Protists and Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Castanedospora, a New Genus to Accommodate Sporidesmium
Cryptogamie, Mycologie, 2018, 39 (1): 109-127 © 2018 Adac. Tous droits réservés South Florida microfungi: Castanedospora,anew genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota) Gregorio DELGADO a,b*, Andrew N. MILLER c & Meike PIEPENBRING b aEMLab P&K Houston, 10900 BrittmoorePark Drive Suite G, Houston, TX 77041, USA bDepartment of Mycology,Institute of Ecology,Evolution and Diversity, Goethe UniversitätFrankfurt, Max-von-Laue-Str.13, 60438 Frankfurt am Main, Germany cIllinois Natural History Survey,University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA Abstract – The taxonomic status and phylogenetic placement of Sporidesmium pachyanthicola in Capnodiales(Dothideomycetes) are revisited based on aspecimen collected on the petiole of adead leaf of Sabal palmetto in south Florida, U.S.A. New evidence inferred from phylogenetic analyses of nuclear ribosomal DNA sequence data together with abroad taxon sampling at family level suggest that the fungus is amember of Extremaceaeand therefore its previous placement within the broadly defined Teratosphaeriaceae was not supported. Anew genus Castanedospora is introduced to accommodate this species on the basis of its distinct morphology and phylogenetic position distant from Sporidesmiaceae sensu stricto in Sordariomycetes. The holotype material from Cuba was found to be exhausted and the Florida specimen, which agrees well with the original description, is selected as epitype. The fungus produced considerably long cylindrical to narrowly obclavate conidia -
Environment and the Distribution of Microfungi in a Hawaiian Mangrove Swampl BENNY K
Environment and the Distribution of Microfungi in a Hawaiian Mangrove Swampl BENNY K. H. LEE2 AND GLADYS E. BAKER2 EXTENSIVE INVESTIGATIONS of the ecological effect of temperature and salinity on the growth relationships of soil microfungi with soil types, rate of these fungi. Further study concerned pH, moisture, horizon, temperature, and macro the effects of mangrove root extract and man· vegetation have been published (Parkinson and grove swamp soil extract on fungal growth. Waid, 1960; Alexander, 1961; and Burges and Raw, 1967). It is a well-established principle MATERIALS AND METHODS that soil fungi are influenced by specific soil environments. Mangroves occupy a littoral hab Test Organisms itat, characterized almost invariably by salt or Five fungi were selected from different brackish water and coastal silt. The microfungi salinity levels in the Heeia mangrove swamp. in the mangrove swamp must be able to tolerate All were used in the salinity tolerance tests; the the conditions characteristic of this special first three were used to determine the inter ecosystem: Their distribution in particular may action of salinity and temperature. be affected by the salinity of the mangrove ISOLATES FROM HIGH SALINITY SITES: Robil swamp (Swart, 1958; and Kohlmeyer, 1969). larda rhizophorae Kohlm. was isolated from Tolerance to different salinity levels may cor submerged dead prop roots of Rhizophora relate with temperature levels as demonstrated mangle 1. at the seaward side of Heeia swamp by Ritchie (1957, 1959) in a series of in vitro near the fishpond. The Idcation corresponds experiments. For those microfungi occurring in to station 5 of Walsh (1967). Salinity readings association with the mangrove roots, it is also obtained monthly between August 1961 and necessary to consider the influence of the root November 1962 varied from 0.73 to 29.34 itself and the rhizosphere effect. -
Laboulbeniomycetes, Eni... Historyâ
Laboulbeniomycetes, Enigmatic Fungi With a Turbulent Taxonomic History☆ Danny Haelewaters, Purdue University, West Lafayette, IN, United States; Ghent University, Ghent, Belgium; Universidad Autónoma ̌ de Chiriquí, David, Panama; and University of South Bohemia, Ceské Budejovice,̌ Czech Republic Michał Gorczak, University of Warsaw, Warszawa, Poland Patricia Kaishian, Purdue University, West Lafayette, IN, United States and State University of New York, Syracuse, NY, United States André De Kesel, Meise Botanic Garden, Meise, Belgium Meredith Blackwell, Louisiana State University, Baton Rouge, LA, United States and University of South Carolina, Columbia, SC, United States r 2021 Elsevier Inc. All rights reserved. From Roland Thaxter