Measurements of Polycyclic Aromatic Hydrocarbons and Genotoxicity in Soot Deposited at a Toll Plaza Near Durban, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Measurements of Polycyclic Aromatic Hydrocarbons and Genotoxicity in Soot Deposited at a Toll Plaza Near Durban, South Africa RESEARCH ARTICLE S.J. Godefroy, B.S. Martincigh and L.F. Salter, 61 S. Afr. J. Chem., 2005, 58, 61–66, <http://journals.sabinet.co.za/sajchem/>. Measurements of Polycyclic Aromatic Hydrocarbons and Genotoxicity in Soot Deposited at a Toll Plaza near Durban, South Africa Susan J. Godefroy, Bice S. Martincigh* and Leo F. Salter‡ School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban, 4041 South Africa. Received 18 October 2004; revised and accepted 30 March 2005 ABSTRACT This research was designed to examine the presence of polycyclic aromatic hydrocarbons (PAHs) in soot deposited at the Mariannhill toll plaza situated on the N3 highway in KwaZulu-Natal, South Africa. Samples were collected from the toll plaza either by scraping the toll booth walls and surrounding areas, or by wiping the surfaces with cotton wool swabs. The organic component was separated by ultrasonic extraction into dichloromethane and analysed for PAHs by reverse phase high performance liquid chromatography with both fluorescence and ultraviolet detection. The genotoxicity was investigated by means of two bacterial assays: the Ames test and the SOS Chromotest. A number of PAHs were identified and genotoxic activity was observed in both of the assays. KEYWORDS Polycyclic aromatic hydrocarbons, toll plaza, genotoxicity. 1. Introduction mutagenicity.8–10 Since a toll plaza is an area of high traffic Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous density, it is an ideal location for an investigation into the environmental pollutants that are of health concern because of build-up of particles emitted by vehicles, and for a study of the their mutagenic and carcinogenic properties. They are formed extent to which toll booth workers are exposed to harmful during the incomplete combustion of organic matter1,2 and are compounds. The Mariannhill toll plaza situated on a national present in the atmosphere through the burning of fossil fuels highway (N3) approximately 22 km west of Durban, South and vegetation, in cigarette smoke, and in smoked or barbecued Africa, was chosen for this study. The toll booths at this plaza food. contained visible deposits of particulate soot-like material. It is PAHs remain in the gas phase at temperatures greater than known that soot from combustion sources, such as vehicular 150°C, but condense onto particles at lower temperatures. emissions, consists primarily of fine particles which tend to have Consequently, at typical ambient temperatures they exist a higher PAH content than coarse particles.11,12 This paper will primarily in the particulate phase3 and are normally associated describe the extraction of the toll booth soot, PAH analysis by with respirable particles, i.e. particles of diameter less than reverse phase high performance chromatography (HPLC) with 2.5 µm.4 The portion of respirable particles that has the greatest both fluorescence and ultraviolet (UV) detection, and geno- abundance of PAHs is able to penetrate to the thoracic region toxicity testing by means of the Ames test and the SOS of the lung, where it has a higher deposition efficiency and Chromotest. The approach followed here differs from that of provides an in-body source of PAHs which can last for weeks. others in that deposited particulate matter was analysed rather On entering the body, PAHs are metabolized to a variety of than airborne particles collected on sampling filters. In addition, metabolites2,5,6 via a reactive epoxide intermediate. Further the sparsity of actual pollutant level measurements at toll plazas, activation to a diol epoxide can occur,and this is considered to be and in South Africa in particular, and the lack of PAH monitoring a precursor to the product that can interact with the nucleic acid in South Africa, add importance to this work. bases on the DNA. The reaction takes place primarily with the exocyclic 2-amino group of guanine, and this bulky PAH 2. Experimental substituent on the DNA base interferes with replication merely because of its size.7 2.1. Sample Preparation The emission of PAHs into the environment is also of concern The deposited soot was collected by scraping the toll booth because they can undergo reactions with constituents of the walls, ceilings and surrounding areas with a spatula into glass atmosphere – such as oxygen, ozone and nitrogen oxides – to vials, or by wiping the surfaces with cotton wool and storing this produce compounds that are more mutagenic than the parent cotton wool in zip-seal plastic bags. All samples were stored in PAH. 3 the dark at 4°C. It is well documented that particulate emissions from vehicles In order to separate the organic matter from the inorganic exhibit mutagenic properties as determined via the