D-117 Stebbin, George Ledyard, Papers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BOTANY,Semester 02,MBOTCC 06,Contemporary System of Classification:Armen Takhtajan,D.K.Jha (Lecture Series No
BOTANY,Semester 02,MBOTCC 06,Contemporary system of classification:Armen Takhtajan,D.K.Jha (lecture series no. 06). ARMEN TAKHTAJAN (B.1910) was Head of the Dept. Of Plant Science at Leningrad,Russia.He presented a system of classification of Angiosperms for the first in 1942 and thereafter it’s revised versions in 1954,1966,1969 and finally in 1980 in his book in English entitled Flowering Plants ;Origin and Dispersal.His system is basically inspired by Bassey_Hallier tradition as he also considered evidences from fields like Morphology,Anatomy, Embryology, Cytology,Palynology ,Chemistry etc. According to Takhtajan angiosperms aremonophyletic in origin and have derived from Gymnosperms.Monocots are derived from some primitive dicots. Takhtajans classification is based on some phyletic principles: 1Woody plants are primitive than herbaceous plants. 2.Deciduous woody plants are derived from evergreen plants. 3.Stomata without subsidiary cells are more advanced than stomata with subsidiary cells. 4 .Alternate lead phyllotaxy is more primitive than other types. 5.Parallel venation is advanced. 6.Cymose inflorescence is primitive than racehorse. 7.Polymerous flowers are primitive. 8 Pollen with smooth exine is primitive than sculptured exine. 9. Apocarpous gynoecium is more primitive than syncarpous. 10.Bitegmic ovules are more primitive than unitegmic. 11.Anatropous ovules are more primitive than others. 12.Polygonum type embryosac is most primitive. 13.Porogamic condition is more primitive than mesogamic and chalazogamic. 14. Many seeded follicle fruits are most primitive. 15. Endospermic seeds are primitive.Dicot embryo is primitive than monocot embryo. Brief outline of Takhtajans system Takhtajan has replaced traditional nomenclature of Angiosperm,Dicotyledonae and Monocotyledonae by Magnoliophyta,Magnoliopsida and Liliopsida respectively. -
1 Sex Ratio and Spatial Distribution of Male and Female Antennaria Dioica
Sex ratio and spatial distribution of male and female Antennaria dioica (Asteraceae) plants Sandra Varga* and Minna-Maarit Kytöviita Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN- 40014 Jyväskylä, Finland E-mail addresses: [email protected] and [email protected] (S. Varga), minna- [email protected] (M.-M. Kytöviita) *Author for correspondence: Sandra Varga Department of Biological and Environmental Science University of Jyväskylä FIN-40014 Jyväskylä Finland Email: [email protected] and [email protected] Phone: +358 14 260 2304 Fax: +358 14 260 2321 1 Abstract Sex ratio, sex spatial distribution and sexual dimorphism in reproduction and arbuscular mycorrhizal colonisation were investigated in the dioecious clonal plant Antennaria dioica (Asteraceae). Plants were monitored for five consecutive years in six study plots in Oulanka, northern Finland. Sex ratio, spatial distribution of sexes, flowering frequency, number of floral shoots and the number and weight of inflorescences were recorded. In addition, intensity of mycorrhizal fungi in the roots was assessed. Both sexes flowered each year with a similar frequency, but the overall genet sex ratio was strongly female-biased. The bivariate Ripley’s analysis of the sex distribution showed that within most plots sexes were randomly distributed except for one plot. Sexual dimorphism was expressed as larger floral and inflorescence production and heavier inflorescences in males. In addition, the roots of both sexes were colonised to a similar extent by arbuscular mycorrhizal fungi. The female sex-biased flowering ratios reported are not consistent among years and cannot be explained in terms of spatial segregation of the sexes or sex lability. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
KATHERINE ESAU April 3, 1898–June 4, 1997
NATIONAL ACADEMY OF SCIENCES K AT H E R I N E E SAU 1898—1997 A Biographical Memoir by RA Y F . E VERT Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. KATHERINE ESAU April 3, 1898–June 4, 1997 BY RAY F. EVERT ATHERINE ESAU, WORLD renowned botanist, recipient of Kthe National Medal of Science, author of six textbooks, and teacher par excellence, died June 4, 1997, at her home in Santa Barbara, California. She was ninety-nine years young. Her work on plant structure covered seven-plus decades and led to much of the current research on plant function. Throughout her career, Esau continued research on phlo- em both in relation to the effects of phloem-limited viruses on plant structure and development and to the unique struc- ture of the sieve tube as a conduit for food. She demon- strated an exceptional ability for attacking basic problems and she set new standards of excellence for the investiga- tion of anatomical problems in the plant sciences. Esau was born on April 3, 1898, in the city of Yekaterinoslav, now called Dnepropetrovsk, in the Ukraine. She lived there until the end of 1918, when she and her family fled to Germany during the Bolshevik Revolution. Her family was Mennonite, descendants of the German Mennonites that Catherine the Great invited to Russia to promote agricul- ture on the Ukrainian steppes. Naturally suspicious of any- one from the outside, the Ukrainians ostracized the Men- nonites, who lived in colonies, developed very successful 3 4 BIOGRAPHICAL MEMOIRS farms, schooled their children, and practiced their religion. -
