Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-Cov-2 Inhibitory Activity Using Molecular Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-Cov-2 Inhibitory Activity Using Molecular Modelling International Journal of Molecular Sciences Review Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling Fadia S. Youssef 1 , Elham Alshammari 2 and Mohamed L. Ashour 1,3,* 1 Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; [email protected] 2 Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia; [email protected] 3 Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia * Correspondence: [email protected]; Tel.: +20-10-68-222-354 Abstract: Genus Aspergillus represents a widely spread genus of fungi that is highly popular for possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyke- tons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified from different species of genus Aspergillus that were found to be associated with different marine organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported, 66 of which showed important biological activities with respect to the tested biological activities Citation: Youssef, F.S.; Alshammari, mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. E.; Ashour, M.L. Bioactive Alkaloids Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV, from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl and Potential SARS-CoV-2 Inhibitory transferase were done for sixteen alkaloids that showed anti-infective potential for better mecha- Activity Using Molecular Modelling. nistic interpretation of their probable mode of action. The inhibitory potential of compounds vs. Int. J. Mol. Sci. 2021, 22, 1866. Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19 https://doi.org/10.3390/ijms22041866 infection and its complication was also examined using molecular docking. Fumigatoside E showed the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated Academic Editors: from marine organisms could afford bioactive entities combating infectious diseases. Marie-Laure Fauconnier and Laurence Lins Keywords: alkaloids; antimicrobial activity; Aspergillus; molecular modelling Received: 13 January 2021 Accepted: 10 February 2021 Published: 13 February 2021 1. Introduction Publisher’s Note: MDPI stays neutral Recently, marine-derived fungi have gained significant attention as promising thera- with regard to jurisdictional claims in peutic approaches for the treatment of a wide array of human ailments and as successful published maps and institutional affil- tools for drug discovery [1]. This is mainly attributed to their richness by a diverse array of iations. secondary metabolites comprising terpenoids, alkaloids, peptides, lactones and steroids. These promising activities are represented by antiviral, antibacterial, anti-inflammatory and anticancer activity [2]. The significant diversity in physical and chemical structure of the environment where the marine-derived fungi grow has greatly reflected by the vast structural and functional variation in their produced secondary metabolites and their Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. biological activities [3]. Meanwhile, marine-derived fungal metabolites displayed a promis- This article is an open access article ing physico-chemical behavior and oral-bioavailability, constituting a safer therapeutic distributed under the terms and alternative when compared to synthetic molecules that are considerably important in the conditions of the Creative Commons process of pharmaceutical dosage form formulation [4,5]. Moreover, many alkaloids were Attribution (CC BY) license (https:// previously isolated from marine fungi and showed a vast array of biological activities [6–9]. creativecommons.org/licenses/by/ Genus Aspegillus represents a widely spread genus of fungi that are highly popular of 4.0/). possessing a potent medicinal potential comprising mainly antimicrobial, cytotoxic and Int. J. Mol. Sci. 2021, 22, 1866. https://doi.org/10.3390/ijms22041866 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 1866 2 of 22 Moreover, many alkaloids were previously isolated from marine fungi and showed a vast array of biological activities [6–9]. Int. J. Mol. Sci. 2021, 22, 1866 Genus Aspegillus represents a widely spread genus of fungi that are highly popular2 of 23 of possessing a potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant activities that are highly attributed to its richness by alkaloids, terpenes, steroid and polyketons. These secondary metabolites reflect the considerable importance antioxidantof genus Aspergillus activities both that arein the highly scientific attributed and pharmaceutical to its richness by industries alkaloids, levels terpenes, [10]. steroid and polyketons.Thus, this review These secondaryaimed to comprehensivel metabolites reflecty explore the considerable the diverse importance alkaloids ofisolated genus Aspergillusand identifiedboth from in the different scientific species and pharmaceutical of genus Aspergillus industries that were levels found [10]. to be associated with Thus,different this reviewmarine aimedorganisms to comprehensively regarding their explore chemistry the diverse and biology. alkaloids Classification isolated and identifiedwas done fromon the different basis of species alphabetical of genus arrangAspergillusement thatof species. were found Around to be 174 associated alkaloid with