MARINE LIFE PROFILE: HAWAIIAN LIMPET SNAIL Classification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life History, Mating Behavior, and Multiple Paternity in Octopus
LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career. -
Māhā'ulepū, Island of Kaua'i Reconnaissance Survey
National Park Service U.S. Department of the Interior Pacific West Region, Honolulu Office February 2008 Māhā‘ulepū, Island of Kaua‘i Reconnaissance Survey THIS PAGE INTENTIONALLY LEFT BLANK TABLE OF CONTENTS 1 SUMMARY………………………………………………………………………………. 1 2 BACKGROUND OF THE STUDY……………………………………………………..3 2.1 Background of the Study…………………………………………………………………..……… 3 2.2 Purpose and Scope of an NPS Reconnaissance Survey………………………………………4 2.2.1 Criterion 1: National Significance………………………………………………………..4 2.2.2 Criterion 2: Suitability…………………………………………………………………….. 4 2.2.3 Criterion 3: Feasibility……………………………………………………………………. 4 2.2.4 Criterion 4: Management Options………………………………………………………. 4 3 OVERVIEW OF THE STUDY AREA…………………………………………………. 5 3.1 Regional Context………………………………………………………………………………….. 5 3.2 Geography and Climate…………………………………………………………………………… 6 3.3 Land Use and Ownership………………………………………………………………….……… 8 3.4. Maps……………………………………………………………………………………………….. 10 4 STUDY AREA RESOURCES………………………………………..………………. 11 4.1 Geological Resources……………………………………………………………………………. 11 4.2 Vegetation………………………….……………………………………………………...……… 16 4.2.1 Coastal Vegetation……………………………………………………………………… 16 4.2.2 Upper Elevation…………………………………………………………………………. 17 4.3 Terrestrial Wildlife………………..........…………………………………………………………. 19 4.3.1 Birds……………….………………………………………………………………………19 4.3.2 Terrestrial Invertebrates………………………………………………………………... 22 4.4 Marine Resources………………………………………………………………………...……… 23 4.4.1 Large Marine Vertebrates……………………………………………………………… 24 4.4.2 Fishes……………………………………………………………………………………..26 -
IAN Symbol Library Catalog
Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake -
Opihi Cellana Talcosa (Ko`Ele)
Aquaculture of the giant opihi Cellana talcosa (ko`ele). Development of an artificial diet. Harry Ako with technical assistance of Nhan Hua Department of Molecular Biosciences and Bioengineering (MBBE), College of Agricultural Sciences and Human Resources University of Hawaii, Manoa Introduction and Background Honolulu Advertiser, Wed, June 1, 2005 •Scientists fear that the largest and most prized species of the hardy 'opihi a uniquely Hawaiian delicacy may be essentially extinct on O'ahu, and the population of other limpets statewide is also on the decline. •“Pupu” in Hawaiian means “snail” and in modern times it is used to mean hors d’oeuvres. Opihi were the most favored pupu traditionally. Opihi • High value potential aquacultured product in Hawaii, $150/gallon with shell on. A century ago, 'opihi pickers were selling 140,000 pounds of the limpets annually. In recent years the number has been less than 10 percent of that, around 13,000 pounds. • They dubbed ‘opihi “the fish of death” because so many people were swept away while prying it off the rocks. www.nature.org Three main species of opihi in Hawaii • Cellana sandwicensis - opihi alinalina – yellow foot – most common – preferred • Cellana exarata - opihi makaiauli – black foot – not preferred • Cellana talcosa - opihi ko`ele – giant opihi – grows fast –lives in calm, deep water – we targeted this http://www2.hawaii.edu/~cbird/Opihi/frames.htm Other views Cellana exarata (opihi makaiauli) Cellana sandwicensis (opihi alinalina) Cellana talcosa (opihi ko`ele) Outline of this talk • To talk story about optimization of capture and holding strategies. Problem: 75% mortality in early days of holding and transferring. -
Johnston Atoll Species List Ryan Rash
Johnston Atoll Species List Ryan Rash Birds X: indicates species that was observed but not Anatidae photographed Green-winged Teal (Anas crecca) (DOR) Northern Pintail (Anas acuta) X Kingdom Ardeidae Cattle Egret (Bubulcus ibis) Phylum Charadriidae Class Pacific Golden-Plover (Pluvialis fulva) Order Fregatidae Family Great Frigatebird (Fregata minor) Genus species Laridae Black Noddy (Anous minutus) Brown Noddy (Anous stolidus) Grey-Backed Tern (Onychoprion lunatus) Sooty Tern (Onychoprion fuscatus) White (Fairy) Tern (Gygis alba) Phaethontidae Red-Tailed Tropicbird (Phaethon rubricauda) White-Tailed Tropicbird (Phaethon lepturus) Procellariidae Wedge-Tailed Shearwater (Puffinus pacificus) Scolopacidae Bristle-Thighed Curlew (Numenius tahitiensis) Ruddy Turnstone (Arenaria interpres) Sanderling (Calidris alba) Wandering Tattler (Heteroscelus incanus) Strigidae Hawaiian Short-Eared Owl (Asio flammeus sandwichensis) Sulidae Brown Booby (Sula leucogaster) Masked Booby (Sula dactylatra) Red-Footed Booby (Sula sula) Fish Acanthuridae Achilles Tang (Acanthurus achilles) Achilles Tang x Goldrim Surgeonfish Hybrid (Acanthurus achilles x A. nigricans) Black Surgeonfish (Ctenochaetus hawaiiensis) Blueline Surgeonfish (Acanthurus nigroris) Convict Tang (Acanthurus triostegus) Goldrim Surgeonfish (Acanthurus nigricans) Gold-Ring Surgeonfish (Ctenochaetus strigosus) Orangeband Surgeonfish (Acanthurus olivaceus) Orangespine Unicornfish (Naso lituratus) Ringtail Surgeonfish (Acanthurus blochii) Sailfin Tang (Zebrasoma veliferum) Yellow Tang (Zebrasoma flavescens) -
