A Thesis Presented to the Faculty of the Department Of

Total Page:16

File Type:pdf, Size:1020Kb

A Thesis Presented to the Faculty of the Department Of A HOMOLOGY BASED PCR CLONING STRATEGY TO ISOLATE A MONOTERPENE SYNTHASE GENE INVOLVED IN β-THUJAPLICIN BIOSYNTHESIS FROM CALLUS CULTURES OF CUPRESSUS DUPREZIANA A Thesis Presented to the faculty of the Department of Chemistry California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Chemistry (Biochemistry) by Soraya Ghasemiyeh SUMMER 2012 ©2012 Soraya Ghasemiyeh ALL RIGHTS RESERVED ii A HOMOLOGY BASED PCR CLONING STRATEGY TO ISOLATE A MONOTERPENE SYNTHASE GENE INVOLVED IN β-THUJAPLICIN BIOSYNTHESIS FROM CALLUS CULTURES OF CUPRESSUS DUPREZIANA A Thesis by Soraya Ghasemiyeh Approved by: __________________________________, Committee Chair Dr. Tom Savage __________________________________, Second Reader Dr. Mary McCarthy-Hintz __________________________________, Third Reader Dr. Nicholas Ewing ____________________________ Date iii Student: Soraya Ghasemiyeh I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. __________________________, Graduate Coordinator ____________ Dr. Susan Crawford Date Department of Chemistry iv Abstract of A HOMOLOGY BASED PCR CLONING STRATEGY TO ISOLATE A MONOTERPENE SYNTHASE GENE INVOLVED IN β-THUJAPLICIN BIOSYNTHESIS FROM CALLUS CULTURES OF CUPRESSUS DUPREZIANA by Soraya Ghasemiyeh β-thujaplicin, also referred to as hinokitiol, is a tropolone monoterpenoid with antimicrobial and antifungal properties. It is responsible for the decay resistance of heartwood of trees of the Cupressaceae. It is also used as an additive to toothpaste, cosmetics, and foods in Japan and has scavenging activity against reactive oxygen species and cytotoxic activity against several cancer cells lines. Here, Cupressus dupreziana callus cultures were developed as an experimental system to isolate thujaplicin biosynthetic genes. A homology-based PCR cloning strategy was employed in an attempt to isolate a monoterpene synthase gene involved in β- thujaplicin biosynthesis. _______________________, Committee Chair Dr. Tom Savage _______________________ Date v ACKNOWLEDGEMENTS There are many people I would like to thank. First and foremost I would like to thank Dr. Tom Savage, my research advisor, for all his help and guidance throughout this process. He has been a great mentor and I am lucky to have had him as my advisor. I would also like to thank my committee members, Dr. McCarthy and Dr. Ewing, for their help and insightful comments. Next I would like to thank John Disney and Ted Ferrera. Anytime I needed a chemical or equipment John helped me find it and whenever an instrument wasn’t working Ted was there to fix it. Chatting at the stockroom window was also therapeutic. Thanks to all my fellow research students for the encouraging words and friendship. A special thank you to Barbara Coulombe for helping me with my presentation as well as keeping me sane towards the end of this process. Finally I would like to thank my family. Thank you Hamid, for encouraging and supporting me to do more - always. Thank you Naseem and Eemon, I was able to focus on my studies because you are such great kids. I love you all more than I can say. And to my parents who instilled the love of learning and always made me believe I could do anything I set my mind to. vi TABLE OF CONTENTS Acknowledgements ....................................................................................................... vi List of Tables ................................................................................................................. ix List of Figures ................................................................................................................. x Chapter 1. INTRODUCTION..………………………………………………………………….1 1.1 Decay Resistance of Wood From the Cupressaceae ............................................ 1 1.2 Tropolones ............................................................................................................ 3 1.3 Thujaplicins .......................................................................................................... 5 1.4 Terpene Biosynthesis ............................................................................................ 7 1.5 Thujaplicin Biosynthesis .................................................................................... 11 2. METHODS AND MATERIALS ............................................................................. 19 2.1 Chemicals and Reagents ..................................................................................... 19 2.2 Initiation and Maintenance of Callus Cultures Providing β-thujaplicin ............. 