me- differenttabolites marinewere reported, organisms 66 regardingof which showed their chemistry important and biological biology. Classification activities mainly was donecom- onprising the basis antiviral, of alphabetical antibacterial, arrangement antifungal, of species.cytotoxic, Around antioxidant 174 alkaloid and antifouling metabolites activi- were reported,ties. In addition, 66 of which data showedillustrating important the bioactive biological alkaloids activities obtained mainly from comprising previously antiviral, men- antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. In addition, data tioned fungal strains, their sources and biological properties are compiled in Table 1 for illustrating the bioactive alkaloids obtained from previously mentioned fungal strains, better representation of the collected data. A pie chart illustrating the different biological their sources and biological properties are compiled in Table1 for better representation of activities for the bioactive alkaloids of genus Aspergillus was also provided. Besides, in the collected data. A pie chart illustrating the different biological activities for the bioactive silico studies on different microbial proteins were done for sixteen alkaloids that showed alkaloids of genus Aspergillus was also provided. Besides, in silico studies on different anti-infective potential for better mechanistic interpretation of their probable mode of microbial proteins were done for sixteen alkaloids that showed anti-infective potential action. In addition, the inhibitory potential of these compounds vs. Angioten- for better mechanistic interpretation of their probable mode of action. In addition, the sin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating inhibitory potential of these compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as COVID-19 infection and its complication was also examined using molecular docking to an important therapeutic target combating COVID-19 infection and its complication was it can act as a guide for researchers who wish to continue exploring the anti-infectious also examined using molecular docking to it can act as a guide for researchers who wish to potential of alkaloid derived from genus Aspergillus. continue exploring the anti-infectious potential of alkaloid derived from genus Aspergillus. 2. Diverse Alkaloids Isolated and IdentifiedIdentified fromfrom DifferentDifferent SpeciesSpecies ofof GenusGenus Asper- Aspergillusgillus and Theirand TheirBiology Biology in Alphabetical in Alphabetical Arrangement Arrangement of Species of Species 2.1. A. carneus Aspergillus speciesspecies are are highly highly popular popular due due to to the the presence presence of aof wide a wide variety variety of alkaloids of alka- belongingloids belonging to diverse to diverse classes. classes. Prenylated Prenylated indole andindole quinazolinone and quinazolinone alkaloids alkaloids were isolated were fromisolatedA. carneusfrom A., acarneus marine, a associated marine associatedAspergillus Aspergillusspecies, while species, the formerwhile the is represented former is rep- by carneamidesresented by A-Ccarneamides (1–3); however, A-C the(1– latter3); however, is represented the bylatter carnequinazolines is represented A-C by (4car-–6). Unfortunately,nequinazolines noneA-C ( of4– the6). Unfortunately, isolated compounds none of revealed the isolated any antimicrobialcompounds revealed or cytotoxic any activitiesantimicrobial (Figure or 1cytotoxic)[11].
Recommended publications
  • Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
    H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3].
    [Show full text]
  • Aspergillus Penicillioides Speg. Implicated in Keratomycosis
    Polish Journal of Microbiology ORIGINAL PAPER 2018, Vol. 67, No 4, 407–416 https://doi.org/10.21307/pjm-2018-049 Aspergillus penicillioides Speg. Implicated in Keratomycosis EULALIA MACHOWICZ-MATEJKO1, AGNIESZKA FURMAŃCZYK2 and EWA DOROTA ZALEWSKA2* 1 Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Lublin, Poland 2 Department of Plant Pathology and Mycology, University of Life Sciences in Lublin, Lublin, Poland Submitted 9 November 2017, revised 6 March 2018, accepted 28 June 2018 Abstract The aim of the study was mycological examination of ulcerated corneal tissues from an ophthalmic patient. Tissue fragments were analyzed on potato-glucose agar (PDA) and maltose (MA) (Difco) media using standard laboratory techniques. Cultures were identified using classi- cal and molecular methods. Macro- and microscopic colony morphology was characteristic of fungi from the genus Aspergillus (restricted growth series), most probably Aspergillus penicillioides Speg. Molecular analysis of the following rDNA regions: ITS1, ITS2, 5.8S, 28S rDNA, LSU and β-tubulin were carried out for the isolates studied. A high level of similarity was found between sequences from certain rDNA regions, i.e. ITS1-5.8S-ITS2 and LSU, what confirmed the classification of the isolates to the species A. penicillioides. The classification of our isolates to A. penicillioides species was confirmed also by the phylogenetic analysis. K e y w o r d s: Aspergillus penicillioides, morphology, genetic characteristic, cornea Introduction fibrosis has already been reported (Bossche et al. 1988; Sandhu et al. 1995; Hamilos 2010; Gupta et al. 2015; Fungi from the genus Aspergillus are anamorphic Walicka-Szyszko and Sands 2015).