Opihi Aquaculture, Feeds
Opihi Aquaculture, Feeds Harry Ako and Nhan Thai Hua Dept of Molecular Biosciences and Bioengineering Univ of Hawaii, Manoa What is opihi? • Opihi or limpets are endemic to the Hawaiian Islands Cellana exarata (makaiauli) • High intertidal zones C. sandwicensis (alinalina) • low intertidal on zones on wave-exposed shores C. talcosa (ko'ele) • low intertidal, sub-tidal rocky (Kay and Magruder 1977; Corpuz 1981; Bird 2006). • The target species was the giant opihi C. talcosa • Due to the lack of water skills to dive to collect the giant opihi in deep water, we decided to switch to the yellow foot opihi C. sandwicensis. 2 Why opihi is an important potential species for aquaculture? • Opihi is a cultural icon in Hawai‘i, it has been harvested as food “pupu”-snail for centuries. • High market value, about $220/gallon with shell on (Thompson 2011). • Commercial catch decreased significantly from 150,000 pounds in the 1900s to about 10,000 pounds in 1978 (Iacchei 2011). • Many people have died while collecting opihi in the past, “the fish of death”. • There have been no available formation for the aquaculture of opihi Nelson Kaʻai A local Hawaiian ate raw opihi right after collection from the wild 3 Purpose • Learn to hold opihi after capture. Determine natural feeds. • Learn what artificial feeds work and keep opihi from dying due to starvation. • Assess the protein requirement of opihi. • Assess the carbohydrate requirement of opihi. • Estimate whether opihi might be a commercially culturable species (it may grow too slowly). 4 Natural feeds. Keeping them alive for longer than a week. -
Section 3.4 Invertebrates
Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6 -
Aspects of Community Ecology on Wave-Exposed
ASPECTS OF COMMUNITY ECOLOGY ON WAVE-EXPOSED ROCKY HAWAI‘IAN COASTS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) DECEMBER 2006 By Christopher Everett Bird Dissertation Committee: Celia M. Smith, Chairperson Kent W. Bridges David C. Duffy Leonard A. Freed E. Alison Kay Halina M. Zaleski We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Botany (Ecology, Evolution and Conservation Biology). DISSERTATION COMMITTEE ________________________________ Chairperson ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ ii Copyright 2006 Christopher Everett Bird All Rights Reserved iii DEDICATION This one goes out to my mom Betsy Bird; my dad George Bird; my grandmother Ethel Bird; my sisters and their families Gwendolyn, Scott, Alex, Mitchell, and Nicholas Bottomley, Evelyn, Mike, Andrew, and Ian Kirner; my best friend John Swistak; my boyz in NL1; my girlz in tha 808; and all the rest of my friends. You are the people who stood by my side, no matter what. Thank you for the good times, the support, and the love. I owe it all to you. iv ACKNOWLEDGMENTS I would like to thank the University of Hawaii Sea Grant College (this is publication XD- 02-02), University of Hawaii Ecology, Evolution and Conservation Biology Program, National Parks Service, and Northwestern Hawaiian Islands National Monument for funding the research presented in this dissertation. This dissertation would not have happened without the inspiration of a few special people. -
Grade 3 UNIT 1 Overview Shoreline Habitats
G3 U1 OVR GRADE 3 UNIT 1 OVERVIEW Shoreline Habitats Introduction Shoreline habitats are unique areas greatly infl uenced by tidal patterns, neighboring estuaries and wetlands, and human uses. Each shoreline habitat supports a great diversity of life. While many of the habitats thrive, some of them require our attention so that we can monitor our human impact, and not negatively affect the abundance of life in these areas. In this unit, students engage in a variety of activities as they learn about shoreline habitats and the diversity of life within them. Lesson 1 and 2 focus on rocky intertidal and sandy shoreline areas. Students help create a class mural of a shoreline habitat by adding three-dimensional models of organisms to the appropriate places along this imaginary shoreline in their classroom. They learn the relationship between structure and function in organisms, and then demonstrate their understanding by creating “Guess Who” riddles about organisms and their unique adaptations. Lastly, students learn how interrelated various shoreline habitats are with other habitats by investigating the watershed concept through the Hawaiian Ahupua‘a land management system. Students apply their knowledge of shoreline habitats by ultimately proposing solutions to potential real-world problems. Note to teachers: In the scientifi c world, the term “Coastal Ecosystems” is more widely used than the term “Shoreline Habitats.” Researchers typically prefer to categorize coastal ecosystems into specifi c rocky intertidal, sandy shoreline, or wetland ecosystems. If students or teachers require further information about shoreline habitats to enhance this unit, search terms should be expanded to include “coastal ecosystems.” 1 At A Glance Each Lesson addresses HCPS III Benchmarks. -
