Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The New Vision for Space Exploration
Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar -
Abstract US Patent References
Architecture for Reusable Responsive Exploration Systems: ARES - Platform and Reusable Responsive Architecture for Innovative Space Exploration: PRAISE (Part 1) PATENT PENDING Abstract A comprehensive Modular Reusable Responsive Space Exploration Platform (Architecture) composed of multiple modular reusable elements such that the assemblies can be flexibly configured into systems for low earth orbits launches and for long-range exploration such as orbits to moon, Lagrange points and others. This platform & architecture is named as Architecture for Reusable Responsive Exploration System (acronym ARES) / Platform and Reusable Responsive Architecture for Innovative Space Exploration (acronym PRAISE), in short ARES/PRAISE or simply ARES. It is also known as Alpha Spaces Architecture and Platform (acronym ASAP), in short as “αPlatform” or “αArchitecture”, or “αAres”. As an example, the configuration involves reusable lightweight wing, core stage, (optional booster stages) combination of expendable upper stage and reusable crew capsule. Further, the expendable upper stage can be re-used to serve as in-orbit fuel depots and for other innovative uses. This is first part of the multi part patent application. Inventor: Atreya, Dinesh S. US Patent References US Patent 6158693 - Recoverable booster stage and recovery method US Patent 4878637 - Modular space station US Patent 6726154 - Reusable space access launch vehicle system US Patent 6113032 - Delivering liquid propellant in a reusable booster stage US Patent 4557444 - Aerospace vehicle US Patent 4880187 - Multipurpose modular spacecraft US Patent 4452412 - Space shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank US Patent 4802639 - Horizontal-takeoff transatmospheric launch system US Patent 4884770 - Earth-to-orbit vehicle providing a reusable orbital stage US Patent 4265416 - Orbiter/launch system U.S. -
NASA - Apollo 13
Press Kit NASA - Apollo 13 Ä - 1970 - National Aeronautics and Space Administration Ä - 2010 - National Aeronautics and Space Administration Restored version by Matteo Negri (Italy) Web: http://www.siamoandatisullaluna.com NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WO 2-4155 I NEWS WASHINGTON,D .C. 20546 TELS4 WO 3-6925 FOR RELEASr? THURSDAY A.M. 2, 1970 RELEASE NO: 70-~OK April P R F. E S S K I T 2 -0- t RELEASE NO: 70-50 APOLLO 13 THIRD LUNAR LANDING MISSION Apollo 13, the third U.S. manned lunar landing mission, will be launchefi April 11 from Kennedy Space Center, Fla., to explore a hilly upland region of the Moon and bring back rocks perhaps five billion years old, The Apollo 13 lunar module will stay on the Moon more than 33 hours and the landing crew will leave the spacecraft twice to emplace scientific experiments on the lunar surface and to continue geological investigations. The Apollo 13 landing site is in the Fra Mauro uplands; the two National Aeronautics and Space Administration ppevious landings were in mare or ''sea" areas, Apollo 11 in the Sea of Tranqullfty and Apollo 12 in the Ocean of Storms. Apollo 13 crewmen are commander James A. Lovell, Jr.; command module pilot momas K. MBttingly 111, and lunar module pilot Fred W. Haise, Jr. Lovell is a U.S. Navy captain, Mattingly a Navy lieutenant commander, and Haise a civllian. -more- 3/26/70 Launch vehicle is a Saturn V. Apollo 13 objectives are: * Perform selenological inspection, survey and sampling of materials in a preselected region of the Fra Mauro formation, c Deploy and activate an Apollo Lunar Surface Experiment Package (ALSEP) , * Develop man's capability to work in the lunar environment. -
Annual Report
The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative -
Apollo 15 Press