to the Present: Synergy Among Mycologists, Entomologists, Parasitologists Laboulbeniales were discovered in the middle of the 19th century, rather late in mycological history (Anonymous, 1849; Rouget, 1850; Robin, 1852, 1853; Mayr, 1853). After their discovery and eventually their recognition as fungi, occasional reports increased species numbers and broadened host ranges and geographical distributions; however, it was not until the fundamental work of Thaxter (1896, 1908, 1924, 1926, 1931), who made numerous collections but also acquired infected insects from correspondents, that the Laboulbeniales became better known among mycologists and entomologists. Thaxter set the stage for progress by describing a remarkable number of taxa: 103 genera and 1260 species. Fewer than 25 species of Pyxidiophora in the Pyxidiophorales are known. Many have been collected rarely, often described from single collections and never encountered again. They probably are more common and diverse than known collections indicate, but their rapid development in hidden habitats and difficulty of cultivation make species of Pyxidiophora easily overlooked and, thus, underreported (Blackwell and Malloch, 1989a,b; Malloch and Blackwell, 1993; Jacobs et al., 2005; Gams and Arnold, 2007). -
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes Roger Rosentreter Matthew Bowker Jayne Belnap Photographs by Stephen Sharnoff Roger Rosentreter, Ph.D. Bureau of Land Management Idaho State Office 1387 S. Vinnell Way Boise, ID 83709 Matthew Bowker, Ph.D. Center for Environmental Science and Education Northern Arizona University Box 5694 Flagstaff, AZ 86011 Jayne Belnap, Ph.D. U.S. Geological Survey Southwest Biological Science Center Canyonlands Research Station 2290 S. West Resource Blvd. Moab, UT 84532 Design and layout by Tina M. Kister, U.S. Geological Survey, Canyonlands Research Station, 2290 S. West Resource Blvd., Moab, UT 84532 All photos, unless otherwise indicated, copyright © 2007 Stephen Sharnoff, Ste- phen Sharnoff Photography, 2709 10th St., Unit E, Berkeley, CA 94710-2608, www.sharnoffphotos.com/. Rosentreter, R., M. Bowker, and J. Belnap. 2007. A Field Guide to Biological Soil Crusts of Western U.S. Drylands. U.S. Government Printing Office, Denver, Colorado. Cover photos: Biological soil crust in Canyonlands National Park, Utah, cour- tesy of the U.S. Geological Survey. 2 Table of Contents Acknowledgements ....................................................................................... 4 How to use this guide .................................................................................... 4 Introduction ................................................................................................... 4 Crust composition .................................................................................. -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
Occurrence of Non-Obligate Microfungi Inside Lichen Thalli
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2005 Band/Volume: 57 Autor(en)/Author(s): Suryanarayanan Trichur Subramanian, Thirunavukkarasu N., Hariharan G. N., Balaji P. Artikel/Article: Occurrence of non-obligate microfungi inside lichen thalli. 120-130 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Occurrence of non-obligate microfungi inside lichen thalli T. S. Suryanarayanan1, N. Thirunavukkarasu1, G. N. Hariharan2 and P. Balajr 1 Vivekananda Institute of Tropical Mycology, Ramakrishna Mission Vidyapith, Chennai 600 004, India; 2 M S Swaminathan Research Foundation, Taramani, Chennai 600 113, India. Suryanarayanan, T. S., N. Thirunavukkarasu, G. N. Hariharan & P. Balaji (2005): Occurrence of non-obligate microfungi inside lichen thalli. - Sydowia 57 (1): 120-130. Five corticolous lichen species (four foliose and one fruticose) and the leaf and bark tissues of their host trees were screened for the presence of asympto- matic, culturable microfungi. Four isolation procedures were evaluated to identify the most suitable one for isolating the internal mycobiota of lichens. A total of 242 isolates of 21 fungal genera were recovered from 500 thallus segments of the lichens. Different fungi dominated the fungal assemblages of the lichen thalli and the host tissues. An ordination analysis showed that there was little overlap between the fungi of the lichens and those of the host tissues even though, con- sidering their close proximity, they must have been exposed to the same fungal inoculum. This is the first study that compares the microfungal assemblage asso- ciated with lichens with those occurring in their substrates. -
