Changes in Alkenone and Alkenoate Distributions During Acclimatization

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Alkenone and Alkenoate Distributions During Acclimatization Geochemical Journal, Vol. 46, pp. 235 to 247, 2012 Changes in alkenone and alkenoate distributions during acclimatization to salinity change in Isochrysis galbana: Implication for alkenone-based paleosalinity and paleothermometry MAKIKO ONO,1 KEN SAWADA,1,3* YOSHIHIRO SHIRAIWA2,3 and MASAKO KUBOTA2 1Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan 2Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan 3CREST, Japan Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan (Received February 8, 2012; Accepted April 30, 2012) A cultured strain of Isochrysis galbana UTEX LB 2307 was grown at 20°C and 15°C under salinity of 35‰, 32‰, 27‰, 20‰, and 15‰, and analyzed for long chain (C37–C39) alkenones and (C37–C38) alkyl alkenoates. It was character- ized by abundant C37 alkenones and C38 ethyl alkenoates (fatty acid ethyl ester: FAEEs) and a lack of C38 methyl alkenones. There were no tetra-unsaturated (C37:4) alkenones, which are frequently found in natural samples from low salinity waters. K′ ° The alkenone unsaturation index (U 37) did not vary in response to change in salinity at 15 C. The alkenone unsaturation K′ ° ° index (U 37) clearly changed in response to change in salinity at 20 C, but not at 15 C, where algal growth was and was ° ° K′ not limited by temperature at 15 C and 20 C, respectively. The U 37-temperature calibration for I. galbana UTEX LB 2307 is quite different from those of E. huxleyi and another strain of I. galbana (CCMP1323), while is resemble to that reported for C. lamellosa isolated from a Chinese lake. Also, variation in the alkenone chain length ratio values (K37/K38) did not correlate with salinity. These results implied that a high abundance of tetra-unsaturated alkenone and high K37/K38 values might be attributed to a taxonomic factor rather than a physiological response to salinity change. Interestingly, our culture experiments showed that the ethyl alkenoates/alkenones ratio (EE/K37) correlates with salinity. Hence, it is sug- gested that the EE/K37 ratios are affected by the cellular and physiological factors against salinity condition in single haptophyte cells. Keywords: alkenone, Isochrysis, acclimatization, paleothermometry, saleosalinity alkenones are derived from Haptophycean algae, includ- INTRODUCTION ing the Noelaerhabdaceae and Isocrysidaceae families. In K Unsaturation indices for C37 alkenones (U 37 and particular, cosmopolitan haptophycean algae such as K′ U 37) are established as proxies for paleotemperature of Emiliania huxleyi and Gephyrocapsa oceanica in the open sea surface water (Brassell et al., 1986; Prahl and ocean are thought to be main sources of alkenones and Wakeham, 1987; Prahl et al., 1988) and have been widely related compounds. Also, coastal species such as used to reconstruct paleoceanograhic variation from ma- Isochrysis galbana and Chrysotila lamellosa are known rine sediments (e.g., Rostek et al., 1993; Bard et al., 1997; to synthesize alkenones, but the distribution and abun- Sawada and Handa, 1998; Sachs and Lehman, 1999; dance of I. galbana in the marine environment are virtu- Kienast et al., 2001; Seki et al., 2004; Haug et al., 2005) ally unknown (Versteegh et al., 2001). A strain of C. and to infer continental paleoclimate from lacustrine lamellosa was isolated from a continental lake (Lake sediments (e.g., Zink et al., 2001; Coolen et al., 2004; Xiarinur, China) and then its cultured strain was confirmed Chu et al., 2005; Pearson et al., 2008; Toney et al., 2010; to produce alkenones and alkenoates (Sun et al., 2007). D’Andrea et al., 2011). Moreover, the relative abundance Using 18S ribosomal RNA (rRNA) analysis, Coolen et of tetra-unsaturated alkenones (C37:4 alkenones) could be al. (2004) reported firstly that the alkenones in sediments potentially used as a proxy for paleosalinity (Rosell-Melé, from Ace Lake in Antarctica originated mainly from or- 1998; Schulz et al., 2000; Harada et al., 2003; Blanz et ganisms related to I. galbana. A recent 18S rRNA inves- al., 2005; Liu et al., 2006). Long-chain (C37–C39) tigation of 15 alkenone-containing sediments from lakes in Eurasia and North American continents (Theroux et al., 2010) demonstrated