Salmonella and carbonaceous, the soot was ultrasonically extracted into typhimurium histidine-reversion mutation assay (the Ames test), dichloromethane (DCM). Typically, 200 mL of DCM was used and that PAHs are the major contributors of this observed per 0.2 g of soot. The samples were extracted for 2 h, filtered * To whom correspondence should be addressed. E-mail: [email protected] through a Millipore 0.45 µm HV organic aqueous compatible ‡ Present address: Cornwall College, Cornwall TR15 3RD, United Kingdom. filter to remove the particles, and the filtrate (the crude extract) RESEARCH ARTICLE S.J. Godefroy, B.S. Martincigh and L.F. Salter, 62 S. Afr. J. Chem., 2005, 58, 61–66, <http://journals.sabinet.co.za/sajchem/>. was divided into three portions. Two portions were rotary dards and the sample were filtered through a 0.45 µm syringe evaporated to dryness, weighed and stored in the dark at 4°C for filter prior to injecting onto the HPLC column. Injections of 10 µL analysis in the genotoxicity assays. The remaining extract was of the sample and standard mixture were made and those PAHs reduced to 2 mL by rotary evaporation, loaded onto Florisil for which standards were available were identified from their re- columns and eluted with DCM. The combined eluents were tention times and characteristic UV spectra. evaporated to dryness under nitrogen and stored in the dark at Analysis at Lancaster University was performed on a Perkin 4°C prior to analysis by reverse phase HPLC with UV detection. Elmer binary HPLC pump 250 with a Perkin Elmer LS 40 fluores- This procedure was also performed on DCM as organic solvents cence detector. A Spherisorb 150 × 4.6 mm (5 µm particle size) do contain some PAH impurities and can adsorb them from the PAH cartridge was used. A gradient of 60% (v/v) acetonitrile- atmosphere: it is important therefore to have a solvent blank. In water, held for 15 min and increased linearly to 100% aceto- order to assess sample loss by the ultrasonic extraction and nitrile over 10 minand held for a further 20 min at a flow rate of Florisil clean-up procedure, a solution containing four of the 1.5 mL min–1, was employed as the mobile phase. The crude PAH standards was used to test the recovery efficiency. From extract was dissolved in DCM, filtered through a 0.5 µm syringe the HPLC analyses it appeared that this sample preparation filter and volumes of 2 µL injected. procedure did not result in any loss of the PAHs extracted. Samples of the crude extract prior to clean-up on Florisil 2.5. The Ames Test were also sent to the Department of Environmental Science at This is a bacterial revertant assay developed in the mid-1970s Lancaster University in the United Kingdom, where they were by Bruce Ames and his colleagues. It utilizes specially mutated analysed by reverse phase HPLC with fluorescence detection. strains of Salmonella typhimurium (a colon bacterium) and has been used extensively as a rapid in vitro test for the detection of 2.2. Preparation of Florisil Columns chemical carcinogens14–17 and to demonstrate the mutagenic These were prepared in the laboratory by plugging Pasteur potential of complex environmental samples. The procedure of pipettes with glass wool and packing with1gofFlorisil (60– Maron and Ames18 was followed here. The bacterial tester strains 100 mesh). Each column was loaded with 1 to 2 mL of the crude TA98 (which detect frameshift mutagens) and TA100 (which extract and eluted with 10 mL of DCM. This procedure has been detect base-pair substitution mutagens) were grown up over- reported to give good and rapid recovery of neutral aromatic night at 37°C in Oxoid nutrient broth No. 2. The dried crude compounds.13 extract was dissolved in dimethylsulfoxide (DMSO) to yield the maximum desired concentration in µg plate–1, and serial 2.3. Standards and Solvents dilutions were prepared from this stock to give concentrations of The 12 PAHs obtained commercially for use as standards 0.1, 1, 10, 20, 40, 60, 80 and 100 µg plate–1. Since unsubstituted were anthracene, acenaphthylene, anthraquinone, pyrene, PAHs are not mutagenic in their original forms, and require phenanthrene, fluorene, fluoranthene, 9-fluorenone, chrysene, metabolic activation in order to express their mutagenic activity triphenylene, 2-methyl anthracene and benzo(a)pyrene. These (these are called promutagens), an activating system (S9-mix) were chosen as standards because they are readily available and derived from rat liver enzymes (S9 fraction) was added to the have been identified amongst those found in vehicle exhaust test plates. The preparation is described in detail by Maron and emissions.9,10 Solutions of 10–3 M concentration were prepared of Ames.18 The plate incorporation test procedure was followed. each such PAH in a mixture of 50% (v/v) DCM-methanol, and a This involved the combination of 0.1 mL or less of the test standard PAH mixture was prepared by combining 1 mL of each chemical (toll booth extract), 0.5 mL of the S9-mix and 0.1 mL of solution.
