Analysis of Polycyclic Aromatic Hydrocarbons Using GC-MS 33

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Polycyclic Aromatic Hydrocarbons Using GC-MS 33 LAAN-J-MS-E033 GCMS Gas Chromatograph Mass Spectrometer Analysis of Polycyclic Aromatic Hydrocarbons Using GC-MS 33 Introduction Polycyclic aromatic hydrocarbons (PAHs) are byproducts of burning fuels, such as mineral oils, and are known to be carcinogenic, mutagenic, and teratogenic. These compounds are regulated in many countries as harmful pollutants in environmental water and the atmosphere. In Japan, the "Measuring method manual for toxic air pollutants" and "Measuring method manual for polycyclic aromatic hydrocarbons (PAHs) in exhaust gas emissions" were revised in March 2011. In addition, environmental standards, including fine particle regulations (PM2.5) and fine particles, can include PAHs. Consequently, there is an increasing need to measure PAHs. This application datasheet introduces an example of measuring 36 PAHs. Analysis Conditions and Results Table 1 shows the analysis conditions and Fig. 1 shows the total ion current chromatogram. Figure 2 (Page 2) shows enlarged chromatogram sections for PAHs with 4, 5, and 6 rings. Table 1: Analysis Conditions GC-MS :GCMS-QP2010 Ultra [GC] [MS] Column :Rtx-35 (length 30 m, 0.32 mm I.D., df=0.25 µm ) Interface temperature :300℃ Inlet mode :Splitless Ion source temperature :230℃ Vaporizing chamber temp:300℃ Solvent elution time :3.5min Column oven temperature:90℃ (2min) →(5℃/min)→320℃(12min) Data sampling time :4.5 – 60min Carrier gas :Helium Measurement mode :Scan Control mode :Constant linear velocity (43.7cm/sec) Mass range :m/z 45-450 High pressure injection :150kPa (1.5min) Event time :0.3sec Purge flow rate :3mL/min Injection rate :1.0 µL (x10,000,000) TIC 7 1.00 26,27 1 11 18 16,17 31 10 0.75 28 25 22,23 29 24 30 13 20 0.50 4 14 2 3 5 19 8 12 32 34 35 6 33 36 21 0.25 9 15 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 Fig. 1: Total Ion Current Chromatogram of 36 PAHs 1.Naphthalene, 2.Biphenyl 3.Acenaphthylene 4.Acenaphthene 5.Fluorene 6.Dibenzothiophene 7.Phenanthrene 8.Anthracene 9.4H- Cyclopenta[def]phenanthrene 10.Fluoranthene 11.Pyrene 12.Benzo[ghi]fluoranthene 13.Benzo[c]phenanthrene 14.Benzo[a]anthracene 15.Cyclopenta[cd]pyrene 16,17.Chrysene & Triphenylene 18.Benzo[b]fluoranthene 19.Benzo[k]fluoranthene 20.Benzo[j]fluoranthene 21.Benzo[a]fluoranthene 22.Benzo[e]pyrene 23.Benzo[a]pyrene 24.Perylene 25.Dibenz[a,j]anthracene 26.Dibenz[a,c]anthracene 27.Indeno[1,2,3-cd]pyrene 28.Dibenz[a,h]anthracene 29.Benzo[b]chrysene 30.Picene 31.Benzo[ghi]perylene 32.Anthanthrene 33.Dibenzo[b,k]fluoranthene 34.Dibenzo[a,h]pyrene 35.Coronene 36.Dibenzo[a,e]pyrene 33 (x10,000,000) 1.75 TIC 226.00 (3.00) 1.50 228.00 (3.00) 16,17 1.25 1.00 13 14 0.75 12 15 0.50 0.25 0.00 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 12.Benzo[ghi]fluoranthene 13.Benzo[c]phenanthrene 14.Benzo[a]anthracene 15.Cyclopenta[cd]pyrene 16,17.Chrysene&Triphenylene (x10,000,000) 1.25 TIC 252.00 (3.00) 18 1.00 22 23 24 0.75 20 19 0.50 21 0.25 0.00 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 