Fdn22 Northern Dry-Bedrock Pine (Oak) Woodland *Spinulose Shield Fern Or Glandular Wood Fern ( Dryopteris Carthusiana Or D
FIRE-DEPENDENT FOREST/WOODLAND SYSTEM FDn22 Northern Floristic Region Northern Dry-Bedrock Pine (Oak) Woodland Dry pine or oak woodlands on shallow, excessively drained, loamy soils on bedrock ridges and hillsides or on rock ledges and terraces adjacent to rivers. Crown and surface fires were common historically. Vegetation Structure & Composition Description is based on summary of vegetation data from 47 plots (relevés). Ground-layer cover of forbs and grami- noids typically ranges from 25-75%. The most common vascular plants are Canada mayflower (Maianthemum canadense), wild sarsaparilla (Aralia nudicaulis), large-leaved aster (Aster macrophyllus), poverty grass (Danthonia spicata), wintergreen (Gaultheria procumbens), and bracken (Pteridium aqui- linum). Lichen- and moss-covered bedrock and boulders typically make up at least 25% of the ground layer. Shrub layer is typically dominated by deciduous species, usually with patchy to interrupted cover (25-75%). Lowbush blue- berry (Vaccinium angustifolium), juneberries (Amelanchier spp.), red maple saplings, and bush honeysuckle (Diervilla lonicera) are the most common species in the shrub layer. Subcanopy is usually absent, but when present, red maple and paper birch are frequent components. Canopy is composed of conifers, hardwoods, or conifers mixed with hardwoods, and is usually patchy (25-50% cover), with openings in areas of exposed bedrock or boulders. Red pine and white pine are dominant on many sites. On other sites, jack pine or northern pin oak are dominant. In mixed forests, conifers often form a supercanopy above hardwood species. Paper birch is often present in the hardwood canopy. Landscape Setting & Soils Glacially scoured bedrock—Common. Landscape is hummocky to rugged. Parent material is non-calcareous drift, usually less than 20in (50cm) deep over bedrock. -
Landscaping with Native Plants by Stephen L
SHORT-SEASON, HIGH-ALTITUDE GARDENING BULLETIN 862 Landscaping with native plants by Stephen L. Love, Kathy Noble, Jo Ann Robbins, Bob Wilson, and Tony McCammon INTRODUCTION There are many reasons to consider a native plant landscape in Idaho’s short- season, high-altitude regions, including water savings, decreased mainte- nance, healthy and adapted plants, and a desire to create a local theme CONTENTS around your home. Most plants sold for landscaping are native to the eastern Introduction . 1 United States and the moist climates of Europe. They require acid soils, con- The concept of native . 3 stant moisture, and humid air to survive and remain attractive. Most also Landscaping Principles for Native Plant Gardens . 3 require a longer growing season than we have available in the harshest cli- Establishing Native Landscapes and Gardens . 4 mates of Idaho. Choosing to landscape with these unadapted plants means Designing a Dry High-Desert Landscape . 5 Designing a Modified High-Desert Landscape . 6 accepting the work and problems of constantly recreating a suitable artificial Designing a High-Elevation Mountain Landscape . 6 environment. Native plants will help create a landscape that is more “com- Designing a Northern Idaho Mountain/Valley fortable” in the climates and soils that surround us, and will reduce the Landscape . 8 resources necessary to maintain the landscape. Finding Sources of Native Plants . 21 The single major factor that influences Idaho’s short-season, high-altitude climates is limited summer moisture. Snow and rainfall are relatively abun- dant in the winter, but for 3 to 4 months beginning in June, we receive only a YOU ARE A SHORT-SEASON, few inches of rain. -
On the Higher Taxa of Embryobionta Author(S): Arthur Cronquist, Armen Takhtajan and Walter Zimmermann Source: Taxon, Vol
On the Higher Taxa of Embryobionta Author(s): Arthur Cronquist, Armen Takhtajan and Walter Zimmermann Source: Taxon, Vol. 15, No. 4 (Apr., 1966), pp. 129-134 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/1217531 . Accessed: 05/04/2014 08:26 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org This content downloaded from 212.238.120.34 on Sat, 5 Apr 2014 08:26:21 AM All use subject to JSTOR Terms and Conditions APRIL 1966 VOL. XV No. 4 f TAXON"""" News Bulletin of the International Association for Plant Taxonomy. - Published by the InternationalBureau for Plant Taxonomy and Nomenclature, 106 Lange Nieuwstraat, Utrecht, Netherlands ON TIHE HIGHER TAXA OF EMBRYOBIONTA Arthur Cronquist (New York), Armen Takhtajan (Leningrad) and Walter Zimmermann (Tiibingen) The general system of plants and the nomenclature of higher taxa at the level of divisions and classes are now unstable and in a state of confusion. The well known schemes of classification by which all plants are grouped into only 4 or 5 divisions have been largely abandoned because they do not adequately reflect the great diversity within the plant kingdom. -