20 2.3 Extraction and Derivitization Of β-Thujaplicin ................................................. 21 2.4 GC-MS Analysis for β-Thujaplicin and Other Monoterpenes ........................... 22 2.5 β-thujaplicin Elicitation by Methyl Jasmonte .................................................... 23 2.6 RNA Isolation ..................................................................................................... 24 2.6.1 Equipment Preparation .............................................................................. 24 2.6.2 RNA Extraction and Analysis ................................................................... 24 2.7 Amplification of Monoterpene Synthase Gene Candidates ............................... 27 2.7.1 Degenerate Primers ................................................................................... 27 2.7.2 Synthesis of 5’ RACE-ready cDNA and 3’ RACE-ready cDNA ............. 28 2.7.3 Rapid Amplification of cDNA Ends (RACE) ........................................... 29 2.7.4 Gel Purification of PCR Products .............................................................. 30 vii 2.7.5 Cloning of Amplified Sequences ............................................................... 30 2.7.6 Sequencing and Analysis ........................................................................... 32 3. RESULTS AND DISCUSSION ............................................................................... 33 3.1 Initiation and Maintenance of Callus Cultures ................................................... 33 3.2 Analysis of β-thujaplicin and Other Monoterpene Content in Callus Cultures ............................................................................................................... 35 3.3 Elicitation of β-thujaplicin by Methyl Jasmonate .............................................. 41 3.4 Isolation of RNA from C. dupreziana Callus Cultures ...................................... 42 3.5 Degenerate Primer Design .................................................................................. 48 3.6 Rapid Amplification of cDNA Ends (RACE) .................................................... 51 3.7 Conclusions ........................................................................................................ 68 References .................................................................................................................... 71 viii LIST OF TABLES Tables Page 1. Comparison of chemical components of Western Red Cedar, Western Hemlock and Douglas Fir, adapted from (2). Numbers expressed as a percentage of moisture-free weight of wood. ......................... 2 2. Degenerate primers designed using CODEHOP. N=A+T+G+C, D=G+A+T, H=A+T+C, R=A+G, W=A+T and Y=C+T. ............................. 28 3. Codon degeneracy ......................................................................................... 48 4. Degenerate primers for amplification of monoterpene symthase cDNA. N=A+T+G+C, D=G+A+T, H=A+T+C, R=A+G, W=A+T and Y=C+T. ................................................................................................... 51 5. Gene specific primers. .................................................................................... 56 6. Most homologous sequence based on BLASTx and tBLASTx searches of NCBI protein and nucleotide databases of 3’ RACE products. ......................................................................................................... 61 7. Most homologous sequence based on BLASTx and tBLASTx searches of NCBI protein and nucleotide databases of degenerate PCR products. ................................................................................................ 62 8. Sequence analysis from gel purified 3’ RACE PCR. ..................................... 66 ix LIST OF FIGURES Figure Page 1. Structure of tropolone (2-hydroxy-2,4,6,-cycloheptatrien-1-one). ................. 4 2. Some common tropolones and their structures from Cupressaceae (20). ......................................................................................... 6 3. Organization of terpene biosynthesis in plants. DMADP, dimethylallyl diphosphate. IDP, isopentyl diphosphate. ............................... 9 4. A mechanistic model of the monoterpene synthase reaction (12). ............... 10 5. Label positions of β-thujaplicin derived from [1-13C]-, [2-13C]-, and [U-13C]-glucose with assumed labeled positions of GPP on the way to β-thujaplicin shown in parenthesis. Numberings of geraniol carbons are shown with primes to distinguish them from β- thujaplicin carbons. Dots indicate 13C enriched, bold lines indicate short-range coupling and double-sided arrows indicate long-range coupling (31). ..............................................................................................
