The Moon After Apollo
ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.
[Show full text]