6 pwwmr%wp NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TELS. WO 2-4155 NEWS WASHINGTON,D.C. 20546 WO 3-6925 FOR RELEASE: THURSDAY A.M. July 15, 1971 RELEASE NO: 71-1I9K PROJECT: APOLLO 15 (To be launched no P earlier than July 26) R contents E GENERAL RELEASE 1-8 COUNTDOWN 9-11 Launch Windows 11 Ground Elapsed Time Update 12 S Launch and Mission Profile 13 Launch Events 14 Mission Events 15-32 S EVA Mission Events 21-29 Entry Events 33 Recovery Operations 34-36 APOLLO 15 MISSION OBJECTIVES 37-39 Lunar Surface Science 40 Passive Seismic Experiment 40-47 Lunar Surface Magnetometer 47-50 Solar Wind Spectrometer 50-51 Suprathermal Ion Detector Experiment and Cold Cathode Gauge Experiment 51-52 K Lunar Heat Flow Experiment 52-55 Lunar Dust Detector Experiment 55 ALSEP Central Station 55-56 Laser Ranging Retro-Reflector Experiment 56 Solar Wind Composition Experiment 56 SNAP-27--Power Source for ALSEP 57-58 Lunar Geology Investigation 59-60 Soil Mechanics 60 Lunar Orbital Science 61 Gamma-Ray Spectrometer 61 X-Ray Fluorescence Spectrometer 61 Alpha-Particle Spectrometer 61 Mass Spectrometer 62 24-inch Panoramic Camera 62 3-inch Mapping Camera 62-63 Laser Altimeter 64 Subsatellite 64-66 UV Photography-Earth and Moon 66 -more- 6/30/71 -i2- Gegenschein from Lunar Orbit 66 CSM/LM S-Band Transponder 67 Bistatic Radar Experiment 67-68 Apollo Window Meteoroid 68 Composite Casting Demonstration 68A Engineering/Operational Objectives 69 APOLLO LUNAR HAND TOOLS- 70-74 HADLEY-APENNINE LANDING SITE 75-76 LUNAR -
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars by C. B. Rabotin M.S., ESIEE Paris, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Masters of Science in Aerospace Engineering Sciences Ann and H.J. Smead Aerospace Engineering Sciences 2017 This thesis entitled: Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars written by C. B. Rabotin has been approved for the Ann and H.J. Smead Aerospace Engineering Sciences Dr. Hanspeter Schaub Dr. Natasha Bosanac Dr. Jay McMahon Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Rabotin, C. B. (M.Sc., Aerospace) Feasibility of reusable continuous thrust spacecraft for cargo resupply missions to Mars Thesis directed by Dr. Hanspeter Schaub Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. -
Seeds of Discovery: Chapters in the Economic History of Innovation Within NASA
Seeds of Discovery: Chapters in the Economic History of Innovation within NASA Edited by Roger D. Launius and Howard E. McCurdy 2015 MASTER FILE AS OF Friday, January 15, 2016 Draft Rev. 20151122sj Seeds of Discovery (Launius & McCurdy eds.) – ToC Link p. 1 of 306 Table of Contents Seeds of Discovery: Chapters in the Economic History of Innovation within NASA .............................. 1 Introduction: Partnerships for Innovation ................................................................................................ 7 A Characterization of Innovation ........................................................................................................... 7 The Innovation Process .......................................................................................................................... 9 The Conventional Model ....................................................................................................................... 10 Exploration without Innovation ........................................................................................................... 12 NASA Attempts to Innovate .................................................................................................................. 16 Pockets of Innovation............................................................................................................................ 20 Things to Come ...................................................................................................................................... 23 -
FY10 Agency Mission Planning Model Acronyms