Recommended publications
  • Polar Semivolatile Organic Compounds in Biomass-Burning Emissions and Their Chemical Transformations During Aging in an Oxidation flow Reactor
    Atmos. Chem. Phys., 20, 8227–8250, 2020 https://doi.org/10.5194/acp-20-8227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA Correspondence: Vera Samburova ([email protected]) Received: 20 December 2019 – Discussion started: 23 January 2020 Revised: 7 May 2020 – Accepted: 18 May 2020 – Published: 16 July 2020 Abstract. Semivolatile organic compounds (SVOCs) emit- 350 g mol−1 decreased after OFR aging, while abundances ted from open biomass burning (BB) can contribute to chem- of low-MW compounds (e.g., hexanoic acid) increased. This ical and physical properties of atmospheric aerosols and indicated a significant extent of fragmentation reactions in also may cause adverse health effects. The polar fraction of the OFR. Methoxyphenols decreased after OFR aging, while SVOCs is a prominent part of BB organic aerosols, and thus a significant increase (3.7 to 8.6 times) in the abundance of it is important to characterize the chemical composition and dicarboxylic acids emission factors (EFs), especially maleic reactivity of this fraction. In this study, globally and region- acid (10 to 60 times), was observed. EFs for fresh and ratios ally important representative fuels (Alaskan peat, Moscow from fresh-to-aged BB samples reported in this study can be peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian used to perform source apportionment and predict processes agricultural peat) were burned under controlled conditions occurring during atmospheric transport.
    [Show full text]
  • Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
    Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and
    [Show full text]
  • Resin Acids in Rosin (Colophony) Solder Flux Fume Laboratory Method Using Gas Chromatography
    Health and Safety Executive Resin acids in rosin (colophony) solder flux fume Laboratory method using gas chromatography Scope 1 This method describes the measurement of time-weighted average concentrations of rosin (also known as colophony) based solder flux fume collected onto membrane filters with analysis of the resin acid components, after derivatisation, by gas chromatography (GC). Summary 2 A measured volume of air is drawn through a membrane filter mounted in a sampling head close to the breathing zone. The filter is solvent desorbed, the resin acids derivatised and then quantified using GC with a flame ionisation detector (FID). If confirmation of the resin acid components’ identities is required, samples may also be analysed by GC with a mass spectrometer (MS) detector. However, MS is not recommended for quantitative analysis as, unlike an FID, the MS detector gives different response factors for the various resin acids. The use of alternative methods not included in the MDHS series is acceptable provided they can demonstrate the accuracy and reliability appropriate to the application. Recommended sampling 3 For long-term exposures: Maximum sampling time: 8 hours; Sampling rate: 1–2 l-1min; Sampled volume: up to 960 litres. For short-term exposures: Sampling time: 15 mins; Sampling rate: 2 lmin-1; Sampled volume: 30 litres. Prerequisites 4 Users of this method will need to be familiar with the content of MDHS14.1 Safety 5 Users of this method should be familiar with normal laboratory practice and MDHS83/3 carry out a suitable risk assessment. It is the user’s responsibility to establish appropriate health and safety practices and to ensure compliance with regulatory requirements.
    [Show full text]
  • Western Red Cedar Report
    Forintek Canada Corp. Western Division 2665 East Mall Vancouver, BC V6T 1W5 Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins by Jean Clark Bob Daniels Paul Morris Mycological Technologist Wood Chemistry Analyst Group Leader Durability and Protection Durability and Protection Durability and Protection Prepared for March 2004 Recipient Agreement Number: R04-013 Research Program Date: March 2004 C. R. Daniels Janet Ingram Jean Cook Acting Project Leader Reviewed Department Manager Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins Confidential Summary Western red-cedar (WRC, Thuja plicata Donn ex D. Don) wood was extracted sequentially with six solvents using two extraction methods. The extracts were prepared for subsequent bioassay and analysed by high performance liquid chromatography for known bioactive compound concentrations. To focus identification of the extractives on those with bioactive properties, it was necessary to develop a micro-bioassay that would allow the biological activity of the unknown compounds present to be determined using minute quantities of each extracted constituent. The initial proposed technique utilised the loss of birefringence that occurs when decay fungi disrupt the crystalline cellulose structure as wood decays. Microtome sections of perishable sapwood were treated with microgram amounts of T. plicata heartwood compounds prior to exposure to decay fungi. The efficacy of the applied extract was then to be measured relative to the birefringence loss in untreated pine sapwood. Validation of the technique required standardisation of a number of variables. Over 600 thin sections of ponderosa pine sapwood were cut and exposed to three different fungi, plus non-infected controls, under varying conditions of section thickness and orientation, media and growth conditions, viz, on grids or sterile microscope slides, with and without cover-slips, and with and without supplemental nitrogen, for six different incubation periods.