that multiple haptophyte species *Corresponding author (e-mail: [email protected]) of order Isochrysidales are possibly present as alkenone Copyright © 2012 by The Geochemical Society of Japan. producers in continental lakes worldwide. More recently, 235 Toney et al. (2012) reported that the enrichments of two tion of alkenone producers against change in salinity and/ haptophyte phylotypes (Hap-A and Hap-B) from George or specific hydrological conditions (Schulz et al., 2000). Lake, United States, could be individually cultured, and In addition, C37:4% variation is associated with low tem- major alkenone producer in the lake system was likely to perature (Sikes et al., 1991; Sikes and Volkman, 1993; be the Hap-A phylotype, which was related to I. galbana, Rosell-Melé et al., 2002) and is also speculated to be af- rather than the Hap-B, which was related to C. lamellosa fected by limited nutrients (Harada et al., 2003). The ra- and Pseudoisochrysis paradoxa. These results suggest that tio of C37 to C38 alkenones (K37/K38 or C37/C38) also vary the Chrysotila, Isochrysis and other Isochrysidales can in a marginal sea and a continental lake (Schulz et al., be the main producers of alkenones and related com- 2000; Chu et al., 2005). Shultz et al. (2000) reported that pounds in continental lake systems. K37/K38 (C37/C38) values varied depending on the salin- K′ U 37-temperature calibrations have been studied by ity of surface water in the Baltic Sea, decreasing culturing alkenone-synthesizing algae (Marlowe et al., exponentially below 9 PSU and constant from 9 to 30 1984; Prahl and Wakeham, 1987; Conte et al., 1994, 1995, PSU. They inferred that such differences might be attrib- 1998; Volkman et al., 1995; Sawada et al., 1996; utable to variations in species and/or strain of alkenone Versteegh et al., 2001; Rontani et al., 2004; Sun et al., producers. Ono et al. (2009) showed the variation in 2007) as well as analysis of water column particulates alkenone and alkenoate distributions in a culture of the (Conte and Eglinton, 1993; Sikes and Volkman, 1993; haptophycean algae Emiliania huxleyi and Gephyrocapsa Sawada et al., 1998; Hamanaka et al., 2000; Bentaleb et oceanica under various salinity conditions, and found no al., 2002) and core top sediments (Sikes et al., 1991; C37:4 alkenone and that K37/K38 values increased with Rosell-Melé et al., 1995; Pelejero and Grimalt, 1997; decreasing salinity (Ono et al., 2009). Sonzogni et al., 1997; Müller et al., 1998). It is known In this study, we have examined variation in the K′ that there are large variations in U 37-temperature cali- unsaturation ratios and distributions of alkenones and brations from both culture and field samples. These vari- alkenoates for a culture of Isochrysis galbana UTEX LB ations have been attributed to ecological bias in depth 2307, a different strain from that examined by Versteegh and seasonality of alkenone production, and diagenetic et al. (2001), as well as the reliability of these parameters alteration during and after deposition (Grimalt et al., 2000 as paleotemperature and paleosalinity proxy. and references therein). Also, many researchers have pointed out that UK′ -temperature relationships vary as 37 MATERIALS AND METHODS a result of physiological factors such as growth phase and genetic factors such as species and genotype (e.g., Conte Culture conditions et al., 1998; Yamamoto et al., 2000). Isochrysis aff. galbana UTEX LB 2307 was obtained Recent studies of marine environments have indicated from the Algal Collection of the University of Texas at that the relative abundance of the C37:4 alkenone (C37:4/ Austin (Texas, USA; Starr and Zeikus, 1987), and had K37 or C37:4%) as a proportion of total C37 (di-, tri- and been isolated from an aquaculture pond in Society Islands, tetra-unsaturated components) is inversely correlated with Tahiti (Wikfors and Patterson, 1994). It was cultured con- salinity, especially at salinity <ca. 30 PSU (Schulz et al., tinuously in batch systems at 21°C and 34‰ salinity un- 2000; Harada et al., 2003; Blanz et al., 2005). Further- der cool white fluorescent light and continuous bubbling more, C37:4% values have been found to be applicable to of sterilized air. It was transferred to 500 ml Mericron reconstruction of relative changes in salinity for Holocene flasks (Iwaki