Version 6-11-09 Mission Data Sources Science Mission Directorate (SMD) submit; 5-4-09 Exploration Systems Mission Directorate (ESMD) submit; 6-11-09 Space Operations Mission Directorate (SOMD) submit; 5-27-09 Aeronautics Research Mission Directorate (ARMD) response; 5-28-09 Mission Acronyms & Definitions Mission Directorate Altair-x Lunar descent stage aka: LSAM = Lunar Surface Access Module (x-mission #) ESMD Ares 1 Crew Launch Vehicle (aka CLV) ESMD Ares V Cargo Launch Vehicle (aka CaLV) ESMD Astro-H SXS Instrument (Explorer Program Mission of Opportunity) [JAXA launch] SMD X-Air Estimated number of Aircraft Earth Science Flights SMD X-Bal Estimated number of Scientific Balloon Flights SMD BARREL Balloon Array for RBSP Relativistic Electron Losses (Two balloon campaigns of 20 flights each) SMD CaLV Cargo Launch Vehicle (aka CaLV) ESMD Chndraayn1 Discovery MoO instrument to be flown on Indian satellite Chandraayan [ELV launch] SMD CLARREO Climate Absolute Radiance and Reflectivity Observatory (see ESDS-x below) SMD CLV Crew Launch Vehicle (aka Ares I) ESMD COR-Lx Cosmic Origins Program Large class mission (x-mission #) (Flagship missions to be defined by Decadal Survey) SMD COR-Mx Cosmic Origins Program Medium class mission (x-mission #) SMD dB decibels ARMD DESDynl Deformation, Ecosystem Structure and Dynamics of Ice (see ESDS-x below) SMD Disc-xx Discovery Mission (xx- mission #) SMD ESDS-x Earth Science Decadal Survey Mission (x- mission #) Likely CLARREO and DESDynI first, order TBD SMD EX-xx Explorer mission (class undefined: Could -
Apollo 17 Press
7A-/ a NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington. D . C . 20546 202-755-8370 FOR RELEASE: Sunday t RELEASE NO: 72-220K November 26. 1972 B PROJECT: APOLLO 17 (To be launched no P earlier than Dec . 6) R E contents 1-5 6-13 U APOLLC 17 MISSION OBJECTIVES .............14 LAUNCH OPERATIONS .................. 15-17 COUNTDOWN ....................... 18-21 Launch Windows .................. 20 3 Ground Elapsed Time Update ............ 20-21 LAUNCH AND MISSION PROFILE .............. 22-32 Launch Events .................. 24-26 Mission Events .................. 26-28 EVA Mission Events ................ 29-32 APOLLO 17 LANDING SITE ................ 33-36 LUNAR SURFACE SCIENCE ................ 37-55 S-IVB Lunar Impact ................ 37 ALSEP ...................... 37 K SNAP-27 ..................... 38-39 Heat Flow Experiment ............... 40 Lunar Ejecta and Meteorites ........... 41 Lunar Seismic Profiling ............. 41-42 I Lunar Atmospheric Composition Experiment ..... 43 Lunar Surface Gravimeter ............. 43-44 Traverse Gravimeter ............... 44-45 Surface Electrical Properties 45 I-) .......... T Lunar Neutron Probe ............... 46 1 Soil Mechanics .................. 46-47 Lunar Geology Investigation ........... 48-51 Lunar Geology Hand Tools ............. 52-54 Long Term Surface Exposure Experiment ...... 54-55 -more- November 14. 1972 i2 LUNAR ORBITAL SCIENCE ............... .5 6.61 Lunar Sounder ................. .5 6.57 Infrared Scanning Radiometer ......... .5 7.58 Far-Ultraviolet Spectrometer ..........5 -
NASA - Apollo 17
Press Kit NASA - Apollo 17 Ä - 1972 - National Aeronautics and Space Administration Ä - 2010 - National Aeronautics and Space Administration Restored version by Matteo Negri (Italy) Web: http://www.siamoandatisullaluna.com 7A-/ a NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington. D . C . 20546 202-755-8370 FOR RELEASE: Sunday t RELEASE NO: 72-220K November 26. 1972 B PROJECT: APOLLO 17 (To be launched no P earlier than Dec . 6) R E contents 1-5 6-13 U APOLLC 17 MISSION OBJECTIVES .............14 LAUNCH OPERATIONS .................. 15-17 COUNTDOWN ....................... 18-21 Launch Windows .................. 20 3 Ground Elapsed Time Update ............ 20-21 LAUNCH AND MISSION PROFILE .............. 22-32 Launch Events .................. 24-26 Mission Events .................. 26-28 EVA Mission Events ................ 29-32 APOLLO 17 LANDING SITE ................ 33-36 LUNAR SURFACE SCIENCE ................ 37-55 S-IVB Lunar Impact ................ 37 ALSEP ...................... 37 K SNAP-27 ..................... 38-39 Heat Flow Experiment ............... 40 Lunar Ejecta and Meteorites ........... 41 Lunar Seismic Profiling ............. 41-42 I Lunar Atmospheric Composition Experiment ..... 43 Lunar Surface Gravimeter ............. 43-44 Traverse Gravimeter ............... 44-45 Surface Electrical Properties 45 I-) .......... T Lunar Neutron Probe ............... 46 1 Soil Mechanics .................. 46-47 Lunar Geology Investigation ........... 48-51 Lunar Geology Hand Tools ............. 52-54 Long Term Surface Exposure -