18.Benzo[b]fluoranthene 19.Benzo[k]fluoranthene 20.Benzo[j]fluoranthene 21.Benzo[a]fluoranthene 22.Benzo[e]pyrene 23.Benzo[a]pyrene 24.Perylene (x10,000,000) TIC 1.50 276.00 (3.00) 278.00 (3.00) 2627 1.25 31 28 25 29 1.00 30 0.75 32 0.50 0.25 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 25.Dibenz[a,j]anthracene 26.Dibenz[a,c]anthracene 27.Indeno[1,2,3-cd]pyrene 28.Dibenz[a,h]anthracene 29.Benzo[b]chrysene 30.Picene 31.Benzo[ghi]perylene 32.Anthanthrene 26 and 27 can be resolved between m/z 276 and 278. Fig. 2: Enlarged Chromatograms Upper: 4-Ring Section (retention time 33.5 to 38.0 minutes); Middle: 5-Ring Section (retention time 40.5 to 44.5 minutes); Lower: 6-Ring Section (retention time 45.5 to 49.5 minutes) Summary Because there are so many PAH isomers, separation by column is more important than separation by mass. Of the 36 polycyclic aromatic hydrocarbons, the Rtx-35 column can separate all except chrysene and triphenylene. Therefore, it enables separating PAHs with a wide range of boiling points. For Research Use Only. Not for use in diagnostic procedures. Shimadzu Corporation (“Shimadzu”) reserves all rights including copyright in this publication. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to, or arising out of the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice. First Edition: November 2011.
Recommended publications
  • 14 Title: Coal Review of Hydrocarbon Emissions Related to Tar Pitch
    AP42 Section 7.1 Related: 14 Title: Review of Hydrocarbon Emissions Related to Coal Tar Pitch. Includes pitch vapor pressure data and Antoine's coefficients. EF Bart, et al. Allied Chemical Corporation 1980 I ._ ,.. ?i e!,/..'. r'.:.. ,,T.<,ili -:*., $0 ,i .# 1 .... i;.'.,.,: _..:, '">,U<>j. .. .. REVIEW OF HYDROCMSON EMISSIONS RELATED TO COAL TAR PITCH E. F. Bart, S. A. Visnic, P. A. Cerria Allied Chemical Corporation Morristown, New Jersey 07960 Sumnary Coal tar pitch is used primarily as a binder in the manufacture of carbon electrodes for the aluminum and steel industries. The pitch repre- sents the main product from the continuous, high-temperature distillation of coke oven tar. The pitch is produced and generally handled as a liquid at high temperatures, thus resulting in a potential for hydrocarbon emissions during its handling. An ever-increasing need for control of hydrocarbon emissions has resulted for process and storage equipment since amendments were made in 1977 to the Clean Air Act. Within the next several years, most industries will be faced with requirements for the installation of air pollution con- trol equipment. This paper deals with the types of emissions and methods used in quantifying and controlling emissions from coal tar pitch storage equipment. To better understand the nature of coal tar pitch, a brief description is given of its origin, chemistry and physical properties. Coal Tar Distillation Coal tar pitch is the residue from the distillation of coal tar and represents from 30% to 60% of the tar. It is a complex, bituminous sub- stance and has been estimated to contain about 5,000 compounds.
