Health Risks of Structural Firefighters from Exposure to Polycyclic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polycyclic Aromatic Hydrocarbon Structure Index
NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type. -
Determination of Petroleum Hydrocarbons in Sediments
UNITED NATIONS ENVIRONMENT PROGRAMME NOVEMBER 1992 Determination of petroleum hydrocarbons in sediments Reference Methods For Marine Pollution Studies No. 20 Prepared in co-operation with IOC IAEA UNEP 1992 ~ i - PREFACE The Regional Seas Programme was initiated by UNEP in 1974. Since then the Governing Conncil ofUNEP has repeatedly endorsed a regional approach to the control of marine pollution and the management of marine and coastal resources and has requested the development of regional action plans. The Regional Seas Progranune at present includes ten regions and has over 120 coastal States participating in it (1),(2). One of the basic components of the action plans sponsored by UNEP in the framework of the Regional Seas Programme is the assessment of the state of the marine em~ronment and of its resources, and of the sources and trends of the pollution, and the impact of pollution on human health, marine ecosystems and amenities. In order to assist those participating in this activity and to ensure that the data obtained through this assessment can be compared. on a world-wide basis and thns contribute to the Global Environment Monitoring System (GEMS) of UNEP, a set of Reference Methods and Guidelines for marine pollution studies is being developed as part of a programme of c9mprehensive technical support which includes the provision of expert advice, reference methods and materials, training and data quality assurance (3). The Methods are recommended to be adopted by Governments participating in tbe Regional Seas Programme. The methods and guidelines are prepared in co-operation with the relevant specialized bodies of the United Nations system as well as other organizations and are tested by a number of experts competent in the field relevant to the methods described. -
Drmno Lignite Field (Kostolac Basin, Serbia): Origin and Palaeoenvironmental Implications from Petrological and Organic Geochemi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Faculty of Chemistry Repository - Cherry J. Serb. Chem. Soc. 77 (8) 1109–1127 (2012) UDC 553.96.:550.86:547(497.11–92) JSCS–4338 Original scientific paper Drmno lignite field (Kostolac Basin, Serbia): origin and palaeoenvironmental implications from petrological and organic geochemical studies KSENIJA STOJANOVIĆ1*#, DRAGANA ŽIVOTIĆ2, ALEKSANDRA ŠAJNOVIĆ3, OLGA CVETKOVIĆ3#, HANS PETER NYTOFT4 and GEORG SCHEEDER5 1University of Belgrade, Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia, 2University of Belgrade, Faculty of Mining and Geology, Djušina 7, 11000 Belgrade, Serbia, 3University of Belgrade, Centre of Chemistry, ICTM, Studentski trg 12–16, 11000 Belgrade; Serbia, 4Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark and 5Federal Institute for Geosciences and Natural Resources, Steveledge 2, 30655 Hanover, Germany (Received 26 November 2011, revised 17 February 2012) Abstract: The objective of the study was to determine the origin and to recon- struct the geological evolution of lignites from the Drmno field (Kostolac Ba- sin, Serbia). For this purpose, petrological and organic geochemical analyses were used. Coal from the Drmno field is typical humic coal. Peat-forming vegetation dominated by decay of resistant gymnosperm (coniferous) plants, followed by prokaryotic organisms and angiosperms. The coal forming plants belonged to the gymnosperm families Taxodiaceae, Podocarpaceae, Cupres- saceae, Araucariaceae, Phyllocladaceae and Pinaceae. Peatification was rea- lised in a neutral to slightly acidic, fresh water environment. Considering that the organic matter of the Drmno lignites was deposited at the same time, in a relatively constant climate, it could be supposed that climate probably had only a small impact on peatification. -
Determination of Molecular Signatures of Natural and Thermogenic Products in Tropospheric Aerosols - Input and Transport
AN ABSTRACT OF THE THESIS OF Laurel J. Standley for the degree of Doctor of Philosophy in Oceanography presented on June 12, 1987. Title: Determination of Molecular Signatures of Natural and Thermogenic Products in Tropospheric Aerosols - Input and Transport Redacted for Privacy Abstract approved: Bernd R.Y. Simoneit A cheniotaxonomic study of natural compounds and their thermally altered products in rural and smoke aerosols within Oregon is pre- sented. Correlation with source vegetation provided information on the formation of aerosols and their transport. Distributions and concentrations of straight-chain homologous series such as n- alkanes, n-alkanoic acids, n-alkan-2-ones, n-alkanols and n-alkanals were analyzed in rural aerosols, aerosols produced by prescribed burning and residential wood combustion, and extracts of source vegetation. Cyclic di- and triterpenoids were also examined. The latter components provided more definitive correlations between source vegetation and aerosols. Results included: (1) an increase in Cmax in regions of warmer climate; (2) possible correlation of aerosols with source vegetation 100 km to the east; (3) the tracing of input from combustion of various fuels such as pine, oak and alder in aerosols produced by residential wood combustion; and (4) preliminary results that demonstrate a potentially large input of thermally altered diterpenoids via direct deposition rather than diagenesis of unaltered sedimentary diterpenoids. CCopyright by Laurel J. Standley June 12, 1987 All rights reserved DETERMINATION OF MOLECULAR SIGNATURES OF NATURAL AND THERMOGENIC PRODUCTS IN TROPOSPHERIC AEROSOLS - INPUT AND TRANSPORT by Laurel 3. Standley A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed June 12, 1987 Commencement June, 1988 APPROVED: Redacted for Privacy Dr. -