Co. Ltd., Tokyo, Japan) containing 300 ml sediments from a continental lake (Lake Qinghai; Liu et artificial seawater (Marine Art SF-1 (MA); produced by al., 2006). However, the cause(s) of the variability of Tomita Pharmaceutical Co. Ltd. (Naruto, Tokushima, Ja- %C37:4 values in ocean and continental lake systems is pan) and obtained from Osaka Yakken Co. Ltd. (Osaka, (are) not clear. Most researchers suggest that the C37:4% Japan; formerly Senju Pharmaceutical Co. Ltd.)) enriched values could increase by way of a contribution of with modified ESM in which soil extract was replaced haptophycean species or genetic strains that contained with 10 nM sodium selenite (Danbara and Shiraiwa, 1999) ° C37:4 alkenone, and that salinity might be an indirect fac- at 20 C under 32‰, 27‰, 20‰ and 15‰ salinity, as well ° tor affecting the relative abundance of the C37:4 alkenone as at 15 C under 35‰, 32‰, 27‰, 20‰ and 15‰ salin- (e.g., Blanz et al., 2005; Chu et al., 2005). In addition, ity. They were harvested at day 2 (48 h), day 4 (96 h) and Toney et al. (2012) reported that the C37:4 alkenone- day 8 (192 h).
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • The State of the World's Aquatic Genetic Resources for Food and Agriculture 1
    2019 ISSN 2412-5474 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME 2019 Required citation: FAO. 2019. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131608-5 © FAO, 2019 Some rights reserved. This work is available under a CC BY-NC-SA 3.0 IGO licence 2018 © FAO, XXXXXEN/1/05.18 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode).
    [Show full text]
  • An Explanation for the 18O Excess in Noelaerhabdaceae Coccolith Calcite
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 189 (2016) 132–142 www.elsevier.com/locate/gca An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite M. Hermoso a,⇑, F. Minoletti b,c, G. Aloisi d,e, M. Bonifacie f, H.L.O. McClelland a,1, N. Labourdette b,c, P. Renforth g, C. Chaduteau f, R.E.M. Rickaby a a University of Oxford – Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom b Sorbonne Universite´s, UPMC Universite´ Paris 06 – Institut de Sciences de la Terre de Paris (ISTeP), 4 Place Jussieu, 75252 Paris Cedex 05, France c CNRS – UMR 7193 ISTeP, 4 Place Jussieu, 75252 Paris Cedex 05, France d Sorbonne Universite´s, UPMC Universite´ Paris 06 – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France e CNRS – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France f Institut de Physique du Globe de Paris, Sorbonne Paris Cite´, Universite´ Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, 75238 Paris Cedex, France g Cardiff University – School of Earth and Ocean Sciences, Parks Place, Cardiff CF10 3AT, United Kingdom Received 10 November 2015; accepted in revised form 11 June 2016; available online 18 June 2016 Abstract Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals pro- duced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the ‘‘vital effect”, which overprints the oceanic temperatures recorded in coccolith calcite.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Coccolithophore Distribution in the Mediterranean Sea and Relate A
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science OSD doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 613–653, 2014 This discussion paper is/has been under review for the journal Ocean Science (OS). Coccolithophore Please refer to the corresponding final paper in OS if available. distribution in the Mediterranean Sea Is coccolithophore distribution in the A. M. Oviedo et al. Mediterranean Sea related to seawater carbonate chemistry? Title Page Abstract Introduction A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 Conclusions References 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain Tables Figures 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands J I 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, J I Duesternbrooker Weg 20, 24105 Kiel, Germany Back Close Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Full Screen / Esc Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate 11, 613–653, 2014 chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters.
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]
  • Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
    bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019.