    [Show full text]
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • The Study of the Absoiption Spectra of the Hydrocarbons Isolated from the Products of the Action of Alunzinium Chloride on Nup12tkccle.R~E
    View Article Online / Journal Homepage / Table of Contents for this issue ABSORPTION SPECTRA OF HYDROCARBONS. 1319 Published on 01 January 1908. Downloaded by University of California - San Diego 12/04/2016 06:21:24. CXXV1.-The Study of the Absoiption Spectra of the Hydrocarbons isolated from the Products of the Action of Alunzinium Chloride on Nup12tkccle.r~e. By ANNIEHOMER, Fellow of Newnham College, and JOHNEDWARD PURVIS, M.A. FROMthe products of the action of aluminium chloride on naphthalene, besides PP-dinaphthyl previously isolated by Friedel and Crafts from the same reaction, there have been isolated three new hydrocarbons which have been described in detail by one of us (Homer, Trans., 1907, 9 1, 1103). The substances isolated were : (.i) CI4Hl6, a homologue of naphthalene, either tetramethyl- or 4s2 View Article Online 1320 HOMER AND PURVIS: THE STUDY OF THE diethyl-naphthalene, more probably the former ; (ii) CZ0Hl4, /3@-dinaphthyl; (iii) c26H22, a substance supposed to be a homologue of dinaphthanthracene, C,,H14 ; and (iv) C40H26, probably tetra- naph t h yl. @B-Dinaphthylis formed by the condensation of two naphthalene molecules. It was thought that the hydrocarbon C,,HZ6 was formed by the condensation of either two PP-dinaphthgl or four naphthalene molecules, more probably by the former, as an increase in the time allowed for the action of aluminium chloride on naphthalene, or a rise in the temperature at which the reaction was conducted, caused a decrease in the amount of the hydrocarbon aad an increase in the amount of the hydrocarbon C,,H,, produced. It was suggested that the substance C261322was a homologue of dinaphthanthracene, CZ2Hl4,and its formation from alkylnaphthalenes, which are also formed during the reaction, was given as follows : The intense fluorescence of the substance suggested the presence of an anthracenoid linking, In the method of formation thus proposed, hydrogen would be eliminated from a /3-methyl group of trimethylnaphthalene.
    [Show full text]
  • Temperature-Induced Oligomerization of Polycyclic Aromatic Hydrocarbons
    www.nature.com/scientificreports OPEN Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient Received: 7 June 2017 Accepted: 10 July 2017 and high pressures Published: xx xx xxxx Artem D. Chanyshev 1,2, Konstantin D. Litasov1,2, Yoshihiro Furukawa3, Konstantin A. Kokh1,2 & Anton F. Shatskiy1,2 Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500–773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740–823 K. PAH carbonization at high pressure is the fnal stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and fnally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km. High-pressure transformations of polycyclic aromatic hydrocarbons (PAHs) and benzene become extremely important due to wide applications for example in graphene- and graphene-based nanotechnology1–3, synthesis of organic superconductors4, 5, petroleum geoscience, origin of organic molecules in Universe and origin of life. In particular, PAHs were found in many space objects: meteorites6–8, cometary comae9, interstellar clouds and planetary nebulas10–12. Although the prevalent hypothesis for the formation of these PAHs is irradiation-driven polymerization of smaller hydrocarbons13, alternative explanation could be shock fragmentation of carbonaceous solid material11. PAH-bearing carbonaceous material could contribute to the delivery of extraterrestrial organic materials to the prebiotic Earth during the period of heavy bombardment of the inner Solar System from 4.5 to 3.8 Ga ago14–16.
    [Show full text]
  • Summary of Information for ABC for Polycyclic Aromatic Hydrocarbons
    Air Toxics Science Advisory Committee Summary of Information for ABC for Polycyclic Aromatic Hydrocarbons September 16, 2015 ATSAC Meeting #10 Presenter: Sue MacMillan, DEQ ATSAC lead Sue MacMillan | Oregon Department of Environmental Quality 26 Individual PAHs to Serve as Basis of ABC for Total PAHs Acenaphthene Cyclopenta(c,d)pyrene Acenaphthylene Dibenzo(a,h)anthracene Anthracene Dibenzo(a,e)pyrene Anthanthrene Dibenzo(a,h)pyrene Benzo(a)pyrene Dibenzo(a,i)pyrene Naphthalene Benz(a)anthracene Dibenzo(a,l)pyrene has separate Benzo(b)fluoranthene Fluoranthene ABC. Benzo(k)fluoranthene Fluorene Benzo( c)pyrene Indeno(1,2,3-c,d)pyrene Benzo(e)pyrene Phenanthrene Benzo(g,h,i)perylene Pyrene Benzo(j)fluoranthene 5-Methylchrysene Chrysene 6-Nitrochrysene Use of Toxic Equivalency Factors for PAHs • Benzo(a)pyrene serves as the index PAH, and has a documented toxicity value to which other PAHs are adjusted • Other PAHs adjusted using Toxic Equivalency Factors (TEFs), aka Potency Equivalency Factors (PEFs). These values are multipliers and are PAH-specific. • Once all PAH concentrations are adjusted to account for their relative toxicity as compared to BaP, the concentrations are summed • This summed concentration is then compared to the toxicity value for BaP, which is used as the ABC for total PAHs. Source of PEFs for PAHs • EPA provides a range of values of PEFs for each PAH • Original proposal suggested using upper-bound value of each PEF range as the PEF to use for adjustment of our PAHs • Average PEF value for each PAH is a better approximation of central tendency, and is consistent with the use of PEFs by other agencies • Result of using average, rather than upper-bound PEFs: slightly lower summed concentrations for adjusted PAHs, thus less apt to exceed ABC for total PAHs Documents can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills.