7. Kalaupapa National Historical Park (KALA), Island of Moloka’I
PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report XXX Coastal Resources, Threats, Inventory, and Mapping of National Parks in Hawai’i: 7. Kalaupapa National Historical Park (KALA), Island of Moloka’i. Month 201_ Larry V. Basch, Ph.D1 1U.S. Department of the Interior National Park Service Pacific West Region 300 Ala Moana Blvd. Room 6-226, Honolulu, Hawai’i, 96850 Recommended Citation: Basch, L.V. 201_. Coastal Resources, Threats, Inventory and Mapping of National Parks in Hawai’i: 7. Kalaupapa National Historical Park (KALA), Island of Moloka’i. Pacific Cooperative Studies Unit Technical Report ___. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. __ pp. Key words: Coastal, intertidal, marine, resources, threats, inventory, mapping, algae, invertebrates, fishes Place key words: Hawai‘i, Island of Moloka’i, Kalaupapa National Historical Park (KALA) Acronyms: ALKA Ala Kahakai National Historic Trail CHIS Channel Islands National Park GPS Global Positioning System GIS Geographic Information System HALE Haleakala National Park HAVO Hawai’i Volcanoes National Park I&M Inventory & Monitoring Program NOAA National Oceanic and Atmospheric Administration NPS National Park Service PACN Pacific Island Network PUHE Pu‘ukoholā Heiau National Historic Site PUHO Pu‘uhonua o Hōnaunau National Historical Park SOP Standard Operating Procedure USGS United States Geological Survey UTM Universal Transverse -
Biogeography of Shell Morphology in Over‐Exploited Shellfish Reveals
Received: 10 September 2019 | Revised: 6 December 2019 | Accepted: 10 February 2020 DOI: 10.1111/jbi.13845 RESEARCH PAPER Biogeography of shell morphology in over-exploited shellfish reveals adaptive trade-offs on human-inhabited islands and incipient selectively driven lineage bifurcation Ashley M. Hamilton1 | Jason D. Selwyn1 | Rebecca M. Hamner1,2 | Hokuala K. Johnson3 | Tia Brown3 | Shauna K. Springer4 | Christopher E. Bird1 1Department of Life Sciences, Texas A&M University -Corpus Christi, Corpus Christi, Abstract Texas Aim: Humans are unintentionally affecting the evolution of fishery species directly 2 CNMI Division of Fish and Wildlife, Rota, through exploitation and indirectly by altering climate. We aim to test for a relation- MP, Northern Mariana Islands 3Papahānaumokuākea Marine National ship between biogeographic patterns in the shell phenotypes of an over-exploited Monument, NOAA Office of Marine shellfish and the presence of humans to identify human-mediated adaptive trade- National Sanctuaries, Honolulu, Hawaii offs. The implications of these trade-offs are discussed with respect to the sustain- 4Conservation International - Center for Ocean, Hawaii Program, Honolulu, Hawaii ability of the fishery. Taxon: The endemic Hawaiian intertidal limpet, ‘opihi makaiauli (Patellagastropoda, Correspondence Christopher E. Bird, Department of Life Nacellidae, Cellana exarata) Sciences, Texas A&M University -Corpus Methods: We surveyed phenotypic characters associated with temperature and Christi, 6300 Ocean Drive, Corpus Christi, -
HSTT Final EIS/OEIS Section 3.8 Marine Invertebrates
3.8 Marine Invertebrates HAWAII-SOUTHERN CALIFORNIA TRAINING AND TESTING FINAL EIS/OEIS AUGUST 2013 TABLE OF CONTENTS 3.8 MARINE INVERTEBRATES ........................................................................................................... 3.8-1 3.8.1 INTRODUCTION ............................................................................................................................... 3.8-2 3.8.1.1 Endangered Species Act-Listed Species ................................................................................... 3.8-2 3.8.1.2 Federally Managed Species ..................................................................................................... 3.8-3 3.8.1.3 Taxonomic Groups ................................................................................................................... 3.8-4 3.8.2 AFFECTED ENVIRONMENT ................................................................................................................. 3.8-5 3.8.2.1 Invertebrate Hearing and Vocalization .................................................................................... 3.8-7 3.8.2.2 General Threats ....................................................................................................................... 3.8-8 3.8.2.3 Black Abalone (Haliotis cracherodii) ...................................................................................... 3.8-10 3.8.2.4 White Abalone (Haliotis sorenseni) ....................................................................................... 3.8-12 3.8.2.5 Fuzzy Table