Recommended publications
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing.
    [Show full text]
  • Krifka Publikation Glanzlicht 09
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Biomaterials 32 (2011) 1787e1795 Contents lists available at ScienceDirect Biomaterials journal homepage: www.elsevier.com/locate/biomaterials Activation of stress-regulated transcription factors by triethylene glycol dimethacrylate monomer Stephanie Krifka a, Christine Petzel a, Carola Bolay a, Karl-Anton Hiller a, Gianrico Spagnuolo b, Gottfried Schmalz a, Helmut Schweikl a,* a Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany b Department of Oral and Maxillofacial Sciences, University of Naples “Federico II”, Italy article info abstract Article history: Triethylene glycol dimethacrylate (TEGDMA) is a resin monomer available for short exposure scenarios of Received 22 October 2010 oral tissues due to incomplete polymerization processes of dental composite materials. The generation of Accepted 14 November 2010 reactive oxygen species (ROS) in the presence of resin monomers is discussed as a common mechanism Available online 10 December 2010 underlying cellular reactions as diverse as disturbed responses of the innate immune system, inhibition of dentin mineralization processes, genotoxicity and a delayed cell cycle.
    [Show full text]
  • Principles and Methods for the Risk Assessment of Chemicals in Food
    WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTE EHC240: Principles and Methods for the Risk Assessment of Chemicals in Food SUBCHAPTER 4.5. Genotoxicity Draft 12/12/2019 Deadline for comments 31/01/2020 The contents of this restricted document may not be divulged to persons other than those to whom it has been originally addressed. It may not be further distributed nor reproduced in any manner and should not be referenced in bibliographical matter or cited. Le contenu du présent document à distribution restreinte ne doit pas être divulgué à des personnes autres que celles à qui il était initialement destiné. Il ne saurait faire l’objet d’une redistribution ou d’une reproduction quelconque et ne doit pas figurer dans une bibliographie ou être cité. Hazard Identification and Characterization 4.5 Genotoxicity ................................................................................. 3 4.5.1 Introduction ........................................................................ 3 4.5.1.1 Risk Analysis Context and Problem Formulation .. 5 4.5.2 Tests for genetic toxicity ............................................... 14 4.5.2.2 Bacterial mutagenicity ............................................. 18 4.5.2.2 In vitro mammalian cell mutagenicity .................... 18 4.5.2.3 In vivo mammalian cell mutagenicity ..................... 20 4.5.2.4 In vitro chromosomal damage assays .................. 22 4.5.2.5 In vivo chromosomal damage assays ................... 23 4.5.2.6 In vitro DNA damage/repair assays ....................... 24 4.5.2.7 In vivo DNA damage/repair assays ....................... 25 4.5.3 Interpretation of test results ......................................... 26 4.5.3.1 Identification of relevant studies............................. 27 4.5.3.2 Presentation and categorization of results ........... 30 4.5.3.3 Weighting and integration of results .....................
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • FDA Genetic Toxicology Workshop How Many Doses of an Ames
    FDA Genetic Toxicology Workshop How many doses of an Ames- Positive/Mutagenic (DNA Reactive) Drug can be safely administered to Healthy Subjects? November 4, 2019 Enrollment of Healthy Subjects into First-In-Human phase 1 clinical trials • Healthy subjects are commonly enrolled into First-In-Human (FIH) phase 1 clinical trials of new drug candidates. • Studies are typically short (few days up to 2 weeks) • Treatment may be continuous or intermittent (e.g., washout period of 5 half- lives between doses) • Receive no benefits and potentially exposed to significant health risks • Patients will be enrolled in longer phase 2 and 3 trials • Advantages of conducting trials with healthy subjects include: • investigation of pharmacokinetics (PK)/bioavailability in the absence of other potentially confounding drugs • data not confounded by disease • Identification of maximum tolerated dose • reduction in patient exposure to ineffective drugs or doses • rapid subject accrual into a study 2 Supporting Nonclinical Pharmacology and Toxicology Studies • The supporting nonclinical data package for a new IND includes • pharmacology studies (in vitro and in vivo) • safety pharmacology studies (hERG, ECG, cardiovascular, and respiratory) • secondary pharmacology studies • TK/ADME studies (in vitro and in vivo) • 14- to 28-day toxicology studies in a rodent and non-rodent • standard battery of genetic toxicity studies (Ames bacterial reverse mutation assay, in vitro mammalian cell assay, and an in vivo micronucleus assay) • Toxicology studies are used to • select clinical doses that are adequately supported by the data • assist with clinical monitoring • Genetic toxicity studies are used for hazard identification • Cancer drugs are often presumed to be genotoxic and genetic toxicity studies are generally not required for clinical trials in cancer patients.