November 2014
MushRumors The Newsletter of the Northwest Mushroomers Association Volume 25, Issue 4 December 2014 After Arid Start, 2014 Mushroom Season Flourishes It All Came Together By Chuck Nafziger It all came together for the 2014 Wild Mushroom Show; an October with the perfect amount of rain for abundant mushrooms, an enthusiastic volunteer base, a Photo by Vince Biciunas great show publicity team, a warm sunny show day, and an increased public interest in foraging. Nadine Lihach, who took care of the admissions, reports that we blew away last year's record attendance by about 140 people. Add to that all the volunteers who put the show together, and we had well over 900 people involved. That's a huge event for our club. Nadine said, "... this was a record year at the entry gate: 862 attendees (includes children). Our previous high was in 2013: 723 attendees. Success is more measured in the happiness index of those attending, and many people stopped by on their way out to thank us for the wonderful show. Kids—and there were many—were especially delighted, and I'm sure there were some future mycophiles and mycologists in Sunday's crowd. The mushroom display A stunning entry display greets visitors arriving at the show. by the door was effective, as always, at luring people in. You could actually see the kids' eyes getting bigger as they surveyed the weird mushrooms, and twice during the day kids ran back to our table to tell us that they had spotted the mushroom fairy. There were many repeat adult visitors, too, often bearing mushrooms for identification. -
2006 Summer Workshop in Fungal Biology for High School Teachers Hibbett Lab, Biology Department, Clark University
2006 Summer Workshop in Fungal Biology for High School Teachers Hibbett lab, Biology Department, Clark University Introduction to Fungal Biology—Morphology, Phylogeny, and Ecology General features of Fungi Fungi are very diverse. It is hard to define what a fungus is using only morphological criteria. Features shared by all fungi: • Eukaryotic cell structure (but some have highly reduced mitochondria) • Heterotrophic nutritional mode—meaning that they must ingest organic compounds for their carbon nutrition (but some live in close symbioses with photosynthetic algae—these are lichens) • Absorptive nutrition—meaning that they digest organic compounds with enzymes that are secreted extracellularly, and take up relatively simple, small molecules (e.g., sugars). • Cell walls composed of chitin—a polymer of nitrogen-containing sugars that is also found in the exoskeletons of arthropods. • Typically reproduce and disperse via spores Variable features of fungi: • Unicellular or multicellular—unicellular forms are called yeasts, multicellular forms are composed of filaments called hyphae. • With or without complex, multicellular fruiting bodies (reproductive structures) • Sexual or asexual reproduction • With or without flagella—if they have flagella, then these are the same as all other eukaryotic flagellae (i.e., with the “9+2” arrangement of microtubules, ensheathed by the plasma membrane) • Occur on land (including deserts) or in aquatic habitats (including deep-sea thermal vent communities) • Function as decomposers of dead organic matter or as symbionts of other living organisms—the latter include mutualists, pathogens, parasites, and commensals (examples to be given later) Familiar examples of fungi include mushrooms, molds, yeasts, lichens, puffballs, bracket fungi, and others. There are about 70,000 described species of fungi. -
Marine Fungi: Some Factors Influencing Biodiversity
