 6 January 2004 / Accepted 27 October 2006 ABSTRACT Aims. The amount of interstellar matter in a galaxy determines its evolution, star formation rate and the activity phenomena in the nucleus. We therefore aimed at obtaining a data base of the 12CO line and thermal dust emission within equal beamsizes for galaxies in a variety of activity stages. Methods. We have conducted a search for the 12CO (1–0) and (2–1) transitions and the continuum emission at 1300 µmtowardsthe centers of 88 galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESO Submillimeter Telescope (SEST). The galaxies > are selected to be bright in the far infrared (S 100 µm ∼ 9 Jy) and optically fairly compact (D25 ≤ 180 ). We have applied optical spectroscopy and IRAS colours to group the galaxies of the entire sample according to their stage of activity into three sub-samples: normal, starburst and active galactic nuclei (AGN). The continuum emission has been corrected for line contamination and synchrotron contribution to retrieve the thermal dust emission.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]