Native Polycyclic Aromatic Hydrocarbons (PAH) in Coals – a Hardly Recognized Source of Environmental Contamination
SCIENCE OF THE TOTAL ENVIRONMENT 407 (2009) 2461– 2473 available at www.sciencedirect.com www.elsevier.com/locate/scitotenv Review Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination C. Achtena,b, T. Hofmanna,⁎ a University of Vienna, Department of Environmental Geosciences, Althanstr. 14, 1090 Vienna, Austria b University of Münster, Department of Applied Geology, Corrensstr. 24, 48149 Münster, Germany ARTICLE DATA ABSTRACT Article history: Numerous environmental polycyclic aromatic hydrocarbon (PAH) sources have been Received 15 October 2008 reported in literature, however, unburnt hard coal/ bituminous coal is considered only Received in revised form rarely. It can carry native PAH concentrations up to hundreds, in some cases, thousands of 29 November 2008 mg/kg. The molecular structures of extractable compounds from hard coals consist mostly Accepted 5 December 2008 of 2–6 polyaromatic condensed rings, linked by ether or methylene bridges carrying methyl Available online 4 February 2009 and phenol side chains. The extractable phase may be released to the aquatic environment, be available to organisms, and thus be an important PAH source. PAH concentrations and Keywords: patterns in coals depend on the original organic matter type, as well as temperature and Native PAH pressure conditions during coalification. The environmental impact of native unburnt coal- Bituminous coal bound PAH in soils and sediments is not well studied, and an exact source apportionment is Hard coal hardly possible. In this paper, we review the current state of the art. Sediment © 2008 Elsevier B.V. All rights reserved. Soil Contents 1. Introduction .........................................................2462 2. Reserves and production ..................................................2462 3. -
Polycyclic Aromatic Hydrocarbons (Pahs)
Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU -
Ocular Effects from Burn Pits in Iraq, Afghanistan, and the Horn of Africa
Ocular effects from Burn Pits in Iraq, Afghanistan, and the Horn of Africa **NOTICE: this is not official VA or C&P released information, this is just information for you to use in assessing patients with exposure to burn pits compiled by Makesha Sink, OD*** Information on burn pits: - Large burn pits have been used throughout the operations in Iraq and Afghanistan to dispose of nearly all forms of waste. It is estimated that such pits, some nearly as large as 20 acres, are or have been located at every military forward operating base (FOB). The pit at Joint Base Balad, also known as Logistic Support Area (LSA) Anaconda, has received the most attention. The burned waste products include, but are not limited to: plastics, metal/aluminum cans, rubber, chemicals (such as, paints, solvents), petroleum and lubricant products, munitions and other unexploded ordnance, wood waste, medical and human waste, and incomplete combustion by- products. Jet fuel (JP-8) is used as the accelerant. The pits do not effectively burn the volume of waste generated, and smoke from the burn pit blows over bases and into living areas. - DoD has performed air sampling at Joint Base Balad, Iraq and Camp Lemonier, Djibouti. Subsequently, DoD has indicated that most of the air samples have not shown individual chemicals that exceed military exposure guidelines (MEG). Nonetheless, DoD further concluded that the confidence level in their risk estimates is low to medium due to lack of specific exposure information, other routes/sources of environmental hazards not identified; and uncertainty regarding the synergistic impact of multiple chemicals present, particularly those affecting the same body organs/systems. -
Fluoranthene
) , "- United States Office of Water EPA 440/5-80-049 Environmental Protection Regulations and Standards October 1980 Agency Criteria and Standards Division Washington DC 20460 aEPA Ambient Water Quality Criteria for Fluoranthene ... AMBIENT WATER QUALITY CRITERIA FOR FLUORANTHENE Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island - -J i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a) (1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on health and we 1fare wh ich may be expected from the presence of pollutants in any body of water, including ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a) (1) of the Cl ean Water Act were deve loped and a not ice of their availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628). -
2. HEALTH EFFECTS 2.1 INTRODUCTION the Primary