    [Show full text]
  • Is Coccolithophore Distribution in the Mediterranean Sea Related to Seawater Carbonate Chemistry? A
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Ocean Science (OS). Please refer to the corresponding final paper in OS if available. Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry? A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, Duesternbrooker Weg 20, 24105 Kiel, Germany Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters. As a marine calcifying organism they are expected to respond to the ongo- ing changes in seawater CO2 systems parameters. However, very few studies have covered the entire Mediterranean physiochemical gradients from the Strait of Gibral- tar to the Eastern Mediterranean Levantine Basin.
    [Show full text]
  • Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns among distantly related mitochondrial genomes ................................................................................................ 11 Summary ................................................................................................................................ 11 2-1. Leucocryptos
    [Show full text]
  • The Ecology and Glycobiology of Prymnesium Parvum
    The Ecology and Glycobiology of Prymnesium parvum Ben Adam Wagstaff This thesis is submitted in fulfilment of the requirements of the degree of Doctor of Philosophy at the University of East Anglia Department of Biological Chemistry John Innes Centre Norwich September 2017 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Page | 1 Abstract Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms (HABs) globally, leading to large scale fish kills that have severe ecological and economic implications. A HAB on the Norfolk Broads, U.K, in 2015 caused the deaths of thousands of fish. Using optical microscopy and 16S rRNA gene sequencing of water samples, P. parvum was shown to dominate the microbial community during the fish-kill. Using liquid chromatography-mass spectrometry (LC-MS), the ladder-frame polyether prymnesin-B1 was detected in natural water samples for the first time. Furthermore, prymnesin-B1 was detected in the gill tissue of a deceased pike (Exos lucius) taken from the site of the bloom; clearing up literature doubt on the biologically relevant toxins and their targets. Using microscopy, natural P. parvum populations from Hickling Broad were shown to be infected by a virus during the fish-kill. A new species of lytic virus that infects P. parvum was subsequently isolated, Prymnesium parvum DNA virus (PpDNAV-BW1).
    [Show full text]
  • Identification of Calcification Transcripts of Emiliania Huxleyi And
    2 Identification of Potential Biomineralization Linked Genes in Emiliania huxleyi via High-Throughput Sequencing with RT-PCR Verification By Chrystal Grace Schroepfer Research Thesis Submitted for the Masters Degree in Biological Sciences Department of Biological Science, College of Science and Mathematics California State University San Marcos November 2011 3 Table of Contents Table of Contents . 2 Acknowledgements . .. 3 Abstract . 4 Introduction . 5 Coccolithophorids . 5 Biomineralization and Coccolithogenesis . 7 Sequence Profiling . 10 Methods and Materials . 14 Strains and Growth Conditions . 14 Scanning Electron Microscopy . 15 2+ - Ca Titration Estimates of CaCO3 . 16 Measuring Photosynthesis Rates . 17 RNA Extraction . 18 RNA Gel Electrophoresis . 20 Experion RNA Electrophoresis . 20 RNA Sequencing . 21 Primer Design . 23 Real Time RT-PCR . 23 Annotation . 26 Results . 27 Cell Growth . 27 Scanning Electron Microscopy . 29 Calcium Titration . 31 Photosynthesis Rates . 34 Solexa Profiles . 35 RNA Extraction & Gel Electrophoresis . 38 Comparative Reverse Transcriptase Real-Time PCR . 43 Annotation . 52 Discussion . 61 References . 77 Appendices. 86 4 Acknowledgements I would like to thank my committee members Dr. Betsy Read, Dr. Matthew Escobar and Dr. Jose Mendoza for their guidance and support throughout the thesis completion process. I would like to thank my parents, John and Mary Schroepfer, my closest friends, Steve and Jeanne Bâby, Gearald Denny, Tom Bento and my Church Family at Bostonia Church of Christ for their love, encouragement and support over the years. To my brothers, David and Jason Schroepfer, thanks for all the laughs. Lastly, I would like to thank all my friends that I made from the laboratory: Estela Carrasco, James Fuller, Jessica Garza, Karina Gonzalez, Latha Kannan, Ray Liang, Tien Nguyen, Alyse Prichard, Analisa Sarno, Andrew Segina, Christina Vanderwerken and William Whalen for their help and all the fun times we shared together.
    [Show full text]
  • Protista (PDF)
    1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.
    [Show full text]