Fungal Diversity Marine fungi: some factors influencing biodiversity E.B. Gareth Jones I Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, and BIOTEC, National Center for Genetic Engineering and Biotechnology, 73/1 Rama 6 Road, Bangkok 10400, Thailand; e-mail: [email protected] Jones, E.B.G. (2000). Marine fungi: some factors influencing biodiversity. Fungal Diversity 4: 53-73. This paper reviews some of the factors that affect fungal diversity in the marine milieu. Although total biodiversity is not affected by the available habitats, species composition is. For example, members of the Halosphaeriales commonly occur on submerged timber, while intertidal mangrove wood supports a wide range of Loculoascomycetes. The availability of substrata for colonization greatly affects species diversity. Mature mangroves yield a rich species diversity while exposed shores or depauperate habitats support few fungi. The availability of fungal propagules in the sea on substratum colonization is poorly researched. However, Halophytophthora species and thraustochytrids in mangroves rapidly colonize leaf material. Fungal diversity is greatly affected by the nature of the substratum. Lignocellulosic materials yield the greatest diversity, in contrast to a few species colonizing calcareous materials or sand grains. The nature of the substratum can have a major effect on the fungi colonizing it, even from one timber species to the next. Competition between fungi can markedly affect fungal diversity, and species composition. Temperature plays a major role in the geographical distribution of marine fungi with species that are typically tropical (e.g. Antennospora quadricornuta and Halosarpheia ratnagiriensis), temperate (e.g. Ceriosporopsis trullifera and Ondiniella torquata), arctic (e.g. -
A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years
toxins Review A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years Darina Pickova 1,* , Vladimir Ostry 1,2 , Jan Malir 3, Jakub Toman 1 and Frantisek Malir 1 1 Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; [email protected] (V.O.); [email protected] (J.T.); [email protected] (F.M.) 2 Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic 3 Department of Public Law, Institute of State and Law, Czech Academy of Sciences, Narodni 18, CZ-11600 Prague, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-722-049-025 Received: 11 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Spices are imported worldwide mainly from developing countries with tropical and/or subtropical climate. Local conditions, such as high temperature, heavy rainfall, and humidity, promote fungal growth leading to increased occurrence of mycotoxins in spices. Moreover, the lack of good agricultural practice (GAP), good manufacturing practice (GMP), and good hygienic practice (GHP) in developing countries are of great concern. This review summarizes recent data from a total of 56 original papers dealing with mycotoxins and microfungi in various spices in the last five years. A total of 38 kinds of spices, 17 mycotoxins, and 14 microfungi are discussed in the review. Worldwide, spices are rather overlooked in terms of mycotoxin regulations, which usually only cover aflatoxins (AFs) and ochratoxin A (OTA). -
Suomen Helttasienten Ja Tattien Ekologia, Levinneisyys Ja Uhanalaisuus
Suomen ympäristö 769 LUONTO JA LUONNONVARAT Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus .......................... SUOMEN YMPÄRISTÖKESKUS Suomen ympäristö 769 Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus SUOMEN YMPÄRISTÖKESKUS Viittausohje Viitatessa tämän raportin lukuihin, käytetään lukujen otsikoita ja lukujen kirjoittajien nimiä: Esim. luku 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Julk.: Salo, P., Niemelä, T., Nummela-Salo, U. & Ohenoja, E. (toim.). Suomen helttasienten ja tattien ekologia, levin- neisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Ss. 109-224. Recommended citation E.g. chapter 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Distribution table of agarics and boletes in Finland. Publ.: Salo, P., Niemelä, T., Nummela- Salo, U. & Ohenoja, E. (eds.). Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Pp. 109-224. Julkaisu on saatavana myös Internetistä: www.ymparisto.fi/julkaisut ISBN 952-11-1996-9 (nid.) ISBN 952-11-1997-7 (PDF) ISSN 1238-7312 Kannen kuvat / Cover pictures Vasen ylä / Top left: Paljakkaa. Utsjoki. Treeless alpine tundra zone. Utsjoki. Kuva / Photo: Esteri Ohenoja Vasen ala / Down left: Jalopuulehtoa. Parainen, Lenholm. Quercus robur forest. Parainen, Lenholm. Kuva / Photo: Tuomo Niemelä Oikea ylä / Top right: Lehtolohisieni (Laccaria amethystina). Amethyst Deceiver (Laccaria amethystina). Kuva / Photo: Pertti Salo Oikea ala / Down right: Vanhaa metsää. Sodankylä, Luosto. Old virgin forest. Sodankylä, Luosto. Kuva / Photo: Tuomo Niemelä Takakansi / Back cover: Ukonsieni (Macrolepiota procera). -
Towards an Integrated Phylogenetic Classification of the Tremellomycetes
http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y.