Ares V Cargo Launch Vehicle
National Aeronautics and Space Administration Constellation Program: America’s Fleet of Next-Generation Launch Vehicles The Ares V Cargo Launch Vehicle Planning and early design are under way for hard- NASA’s Constellation Program to carry human ware, propulsion systems and associated techno- explorers back to the moon, and then onward to logies for NASA’s Ares V cargo launch vehicle — the Mars and other destinations in the solar system. “heavy lifter” of America’s next-generation space fleet. The Ares V effort includes multiple hardware and Ares V will serve as NASA’s primary vessel for safe, propulsion element teams at NASA centers and facts reliable delivery of large-scale hardware to space — contractor organizations around the nation, and is from the lunar landing craft and materials for estab- led by the Ares Projects Office at NASA’s Marshall lishing a moon base, to food, fresh water and other Space Flight Center in Huntsville, Ala. These teams staples needed to extend a human presence beyond rely on nearly a half century of NASA spaceflight Earth orbit. experience and aerospace technology advances. Together, they are developing new vehicle hard- Under the goals of NASA’s exploration mission, ware and flight systems and matur ing technologies Ares V is a vital part of the cost-effective space evolved from powerful, proven Saturn rocket and transportation infrastructure being developed by space shuttle propulsion elements and knowledge. NASA Concept image of Ares V in Earth orbit. (NASA MSFC) The versatile, heavy-lifting Ares V is a two-stage, vertically- stacked launch vehicle. It can carry nearly 414,000 pounds (188 metric tons) to low-Earth orbit. -
Soviet Reusable Space Systems Program: Implications for Space Operations in the 1990S
) (I ' ·-·.;;;;:, .. Dire.ctorate of . ttJ _)\ Intelligence . G0 Soviet Reusable Space Systems Program: Implications for Space Operations in the 1990s An Intelligence Assessment SOV 88-10061 sw 88-/IJOj6 Stpu'"hu J9RR Copy Warning Notice Intelligence Sources or Methods Involved (WNINTEL) National &curity Unauthorized Disclosure Information Subject to Criminal Sanctions Oissc:mination Control Abbr~riations NOFORN (NFJ Not releasable to foreien nationals NOSONTR~_CT_CN_C_I ___~N_o_t~re_lc_•_s•_b_le_t~o_c_M_l~rz~~-o_rs_o.,.r~c_o~nl_rz_c~lo_r~/c_o_ns_u_h_z_nt_s PROP IN (PRJ Caution-proprietary inform;.tion involved OR CON (OCJ Dissemination and Cltraction of inform.1tion ---···----------,--,---,---.,.---------,-----controlled by oricinator REl___ This inform3.tion h.u been :~uthorizcd for release to ... ___________,_ __ W_N ______ --:----- WNI ~TEL-Intcllia:cncc sources or mel hods involved A microfiche copy o( I his docu- Clauillcd bl men! is available front OIR/ Declassify: OADR DLB (~82-7177~ printed copies Derived from muhiplc sources from CPAS/IMC(~&l-HOJ; or AIM request to uscrid CPASIMCJ. Rceulu rcccip! of 01 reports can be am need chrouch CPAS/IMC. All material on this ~r:c . --·-------------------- is Unclassified. ') / ' Directorate or lntdligrocc Soviet Reusable Space Systems Program: Implications for Space Operations in the 1990s An lntdligcnce Assessment This paper was prepared b ,Qflicc of Soviet Anal)'sis. an<'.- ~f Science and Weapons Rescare #:ontributions fro. t?_o~ . Comments znd queries arc welcome and may be dircctcdl\0 . or to . USWR. J yrf sov 88-10061 SWS8-100l6 Scpumba 1933 I ' Soviet Reusable Space Systems Program: Implications for Space Operations in the_l990! Key Judgments The Soviets arc developing at least one, and possibly two, reusable space llffurmation availabl~ systems.