    [Show full text]
  • Absence of Photoemission from the Fermi Level in Potassium Intercalated Picene and Coronene films: Structure, Polaron Or Correlation Physics?
    Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron or correlation physics? Benjamin Mahns,1 Friedrich Roth,1 and Martin Knupfer1 IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany (Dated: 13 September 2018) The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band pho- toemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in Kxpicene and Kxcoronene (x ∼ 3), none of the films studied shows emission from the Fermi level, i. e. we find no indication for a metallic ground state. Several reasons for this observation are discussed. arXiv:1203.4728v1 [cond-mat.supr-con] 21 Mar 2012 1 I. INTRODUCTION Superconductivity always has attracted a large number of researchers since this phe- nomenon harbors challenges and prospects both under fundamental and applied points of view. Very recently, it has been discovered that some molecular crystal consisting of poly- cyclic aromatic hydrocarbons demonstrate superconductivity upon alkali metal addition. Furthermore, these compounds are characterized by rather high transition temperatures into 1 2 the superconducting state, for instance K3picene (Tc=18 K) and K3coronene (Tc=15 K) . Most recently, superconductivity with a transition temperature of 33 K has been reported 3 for K3dibenzopentacene . These doped aromatic hydrocarbons thus represent a class of or- ganic superconductors with transition temperatures only slightly below that of the famous 4{8 alkali metal doped fullerenes with Tc's up to 40 K .
    [Show full text]
  • Prcn.Uppderlimit Of
    564 MARCH 29, THE CANCER-PRODUCING FACTOR IN TAR. rTRBTETISU 19241 IMDICAIJOURNAr. I wlhiel eacll fraction is produced; the figures are onlv very ON THE CANCER-PRODUCING FACTOR rouglh, for the practice varies considerably in different tar- IN TAR. works, and also in the same works in accordance with fluctuiations in the BY miiarket for different products. Tlhus the proportion of creosote oil produced may vary from 9 per E. L. KENNAWAY, M.D., D.Sc. cent. to 25 per cent. of the crude tar. (From the Cancer Hospital Research Institute, London.) TABLE I.-Fi'ractions of Gasworks Tar. TH.AT tar can produce cancer has been known for nearly fifty years, but no systematic attemipt to tlle par- Limit of idenitify Fraction. PrCn.UppDer ticular comiipounds responsible for this effect was possible Pof TCar. Temperature until tlleexperimental productionof cancer in lower animals a became practical method. In thle absence of such experi- 1. Ammoniacal liquor ... ... 2 nmenltal evidence from the laboratory, th'e capacity of any 2. Crude naphtha ... ... ... 2 material to produce cancer must be learned from those accidental experiments on man which are the cause of 3. Light oil ... ... ... ... 9 2250 "industrial diseases." When a new cancer-producing 4. Middle or carbolic oil ... ... 5 2550 substance comes into industrial use on a large scale no danger will be detected during the long latent period, 5. Creosote oil ... ... ... ... 14 2750 whieh in man is probably of many years' duration; the 6. Anthracene oil ... ... 3 320P* effect of the will then become apparent, as we substaneo 7. Pitch ... ... ... ... ... ...63 have seen recently in the case of mule-spinners.