    [Show full text]
  • S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use
    Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (Tel) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1)....................................................................................................... 1 A. Objectives of the Guidance (1.1)...................................................................................................1
    [Show full text]
  • Comparative Genotoxicity of Adriamycin and Menogarol, Two Anthracycline Antitumor Agents
    [CANCER RESEARCH 43, 5293-5297, November 1983] Comparative Genotoxicity of Adriamycin and Menogarol, Two Anthracycline Antitumor Agents B. K. Bhuyan,1 D. M. Zimmer, J. H. Mazurek, R. J. Trzos, P. R. Harbach, V. S. Shu, and M. A. Johnson Departments of Cancer Research [B. K. B.. D. M. Z.], Pathology and Toxicology Research [J. H. M., R. J. T., P. R. H.], and Biostatist/cs [V. S. S., M. A. J.], The Upjohn Company, Kalamazoo, Michigan 49001 ABSTRACT murine tumors such as P388 and L1210 leukemias and B16 melanoma (13). However, the biochemical activity of Adriamycin Adriamycin and menogarol are anthracyclines which cause and menogarol were markedly different in the following respects, more than 100% increase in life span of mice bearing P388 (a) at cytotoxic doses, Adriamycin inhibited RNA synthesis much leukemia and B16 melanoma. Unlike Adriamycin, menogarol more than DNA synthesis in L1210 cells in culture (10). In does not bind strongly to ONA, and it minimally inhibits DNA and contrast, menogarol caused very little inhibition of RNA or DNA RNA synthesis at lethal doses. Adriamycin is a clinically active synthesis at cytotoxic doses (10); (b) Adriamycin interacted drug, and menogarol is undergoing preclinical toxicology at Na strongly with DNA, in contrast to the weak interaction seen with tional Cancer Institute. In view of the reported mutagenicity of menogarol (10); (c) cells in S phase were most sensitive to Adriamycin, we have compared the genotoxicity of the two Adriamycin as compared to maximum toxicity of menogarol to drugs. Our results show that, although Adriamycin and meno cells in Gì(5).These results collectively suggested that meno garol differ significantly in their bacterial mutagenicity (Ames garol acts through some mechanism other than the intercalative assay), they have similar genotoxic activity in several mammalian DNA binding proposed for Adriamycin.
    [Show full text]
  • Temperature-Induced Oligomerization of Polycyclic Aromatic Hydrocarbons
    www.nature.com/scientificreports OPEN Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient Received: 7 June 2017 Accepted: 10 July 2017 and high pressures Published: xx xx xxxx Artem D. Chanyshev 1,2, Konstantin D. Litasov1,2, Yoshihiro Furukawa3, Konstantin A. Kokh1,2 & Anton F. Shatskiy1,2 Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500–773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740–823 K. PAH carbonization at high pressure is the fnal stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and fnally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km. High-pressure transformations of polycyclic aromatic hydrocarbons (PAHs) and benzene become extremely important due to wide applications for example in graphene- and graphene-based nanotechnology1–3, synthesis of organic superconductors4, 5, petroleum geoscience, origin of organic molecules in Universe and origin of life. In particular, PAHs were found in many space objects: meteorites6–8, cometary comae9, interstellar clouds and planetary nebulas10–12. Although the prevalent hypothesis for the formation of these PAHs is irradiation-driven polymerization of smaller hydrocarbons13, alternative explanation could be shock fragmentation of carbonaceous solid material11. PAH-bearing carbonaceous material could contribute to the delivery of extraterrestrial organic materials to the prebiotic Earth during the period of heavy bombardment of the inner Solar System from 4.5 to 3.8 Ga ago14–16.