PAHs 11 2. HEALTH EFFECTS 2.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective of the toxicology of polycyclic aromatic hydrocarbons (PAHs). It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure-inhalation, oral, and dermal; and then by health effect-death, systemic, immunological, neurological, reproductive, developmental, genotoxic, and carcinogenic effects. These data are discussed in terms of three exposure periods-acute (14 days or less), intermediate (15-364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELs have been classified into “less serious” or “serious” effects. “Serious” effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). “Less serious” effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear. -
Maine Remedial Action Guidelines (Rags) for Contaminated Sites
Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites (RAGs) Effective Date: May 1, 2021 Approved by: ___________________________ Date: April 27, 2021 David Burns, Director Bureau of Remediation & Waste Management Executive Summary MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites Contents 1 Disclaimer ...................................................................................................................... 1 2 Introduction and Purpose ............................................................................................... 1 2.1 Purpose ......................................................................................................................................... 1 2.2 Consistency with Superfund Risk Assessment .............................................................................. 1 2.3 When to Use RAGs and When to Develop a Site-Specific Risk Assessment ................................. 1 3 Applicability ................................................................................................................... 2 3.1 Applicable Programs & DEP Approval Process ............................................................................. 2 3.1.1 Uncontrolled Hazardous Substance Sites ............................................................................. 2 3.1.2 Voluntary Response Action Program -
EICG-Hot Spots
State of California AIR RESOURCES BOARD PUBLIC HEARING TO CONSIDER AMENDMENTS TO THE EMISSION INVENTORY CRITERIA AND GUIDELINES REPORT FOR THE AIR TOXICS “HOT SPOTS” PROGRAM STAFF REPORT: INITIAL STATEMENT OF REASONS DATE OF RELEASE: September 29, 2020 SCHEDULED FOR CONSIDERATION: November 19, 2020 Location: Please see the Public Agenda which will be posted ten days before the November 19, 2020, Board Meeting for any appropriate direction regarding a possible remote-only Board Meeting. If the meeting is to be held in person, it will be held at the California Air Resources Board, Byron Sher Auditorium, 1001 I Street, Sacramento, California 95814. This report has been reviewed by the staff of the California Air Resources Board and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This Page Intentionally Left Blank TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................... 1 I. INTRODUCTION AND BACKGROUND ................................................................. 5 II. THE PROBLEM THAT THE PROPOSAL IS INTENDED TO ADDRESS .................... 6 III. BENEFITS ANTICIPATED FROM THE REGULATORY ACTION, INCLUDING THE BENEFITS OR GOALS PROVIDED IN THE AUTHORIZING STATUTE .................... 8 IV. AIR QUALITY .......................................................................................................... -
Assessing the External Exposome of South African Children Using Wearable Passive Samplers and High- Resolution Mass Spectrometry
Assessing the external exposome of South African children using wearable passive samplers and high- resolution mass spectrometry Jeremy P. Koelmel Yale University Elizabeth Z. Lin Yale University Kayley DeLay Yale University Antony J. Williams EPA: Environmental Protection Agency Yakun Zhou Yale University Riana Bornman University of Pretoria Muvhulawa Obida University of Pretoria Jonathan Chevrier McGill University Krystal Pollitt ( [email protected] ) Yale University Research Article Keywords: Exposome, wristbands, children’s health, Africa, exposure assessment, chemicals Posted Date: August 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-828351/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Children in low- and middle-income countries are often exposed to higher levels of, and more vulnerable to, the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne chemical exposures at the molecular level. We developed a workow employing state-of-the-art wearable passive sampling technology coupled with high-resolution mass spectrometry to comprehensively measure 147 children’s personal exposures to airborne chemicals in Limpopo, South Africa, as part of the VHEMBE study. 637 environmental exposures were detected, many of which have never been measured in this population, including 50 airborne chemical exposures of concern in the children, including biocides, plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in wristbands included p,p'-DDT, p,p'-DDD, p,p'-DDE, propoxur, piperonyl butoxide, and triclosan. 27% of exposures were signicantly different across seasons. Our study provides the rst report covering hundreds of chemical exposures among African children, demonstrating chemical exposures warranting further study.