    [Show full text]
  • The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2015 The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk Erika D. Womack Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Womack, Erika D., "The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk" (2015). Theses and Dissertations. 4456. https://scholarsjunction.msstate.edu/td/4456 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template B: Created by James Nail 2011V2.1 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular Biology in the Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology Mississippi State, Mississippi December 2015 Copyright by Erika D. Womack 2015 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack Approved: ____________________________________ Darrell L. Sparks, Jr. (Major Professor) ____________________________________ Ashli Brown-Johnson (Minor Professor)
    [Show full text]
  • Paecilomyces Variotii Xylanase Production, Purification and Characterization with Antioxidant Xylo-Oligosaccharides Production
    www.nature.com/scientificreports OPEN Paecilomyces variotii xylanase production, purifcation and characterization with antioxidant xylo‑oligosaccharides production Asmaa Abdella1, Samah Ramadan2, Ragaa A. Hamouda3,4, Amna A. Saddiq5, Nuha M. Alhazmi5 & Mahmoud A. Al‑Saman1* Paecilomyces variotii xylanase was, produced in stirred tank bioreactor with yield of 760 U/mL and purifed using 70% ammonium sulfate precipitation and ultra‑fltration causing 3.29‑fold purifcation with 34.47% activity recovery. The enzyme purity was analyzed on sodium dodecyl sulfate– polyacrylamide gel electrophoresis (SDS‑PAGE) confrming its monomeric nature as single band at 32 KDa. Zymography showed xylan hydrolysis activity at the same band. The purifed enzyme had optimum activity at 60 °C and pH 5.0. The pH stability range was 5–9 and the temperature stability was up 70 °C. Fe2+and Fe3+ exhibited inhibition of xylanase enzyme while Cu2+, Ca2+, Mg2+ and Mn2+ stimulated its activity. Mercaptoethanol stimulated its activity; however, Na2‑EDTA and SDS inhibited its activity. The purifed xylanase could hydrolyze beechwood xylan but not carboxymethyl cellulose (CMC), avicel or soluble starch. Paecilomyces variotii xylanase Km and Vmax for beechwood were determined to be 3.33 mg/mL and 5555 U/mg, respectively. The produced xylanase enzyme applied on beech xylan resulted in diferent types of XOS. The antioxidant activity of xylo‑oligosaccharides increased from 15.22 to 70.57% when the extract concentration was increased from 0.1 to 1.5 mg/ mL. The enzyme characteristics and kinetic parameters indicated its high efciency in the hydrolysis of xylan and its potential efectiveness in lignocellulosic hydrolysis and other industrial application.
    [Show full text]
  • Mining of Cryptic Secondary Metabolism in Aspergillus
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 Mining of Cryptic Secondary Metabolism in Aspergillus Guo, Yaojie Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Guo, Y. (2020). Mining of Cryptic Secondary Metabolism in Aspergillus. DTU Bioengineering. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Mining of Cryptic Secondary Metabolism in Aspergillus O O O N R HN O N N N O O O OH OH O O OH OH OH O OH O OH OH OH OH HO O OH OH O OH OH OH O Yaojie Guo PhD Thesis Department of Biotechnology and Biomedicine Technical University of Denmark September 2020 Mining of Cryptic Secondary Metabolism in Aspergillus Yaojie Guo PhD Thesis Department of Biotechnology and Biomedicine Technical University of Denmark September 2020 Supervisors: Professor Thomas Ostenfeld Larsen Professor Uffe Hasbro Mortensen Preface This thesis is submitted to the Technical University of Denmark (Danmarks Tekniske Universitet, DTU) in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.