    [Show full text]
  • Certificate of Analysis
    National Institute of Standards & Technology Certificate of Analysis Standard Reference Material® 1597a Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar This Standard Reference Material (SRM) is intended for use in the evaluation and validation of analytical methods for the determination of a natural, combustion-related mixture of polycyclic aromatic hydrocarbons (PAHs). SRM 1597a is isolated from a coal tar sample and dissolved in toluene. It is suitable for direct analysis (i.e., without sample cleanup or concentration) in the determination of PAHs using analytical techniques such as gas chromatography (GC), liquid chromatography (LC), or gas chromatography/mass spectrometry (GC/MS). This SRM may also be used to evaluate procedures for measurement of mutagenic activity of combustion-related mixtures of PAHs and related compounds. A unit of SRM 1597a consists of one 5 mL ampoule, containing 1.3 mL of material. Certified Mass Fraction Values: Certified values for concentrations, expressed as mass fractions, for 34 PAHs are provided in Table 1. The certified values are based on the agreement of results obtained at NIST from two or more chemically independent analytical techniques [1,2]. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or accounted for by NIST. Reference Mass Fraction Values: Reference values for concentrations, expressed as mass fractions, are provided for 36 additional PAHs in Table 2 and for 10 polycyclic aromatic sulfur heterocycles (PASH) in Table 3. Reference values are given in Table 4 for the mutagenic activity of SRM 1597a.
    [Show full text]
  • Nanostructural Origin of Blue Fluorescence in the Mineral Karpatite
    Potticary, J. , Jensen, T. T., & Hall, S. R. (2017). Nanostructural origin of blue fluorescence in the mineral karpatite. Scientific Reports, 7(1), [9867]. https://doi.org/10.1038/s41598-017-10261-w Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41598-017-10261-w Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature at https://www.nature.com/articles/s41598-017-10261-w. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ www.nature.com/scientificreports OPEN Nanostructural origin of blue fuorescence in the mineral karpatite Received: 9 June 2017 Jason Potticary 1,2, Torsten T. Jensen 1,3 & Simon R. Hall1 Accepted: 7 August 2017 The colour of crystals is a function of their atomic structure. In the case of organic crystals, it is the Published: xx xx xxxx spatial relationships between molecules that determine the colour, so the same molecules in the same arrangement should produce crystals of the same colour, regardless of whether they arise geologically or synthetically. There is a naturally-occurring organic crystal known as karpatite which is prized for its beautiful blue fuorescence under ultra-violet illumination.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons (Pahs)
    Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU
    [Show full text]
  • Health Risks of Structural Firefighters from Exposure to Polycyclic
    International Journal of Environmental Research and Public Health Systematic Review Health Risks of Structural Firefighters from Exposure to Polycyclic Aromatic Hydrocarbons: A Systematic Review and Meta-Analysis Jooyeon Hwang 1,* , Chao Xu 2 , Robert J. Agnew 3 , Shari Clifton 4 and Tara R. Malone 4 1 Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA 2 Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; [email protected] 3 Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA; [email protected] 4 Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; [email protected] (S.C.); [email protected] (T.R.M.) * Correspondence: [email protected]; Tel.: +1-405-271-2070 (ext. 40415) Abstract: Firefighters have an elevated risk of cancer, which is suspected to be caused by occupational and environmental exposure to fire smoke. Among many substances from fire smoke contaminants, one potential source of toxic exposure is polycyclic aromatic hydrocarbons (PAH). The goal of this paper is to identify the association between PAH exposure levels and contributing risk factors to Citation: Hwang, J.; Xu, C.; Agnew, derive best estimates of the effects of exposure on structural firefighters’ working environment in R.J.; Clifton, S.; Malone, T.R. Health fire. We surveyed four databases (Embase, Medline, Scopus, and Web of Science) for this systematic Risks of Structural Firefighters from literature review.
    [Show full text]