OF the UNIVERSITY of CALIFORNIA Editorial Board
OF THE UNIVERSITY OF CALIFORNIA Editorial Board Rex W Adams Carroll Brentano Ray Cohig Steven Finacom J.R.K. Kantor Germaine LaBerge Ann Lage Kaarin Michaelsen Roberta J. Park William Roberts Janet Ruyle Volume 1 • Number 2 • Fall 1998 ^hfuj: The Chronicle of the University of California is published semiannually with the goal of present ing work on the history of the University to a scholarly and interested public. While the Chronicle welcomes unsolicited submissions, their acceptance is at the discretion of the editorial board. For further information or a copy of the Chronicle’s style sheet, please address: Chronicle c/o Carroll Brentano Center for Studies in Higher Education University of California, Berkeley, CA 94720-4650 E-mail [email protected] Subscriptions to the Chronicle are twenty-seven dollars per year for two issues. Single copies and back issues are fifteen dollars apiece (plus California state sales tax). Payment should be by check made to “UC Regents” and sent to the address above. The Chronicle of the University of California is published with the generous support of the Doreen B. Townsend Center for the Humanities, the Center for Studies in Higher Education, the Gradu ate Assembly, and The Bancroft Library, University of California, Berkeley, California. Copyright Chronicle of the University of California. ISSN 1097-6604 Graphic Design by Catherine Dinnean. Original cover design by Maria Wolf. Senior Women’s Pilgrimage on Campus, May 1925. University Archives. CHRONICLE OF THE UNIVERSITY OF CALIFORNIA cHn ^ iL Fall 1998 LADIES BLUE AND GOLD Edited by Janet Ruyle CORA, JANE, & PHOEBE: FIN-DE-SIECLE PHILANTHROPY 1 J.R.K. -
Prairie Restoration Technical Guides
Optimal Collection Period Seed Ripening Period EARLY SEASON NATIVE FORBS May June July August September EARLY SEASON NATIVE FORBS May June July August SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 Caltha palustris Marsh marigold LATE SEASON NATIVE FORBS August September October November SEED COLLECTING Prairie smoke SCIENTIFIC NAME COMMON NAME 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 1-10 10-20 20-30 FROM Antennaria neglecta Pussytoes Stachys palustris Woundwort Castilleja coccinea Indian paintbrush Vicia americana Vetch False dandelion Rudbeckia hirta Black-eyed Susan TALLGRASS PRAIRIES Saxifraga pensylvanica Swamp saxifrage Lobelia spicata Spiked lobelia Senecio aureus Golden ragwort Iris shrevei Sisyrinchium campestre Blue-eyed grass Hypoxis hirsuta Yellow star grass Rosa carolina Pasture rose Content by Greg Houseal Pedicularis canadensis Lousewort Oxypolis rigidior Cowbane PRAIRIE RESTORATION SERIES V Prairie violet Vernonia fasciculata Ironweed Cardamine bulbosa Spring cress Veronicastrum virginicum Culver's root Allium canadense Wild garlic Heliopsis helianthoides Seed of many native species are now Lithospermum canescens Hoary puccoon L Narrow-leaved loosestrife commercially1 available for prairie Phlox maculata Marsh phlox Lythrum alatum Winged loosestrife Phlox pilosa Prairie phlox reconstructions, large or small. Yet many Ceanothus americana New Jersey tea Anemone canadensis Canada anemone Eupatorium maculatum Spotted Joe Pye people have an interest in collecting Prunella vulgaris var. -
Reflections of Generosity Annual Report of Private Giving
Reflections of Generosity Annual Report of Private Giving For the year ending June 30, 2018 Index Reflections of Generosity In Gratitude for Our Engaged Community ....................................... 6 Collective Visioning .......................................................................... 8 Financial Highlights Supporting Excellence ...................................................................... 12 Collective Generosity A Story Told Together ........................................................................ 16 The Gift of Time: CCS Summer Research Fellowships ...................... 18 Alumni Generosity Leaving Legacies and Living Legends ............................................... 22 Homegrown Support ......................................................................... 24 A Passion for Unconventional Science .............................................. 26 A Video Board to Spark Hoopla......................................................... 28 Faculty Generosity Dear Friends, An Evolving and Rewarding Partnership ........................................... 32 Enduring Influence ............................................................................ 34 As we reflect on philanthropic giving to UC Santa Barbara over the past year, we are overwhelmed and inspired by you — our steadfast supporters — whose vision continues to advance the excellence and diversity of our Friends Generosity great institution. We are tremendously thankful for your generosity and your appreciation for the crucial role of Making -
The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012). -
Reader 19 05 19 V75 Timeline Pagination
Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.