    [Show full text]
  • Characterization of Terrelysin, a Potential Biomarker for Aspergillus Terreus
    Graduate Theses, Dissertations, and Problem Reports 2012 Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Nayak, Ajay Padmaj, "Characterization of terrelysin, a potential biomarker for Aspergillus terreus" (2012). Graduate Theses, Dissertations, and Problem Reports. 3598. https://researchrepository.wvu.edu/etd/3598 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Immunology and Microbial Pathogenesis Donald H. Beezhold,
    [Show full text]
  • Antibacterial Activity of Aspergillus Isolated from Different Algerian Ecosystems
    Vol. 16(32), pp. 1699-1704, 9 August, 2017 DOI: 10.5897/AJB2017.16086 Article Number: 28412E265692 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Antibacterial activity of Aspergillus isolated from different Algerian ecosystems Bramki Amina1*, Ghorri Sana1, Jaouani Atef2, Dehimat Laid1 and Kacem Chaouche Noreddine1 1Laboratory of Mycology, Biotechnology and Microbial Activity, University of Mentouri Brothers- Constantine, P.O. Box, 325 Ain El Bey Way, Constantine, Algeria. 2Laboratory of Microorganisms and Active Biomolecules, University of Tunis El Manar, Campus Farhat Hached, B.P. no. 94 - Rommana, Tunis 1068, Tunisia. Received 26 May, 2017; Accepted 4 August, 2017 Thirty two strains of Aspergillus genus were isolated from soil samples obtained from particular ecosystems: Laghouat endowed with a desert climate and Teleghma with a warm and temperate climate. Based on the morphological aspect, this collection was subdivided into ten phenotypic groups. This identification was confirmed by molecular analyzes using a molecular marker of the genu ribosomal 18s. This marker will allow us to associate our sequences with those of known organisms. In order to discover new antibiotic molecules, the antibacterial activity was performed against two Gram positive bacteria: Staphylococcus aureus and Bacillus subtilis and also two Gram-negative bacteria: Escherichia coli and Pseudomonas aeroginosa, using two different techniques: Agar cylinders and disks technique. The results show that the fungal species have an activity against at least one test bacterium. The Gram positive bacteria were the most affected, where the averages of the inhibition zones reach 34.33 mm.
    [Show full text]
  • Diversity and Bioprospection of Fungal Community Present in Oligotrophic Soil of Continental Antarctica
    Extremophiles (2015) 19:585–596 DOI 10.1007/s00792-015-0741-6 ORIGINAL PAPER Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica Valéria M. Godinho · Vívian N. Gonçalves · Iara F. Santiago · Hebert M. Figueredo · Gislaine A. Vitoreli · Carlos E. G. R. Schaefer · Emerson C. Barbosa · Jaquelline G. Oliveira · Tânia M. A. Alves · Carlos L. Zani · Policarpo A. S. Junior · Silvane M. F. Murta · Alvaro J. Romanha · Erna Geessien Kroon · Charles L. Cantrell · David E. Wedge · Stephen O. Duke · Abbas Ali · Carlos A. Rosa · Luiz H. Rosa Received: 20 November 2014 / Accepted: 16 February 2015 / Published online: 26 March 2015 © Springer Japan 2015 Abstract We surveyed the diversity and capability of understanding eukaryotic survival in cold-arid oligotrophic producing bioactive compounds from a cultivable fungal soils. We hypothesize that detailed further investigations community isolated from oligotrophic soil of continen- may provide a greater understanding of the evolution of tal Antarctica. A total of 115 fungal isolates were obtained Antarctic fungi and their relationships with other organisms and identified in 11 taxa of Aspergillus, Debaryomyces, described in that region. Additionally, different wild pristine Cladosporium, Pseudogymnoascus, Penicillium and Hypo- bioactive fungal isolates found in continental Antarctic soil creales. The fungal community showed low diversity and may represent a unique source to discover prototype mol- richness, and high dominance indices. The extracts of ecules for use in drug and biopesticide discovery studies. Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicil- Keywords Antarctica · Drug discovery · Ecology · lium rubens possess antiviral, antibacterial, antifungal, Fungi · Taxonomy antitumoral, herbicidal and antiprotozoal activities.