    [Show full text]
  • Nanostructural Origin of Blue Fluorescence in the Mineral Karpatite
    Potticary, J. , Jensen, T. T., & Hall, S. R. (2017). Nanostructural origin of blue fluorescence in the mineral karpatite. Scientific Reports, 7(1), [9867]. https://doi.org/10.1038/s41598-017-10261-w Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41598-017-10261-w Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature at https://www.nature.com/articles/s41598-017-10261-w. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ www.nature.com/scientificreports OPEN Nanostructural origin of blue fuorescence in the mineral karpatite Received: 9 June 2017 Jason Potticary 1,2, Torsten T. Jensen 1,3 & Simon R. Hall1 Accepted: 7 August 2017 The colour of crystals is a function of their atomic structure. In the case of organic crystals, it is the Published: xx xx xxxx spatial relationships between molecules that determine the colour, so the same molecules in the same arrangement should produce crystals of the same colour, regardless of whether they arise geologically or synthetically. There is a naturally-occurring organic crystal known as karpatite which is prized for its beautiful blue fuorescence under ultra-violet illumination.
    [Show full text]
  • Development and Validation of a High-Throughput Transcriptomic Biomarker to Address 21St Century Genetic Toxicology Needs
    Development and validation of a high-throughput PNAS PLUS transcriptomic biomarker to address 21st century genetic toxicology needs Heng-Hong Lia,b,1, Renxiang Chena,b,c, Daniel R. Hydukea,b, Andrew Williamsd, Roland Frötschle, Heidrun Ellinger-Ziegelbauerf, Raegan O’Loneg, Carole L. Yaukd, Jiri Aubrechth, and Albert J. Fornace Jr.a,b,1 aDepartment of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057; bDepartment of Oncology, Georgetown University Medical Center, Washington, DC 20057; cTrevigen, Inc., Gaithersburg, MD 20877; dEnvironmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9; eFederal Institute for Drugs and Medical Devices, D-53175 Bonn, Germany; fInvestigational Toxicology, Drug Discovery, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; gHealth and Environmental Sciences Institute, International Life Sciences Institute, Washington, DC 20005; and hDrug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340 Edited by James E. Cleaver, University of California, San Francisco, CA, and approved November 2, 2017 (received for review August 10, 2017) Interpretation of positive genotoxicity findings using the current in The differentiation of relevant from irrelevant in vitro results vitro testing battery is a major challenge to industry and regulatory is crucial for the interpretation of positive findings in the context agencies. These tests, especially mammalian cell assays, have high of risk to human health. Such irrelevant positive results typically sensitivity but suffer from low specificity, leading to high rates of require expensive and time-consuming follow-up tests involving irrelevant positive findings (i.e., positive results in vitro that are not animal testing. When cost is a consideration, or when animal relevant to human cancer hazard).
    [Show full text]
  • Fluoranthene
    ) , "- United States Office of Water EPA 440/5-80-049 Environmental Protection Regulations and Standards October 1980 Agency Criteria and Standards Division Washington DC 20460 aEPA Ambient Water Quality Criteria for Fluoranthene ... AMBIENT WATER QUALITY CRITERIA FOR FLUORANTHENE Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island - -J i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a) (1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on health and we 1fare wh ich may be expected from the presence of pollutants in any body of water, including ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a) (1) of the Cl ean Water Act were deve loped and a not ice of their availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]
  • Guidance for Industry S2B Genotoxicity: a Standard Battery for Genotoxicity Testing of Pharmaceuticals
    Guidance for Industry S2B Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals July 1997 ICH Guidance for Industry S2B Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals Additional copies are available from: the Drug Information Branch (HFD-210), Center for Drug Evaluation and Research (CDER), 5600 Fishers Lane, Rockville, MD 20857 (Tel) 301-827-4573 http://www.fda.gov/cder/guidance/index.htm or Office of Communication, Training, and Manufacturers Assistance (HFM-40) Center for Biologics Evaluation and Research (CBER) 1401 Rockville Pike, Rockville, MD 20852-1448, http://www.fda.gov/cber/guidelines.htm (Fax) 888-CBERFAX or 301-827-3844 (Voice Information) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 1997 ICH Table of Contents I. INTRODUCTION (1) ..................................................1 II. GENERAL PURPOSE OF GENOTOXICITY TESTING (2) ....................1 III. THE STANDARD TEST BATTERY FOR GENOTOXICITY (3) ................2 IV. MODIFICATIONS OF THE 3-TEST BATTERY (4) ..........................3 A. Limitations to the Use of Bacterial Test Organisms (4.1) ..................4 B. Compounds Bearing Structural Alerts for Genotoxic Activity (4.2) ...........4 C. Limitations to the Use of Standard in Vivo Tests (4.3) ....................4 D. Additional Genotoxicity Testing in Relation to the Carcinogenicity Bioassay (4.4) 4 V.
    [Show full text]