    [Show full text]
  • Chromosome Numbers in Gymnosperms - an Update
    Rastogi and Ohri . Silvae Genetica (2020) 69, 13 - 19 13 Chromosome Numbers in Gymnosperms - An Update Shubhi Rastogi and Deepak Ohri Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur (Near Railway Station), P.O. Chinhat, Luc know-226028 (U.P.) * Corresponding author: Deepak Ohri, E mail: [email protected], [email protected] Abstract still some controversy with regard to a monophyletic or para- phyletic origin of the gymnosperms (Hill 2005). Recently they The present report is based on a cytological data base on 614 have been classified into four subclasses Cycadidae, Ginkgoi- (56.0 %) of the total 1104 recognized species and 82 (90.0 %) of dae, Gnetidae and Pinidae under the class Equisetopsida the 88 recognized genera of gymnosperms. Family Cycada- (Chase and Reveal 2009) comprising 12 families and 83 genera ceae and many genera of Zamiaceae show intrageneric unifor- (Christenhusz et al. 2011) and 88 genera with 1104 recognized mity of somatic numbers, the genus Zamia is represented by a species according to the Plant List (www.theplantlist.org). The range of number from 2n=16-28. Ginkgo, Welwitschia and Gen- validity of accepted name of each taxa and the total number of tum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra species in each genus has been checked from the Plant List shows a range of polyploidy from 2x-8x based on n=7. The (www.theplantlist.org). The chromosome numbers of 688 taxa family Pinaceae as a whole shows 2n=24except for Pseudolarix arranged according to the recent classification (Christenhusz and Pseudotsuga with 2n=44 and 2n=26 respectively.
    [Show full text]
  • Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
    Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects.
    [Show full text]
  • Essential Oil Variability in Natural
    rch: O ea pe es n A R t c s c e e Ramdani et al., J Forest Res Open Access 2012, 1:1 r s o s Forest Research F DOI: 10.4172/2168-9776.1000101 Open Access ISSN: 2168-9776 Research Article Open Access Essential Oil Variability in Natural Hahadjerine Population of Cupressus dupreziana in Tassili n’Ajjer (Algeria) M Ramdani1*, T Lograda1, P Chalard2, G Figueredo3, JC Chalchat2 and A Zeraib1 1Laboratory of Natural Resource Valorization, Sciences Faculty, Ferhat Abbas University, 19000 Setif, Algeria 2Ecole nationale Supérieure de Chimie de Clermont Ferrand, Laboratoire de Chimie des Hétérocycles et des glucides, EA987, 63174 Aubière Cedex 01 3LEXVA Analytique, 460 rue du Montant, 63110 Beaumont, France Abstract Essential oils extracted from dried leaves of Cupressus dupreziana A. Camus, an endemic species in the Tassili n’Ajjer (Sahara Central Algeria), were analysed by gas chomatography coupled to mass spectrometry (GC-MS). Terpinoid analyses were performed on 13 trees in the natural population of Hahadjerine in order to determine the intra-population variability. 39 trepenoids were identified; the averages of the principal components were trans- totarol (24.4%), Manoyl oxide (21.2%), α-pinene (15%) and Δ3-carene (11.3%). The terpenoid markers used made it possible to determine the individual patterns of chemotypic variability. This variability confirms that genetic factors are not solely responsible for the decrease in the numbers of this species. Keywords: Cupressaceae; Cupressus dupreziana; Genetic variability; Materials and Methods Tassili n’Ajjer; Terpenoïds Plant material Introduction The aerial parts of C. dupreziana were collected from the Tassili Tassili n’Ajjer is an ecosystems significant and fragile, situated in n’Ajjer in Hahadjerine locality in april 2009.