    [Show full text]
  • Diversity and Antimicrobial Activity of Culturable Fungi Isolated from Six Species of the South China Sea Gorgonians
    Microb Ecol (2012) 64:617–627 DOI 10.1007/s00248-012-0050-x FUNGAL MICROBIOLOGY Diversity and Antimicrobial Activity of Culturable Fungi Isolated from Six Species of the South China Sea Gorgonians Xiao-Yong Zhang & Jie Bao & Guang-Hua Wang & Fei He & Xin-Ya Xu & Shu-Hua Qi Received: 16 December 2011 /Accepted: 27 March 2012 /Published online: 15 April 2012 # Springer Science+Business Media, LLC 2012 Abstract Fungi in gorgonians are now known to cause proportion (38 %) of fungal isolates displayed distinct anti- gorgonian diseases, but little attention has been paid to the bacterial and antifungal activity, suggesting that the nature of fungal communities associated with gorgonians. gorgonian-associated fungi may aid their hosts in protection The diversity of culturable fungi associated with six species against pathogens. This is the first report comparing the of healthy South China Sea gorgonians were investigated diversity of fungal communities among the South China using a culture-dependent method followed by analysis of Sea gorgonians. It contributes to our knowledge of fungal internal transcribed spacer sequences. A total of 121 gorgonian-associated fungi and further increases the pool fungal isolates were recovered and identified using the Basic of fungi available for natural bioactive product screening. Local Alignment Search Tool search program. These belonged to 41 fungal species from 20 genera. Of these, 30 species and 12 genera are new reports for gorgonians, Introduction and the genera Aspergillus and Penicillium were the most diverse and common in the six gorgonian species. Compar- Coral reefs are widely recognized as one of the most diverse ison of the fungal communities in the six gorgonian species, ecosystems, containing large and diverse microbial commu- together with results from previous relevant studies, indicat- nities.
    [Show full text]
  • Diagnosis and Management of Acute Appendicitis in 21 Pediatric Hematology and Oncology Patients at a Tertiary Care Cancer Center
    www.nature.com/scientificreports OPEN Diagnosis and management of acute appendicitis in 21 pediatric hematology and oncology patients at a tertiary care cancer center Hannah von Mersi1, Thomas Benkö2, Heidrun Boztug1, Michael Dworzak1, Gernot Engstler1, Waltraud Friesenbichler1, Caroline Hutter1, Karoly Lakatos1, Georg Mann1, Martin Metzelder2, Roswitha Lüftinger1, Herbert Pichler1, Fiona Poyer1, Leila Ronceray1 & Andishe Attarbaschi 1* Acute appendicitis is a rare gastrointestinal complication of anti-cancer chemotherapy and hematopoietic stem cell transplantation. Among a cohort of 2341 hemato-oncologic patients at a pediatric tertiary care cancer center, we identifed 21 patients (0.9%) with 23 episodes of acute appendicitis, based on pathological imaging of the appendix and clinical fndings. Median age at diagnosis was 10.21 years. Types of underlying disease included acute leukemias (n = 15), solid tumors (n = 4), and aplastic anemia (n = 2). Clinical symptoms seen in > 1 case were recorded for all 23 episodes as follows: abdominal pain, n = 22; abdominal tenderness, n = 4; fever, n = 7; nausea, n = 2; emesis; n = 2; diarrhea, n = 5; and constipation, n = 2. Median leukocyte count at diagnosis was 0.5 × ­109/L, with a median of 0.1 × ­109/L for the absolute neutrophil count (ANC). All patients received broad- spectrum antibiotics and 18/23 (78%) patients underwent uneventful appendectomy after a median of 5 days and with a median ANC of 0.7 × ­109/L. Median duration until continuation of chemotherapy was 17 days for the 20 cases of appendicitis occurring during the patients’ disease course. Overall, 5/21 (19%) patients died including one related to the appendicitis itself which progressed to a typhlitis and was due to a fungal infection.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • New Species in Aspergillus Section Terrei
    available online at www.studiesinmycology.org StudieS in Mycology 69: 39–55. 2011. doi:10.3114/sim.2011.69.04 New species in Aspergillus section Terrei R.A. Samson1*, S.W. Peterson2, J.C. Frisvad3 and J. Varga1,4 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands; 2Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA; 3Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary. *Correspondence: Robert A. Samson, [email protected] Abstract: Section Terrei of Aspergillus was studied using a polyphasic approach including sequence analysis of parts of the β-tubulin and calmodulin genes and the ITS region, macro- and micromorphological analyses and examination of extrolite profiles to describe three new species in this section. Based on phylogenetic analysis of calmodulin and β-tubulin sequences seven lineages were observed among isolates that have previously been treated as A. terreus and its subspecies by Raper & Fennell (1965) and others. Aspergillus alabamensis, A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, A. hortai and A. terreus NRRL 4017 all represent distinct lineages from the A. terreus clade. Among them, A. terreus var. floccosus, A. terreus NRRL 4017 and A. terreus var. aureus could also be distinguished from A. terreus by using ITS sequence data. New names are proposed for A. terreus var. floccosus, A. terreus var.
    [Show full text]