    [Show full text]
  • Botanical Name: LEAFY PLANT
    LEAFY PLANT LIST Botanical Name: Common Name: Abelia 'Edward Goucher' Glossy Pink Abelia Abutilon palmeri Indian Mallow Acacia aneura Mulga Acacia constricta White-Thorn Acacia Acacia craspedocarpa Leatherleaf Acacia Acacia farnesiana (smallii) Sweet Acacia Acacia greggii Cat-Claw Acacia Acacia redolens Desert Carpet Acacia Acacia rigidula Blackbrush Acacia Acacia salicina Willow Acacia Acacia species Fern Acacia Acacia willardiana Palo Blanco Acacia Acalpha monostachya Raspberry Fuzzies Agastache pallidaflora Giant Pale Hyssop Ageratum corymbosum Blue Butterfly Mist Ageratum houstonianum Blue Floss Flower Ageratum species Blue Ageratum Aloysia gratissima Bee Bush Aloysia wrightii Wright's Bee Bush Ambrosia deltoidea Bursage Anemopsis californica Yerba Mansa Anisacanthus quadrifidus Flame Bush Anisacanthus thurberi Desert Honeysuckle Antiginon leptopus Queen's Wreath Vine Aquilegia chrysantha Golden Colmbine Aristida purpurea Purple Three Awn Grass Artemisia filifolia Sand Sage Artemisia frigida Fringed Sage Artemisia X 'Powis Castle' Powis Castle Wormwood Asclepias angustifolia Arizona Milkweed Asclepias curassavica Blood Flower Asclepias curassavica X 'Sunshine' Yellow Bloodflower Asclepias linearis Pineleaf Milkweed Asclepias subulata Desert Milkweed Asclepias tuberosa Butterfly Weed Atriplex canescens Four Wing Saltbush Atriplex lentiformis Quailbush Baileya multiradiata Desert Marigold Bauhinia lunarioides Orchid Tree Berlandiera lyrata Chocolate Flower Bignonia capreolata Crossvine Bougainvillea Sp. Bougainvillea Bouteloua gracilis
    [Show full text]
  • Maquette En Jn:Gestion Durable.Qxd.Qxd
    Appendices 119 A PPENDIX 1 List and origins of quantitative SFM indicators in 2005 Topic N° Full indicator Origin C1: Maintenance and appropriate enhancement of forest resources and their contribution to global carbon cycles Forest area 1.1 Area of forest and other wooded land, classified by forest type and by availability for MCPFE Vienna wood supply 1.1.1 Forest area gains and losses ISFM 2000 1.1.2 Forest area by biogeographical area and elevation class ISFM 2000 1.1.3 Forest area by IFN forest structure ISFM 2000 1.1.4 Forest area by main tree species ISFM 2000 Growing stock 1.2 Growing stock on forest and other wooded land, classified by forest type and by avai- MCPFE Vienna lability for wood supply 1.2.1 Growing stock by IFN forest structure ISFM 2000 1.2.2 Growing stock by tree species ISFM 2000 Age structure and/or 1.3 Age structure and/or diameter distribution of forest and other wooded land, classified MCPFE Vienna diameter distribution by forest type and by availability for wood supply Carbon stock 1.4 Carbon stock of woody biomass and of soils on forest and other wooded land MCPFE Vienna 1.4.1 Annual carbon emission levels ISFM 2000 C2: Maintenance of forest ecosystem health and vitality Deposition of air pollu- 2.1 Deposition of air pollutants on forest and other wooded land, classified by N, S and MCPFE Vienna tants base cations 2.1.1 Atmospheric pollutant emission patterns ISFM 2000 Soil condition 2.2 Chemical soil properties (pH, CEC, C/N, organic C, base saturation) on forest and MCPFE Vienna other wooded land related
    [Show full text]
  • And Their OH Reactivity in Various Agro-Ecosystems Sandy Bsaibes
    Characterization of biogenic volatile organic compounds (BVOCs) and their OH reactivity in various agro-ecosystems Sandy Bsaibes To cite this version: Sandy Bsaibes. Characterization of biogenic volatile organic compounds (BVOCs) and their OH reactivity in various agro-ecosystems. Global Changes. Université Paris-Saclay, 2019. English. NNT : 2019SACLV093. tel-02614381 HAL Id: tel-02614381 https://tel.archives-ouvertes.fr/tel-02614381 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Characterization of biogenic volatile organic compounds and their OH reactivity in various : 2019SACLV093 agro-ecosystems NNT Thèse de doctorat de l’Université Paris-Saclay Préparée à l’Université de Versailles Saint-Quentin-en-Yvelines Ecole doctorale n°129 Sciences de l’Environnement d’île-de-France (SEIF) Spécialité de doctorat : chimie atmosphérique Thèse présentée et soutenue à Gif-sur-Yvette, le 12 Décembre 2019 par Sandy Bsaibes Composition du Jury : Didier Hauglustaine Directeur de Recherche, LSCE, CNRS Président Agnès Borbon Chargée de Recherche, LaMP, CNRS Rapporteur Jonathan Williams Senior Scientist, MPIC Rapporteur Corinne Jambert Maître de conférences, LA Examinateur Benjamin Loubet Directeur de Recherche, Ecosys, INRA Examinateur Valérie Gros Directeur de Recherche, LSCE, CNRS Directeur de thèse Contents Acknowledgements ..............................................................................................................................
    [Show full text]
  • Hinokitiol Production in Suspension Cells of Thujopsis Dolabrata Var
    55 Original Papers Plant Tissue Culture Letters, 12(1), 55-61(1995) Hinokitiol Production in Suspension Cells of Thujopsis dolabrata var. hondai Makino Ryo FUJII, Kazuo OZAKI, Migifumi INO and Hitoshi WATANABE Integrated Technology Laboratories, Takeda Chemical Industries, Ltd. 11, Ichijoji-takenouchi-cho, Sakyo-ku, Kyoto 606 Japan (Received May 19, 1994) (Accepted October 8, 1994) Suspension cells of Thujopsis dolabrata var. hondai Makino were used as the material for studying the culture conditions by a two-step culture method (cell growth step and secondary metabolite production step) for the production of hinokitiol (Q-thujaplicin). Murashige and Skoog's (MS) medium containing N03-N and NH4-N in the ratio 3-5:1 (total nitrogen 30-75 mM) with 1.0mg/l NAA and 0.2mg/l TDZ was most desirable for cell growth (MS-O medium). The growth showed 14-fold increase after 30 days of culture in this medium. A higher ratio of NH4-N to total nitrogen resulted in hinokitiol accumulation in the cells. When the cells were transferred to the modified MS-O medium with the ratio of N03-N:NH4-N changed to 1:2 (MS-PC medium), an increase of hinokitiol level was observed. Also feeding acetates to the medium enhanced hinokitiol accumula- tion considerably. The highest hinokitiol content of 422tg/g FW was obtained when the cells were cultured in MS-O medium supplemented with 4.3mM acetic acid. Introduction An irregular monoterpene hinokitiol (B-thujaplicin) is widely present in the heartwood of the families Cupressaceae1). Hinokitiol has antimicrobial properties, and recently it has been indicated that hinokitiol suppresses ethylene synthesis and respiration of some fruits and vegetables.
    [Show full text]
  • United States Patent \ .J Patented Oct
    2,907,738 United States Patent \ .j Patented Oct. 3, 1959 1 2 dibasic acids would also give polymerization in which the natural resin acid ester becomes an intimate part ‘ 2,907,738 of the ?nal polymer chemical composition. Such esteri ‘MIXED RESIN ACID ESTERS OF 4,4-BIS(47 ?cation reactions involving the phenolic hydroxyl groups HYDROXYARYL) PENTANOIC ACID 01 would conveniently be carried out by heating with a mix ture of the dibasic acid and acetic anhydride. Sylvan 0. Greenlee, Racine, Wis., assignor to The hydroxyaryl—substituted aliphatic acids contem~ S. C. Johnson & Son, Inc., Racine, Wis. plated for use in preparing the desired resinous poly No Drawing. Application June 30,1955 hydric phenols have two hydroxyphenyl groups attached ‘ Serial No.‘ 519,279’ 10 to a single carbon atom. The preparation of these sub~ stituted acids may be most conveniently carried out by 9 Claims. (Cl. 260-24)‘ condensing a keto-acid with the desired phenol. Expe rience in the preparation of bisphenols and related com pounds indicates that the carbonyl group of the keto This invention relates to new compositions which are 15 acid must be located next to a terminal carbon atom in ‘mixed esters of‘polyhydric alcohols, natural resin,acids, order to obtain satisfactory yields. A terminal carbon and hydroxyaryl-substituted aliphatic acids. atom as used herein refers to primary carbon atoms An object of this invention is to produce new com other ‘than the carboxyl carbon atom of the keto-acid. positions from natural resin acids, polyhydric alcohols Prior applications, Serial Nos. 464,607 and 489,300, and hydroxyaryl-substituted aliphatic acids which are 20 ?led October 25, 1954, and February 18, 1955, respec~ valuable as intermediates in the production of other more tively, disclose a number of illustrative compounds suit complex compositions.
    [Show full text]