Knot Theory by Computer SERIES on KNOTS and EVERYTHING

Total Page:16

File Type:pdf, Size:1020Kb

Knot Theory by Computer SERIES on KNOTS and EVERYTHING Lin Knot Knot Theory by Computer SERIES ON KNOTS AND EVERYTHING Editor-in-charge: Louis H. Kauffman (Univ. of Illinois, Chicago) The Series on Knots and Everything: is a book series polarized around the theory of knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics. One purpose of this series is to continue the exploration of many of the themes indicated in Volume 1. These themes reach out beyond knot theory into physics, mathematics, logic, linguistics, philosophy, biology and practical experience. All of these outreaches have relations with knot theory when knot theory is regarded as a pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place. We do not fully understand why this is so. The series represents stages in the exploration of this nexus. Details of the titles in this series to date give a picture of the enterprise. Published: Vol. 1: Knots and Physics (3rd Edition) by L. H. Kauffman Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition) by J. S. Carter Vol. 3: Quantum Topology edited by L. H. Kauffman & R. A. Baadhio Vol. 4: Gauge Fields, Knots and Gravity by J. Baez & J. P. Muniain Vol. 5: Gems, Computers and Attractors for 3-Manifolds by S. Lins Vol. 6: Knots and Applications edited by L. H. Kauffman Vol. 7: Random Knotting and Linking edited by K. C. Millett & D. W. Sumners Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord by R. E. Miles Vol. 9: Combinatorial Physics by T. Bastin & C. W. Kilmister Vol. 10: Nonstandard Logics and Nonstandard Metrics in Physics by W. M. Honig Vol. 11: History and Science of Knots edited by J. C. Turner & P. van de Griend RokTing - Linknot.pmd 2 9/26/2007, 11:47 AM Vol. 12: Relativistic Reality: A Modern View edited by J. D. Edmonds, Jr. Vol. 13: Entropic Spacetime Theory by J. Armel Vol. 14: Diamond — A Paradox Logic by N. S. Hellerstein Vol. 15: Lectures at KNOTS ’96 by S. Suzuki Vol. 16: Delta — A Paradox Logic by N. S. Hellerstein Vol. 17: Hypercomplex Iterations — Distance Estimation and Higher Dimensional Fractals by Y. Dang, L. H. Kauffman & D. Sandin Vol. 19: Ideal Knots by A. Stasiak, V. Katritch & L. H. Kauffman Vol. 20: The Mystery of Knots — Computer Programming for Knot Tabulation by C. N. Aneziris Vol. 21: LINKNOT: Knot Theory by Computer by S. Jablan & R. Sazdanovic Vol. 24: Knots in HELLAS ’98 — Proceedings of the International Conference on Knot Theory and Its Ramifications edited by C. McA Gordon, V. F. R. Jones, L. Kauffman, S. Lambropoulou & J. H. Przytycki Vol. 25: Connections — The Geometric Bridge between Art and Science (2nd Edition) by J. Kappraff Vol. 26: Functorial Knot Theory — Categories of Tangles, Coherence, Categorical Deformations, and Topological Invariants by David N. Yetter Vol. 27: Bit-String Physics: A Finite and Discrete Approach to Natural Philosophy by H. Pierre Noyes; edited by J. C. van den Berg Vol. 28: Beyond Measure: A Guided Tour Through Nature, Myth, and Number by J. Kappraff Vol. 29: Quantum Invariants — A Study of Knots, 3-Manifolds, and Their Sets by T. Ohtsuki Vol. 30: Symmetry, Ornament and Modularity by S. V. Jablan Vol. 31: Mindsteps to the Cosmos by G. S. Hawkins Vol. 32: Algebraic Invariants of Links by J. A. Hillman Vol. 33: Energy of Knots and Conformal Geometry by J. O'Hara RokTing - Linknot.pmd 3 9/26/2007, 11:47 AM Vol. 34: Woods Hole Mathematics — Perspectives in Mathematics and Physics edited by N. Tongring & R. C. Penner Vol. 35: BIOS — A Study of Creation by H. Sabelli Vol. 36: Physical and Numerical Models in Knot Theory edited by J. A. Calvo et al. Vol. 37: Geometry, Language, and Strategy by G. H. Thomas Vol. 38: Current Developments in Mathematical Biology edited by K. Mahdavi, R. Culshaw & J. Boucher Vol. 39: Topological Library Part 1: Cobordisms and Their Applications edited by S. P. Novikov and I. A. Taimanov Vol. 40: Intelligence of Low Dimensional Topology 2006 edited by J. Scott Carter et al. Vol. 41: Zero to Infinity: The Fountations of Physics by P. Rowlands RokTing - Linknot.pmd 4 9/26/2007, 11:47 AM K(gE Series on Knots and Everything - Vol. 21 LinKnot Knot Theory by Computer Slavikjablan Radmila Sazdanovic The Mathematical Institute, Belgrade, Serbia >World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONGKONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Series on Knots and Everything — Vol. 21 LINKNOT Knot Theory by Computer Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-277-223-7 ISBN-10 981-277-223-5 Printed in Singapore. RokTing - Linknot.pmd 1 9/26/2007, 11:47 AM August29,2007 16:40 WorldScientificBook-9inx6in ws-book9x6 Preface Knot theory is a new and rich field of mathematics. Although “real” knots are familiar to everyone and many ideas in knot theory can be formulated in everyday language, it is an area abundant with open questions. One of the main ideas of this book is to avoid obvious classification of knots and links according to their number of components. For this reason knots and links are referred to as KLs and treated together whenever possible. KLs are denoted by Conway symbols, a geometrical-combinatorial way to describe and derive KLs. The same notation is used in the Mathematica based computer program LinKnot that represents an integral part of this book. LinKnot is not only a supplementary computer program, but the best and most efficient tool for obtaining almost all of the results presented in the book, that belong to the field of experimental mathematics. Hands-on computations using Mathematica or the webMathematica package LinKnot along with detailed illustrations facilitate better learn- ing and understanding. The program LinKnot can be downloaded from the web address http://www.mi.sanu.ac.yu/vismath/linknot/ and used as a powerful educational and research tool for experimental mathematics– im- plementation of Caudron’s ideas and the Conway notation enables working with large families of knots and links. The electronic version of this book and the program LinKnot that provides webMathematica on-line computa- tions are available at the address http://math.ict.edu.yu/. Each knot theory problem described in this book is accompanied with the corresponding LinKnot function that enables the reader to actively use the program LinKnot, not only for illustrating some problems, but for computations and experimentation. LinKnot is software open to future de- velopment: a reader can change it or add new functions. For the systematic v August29,2007 16:40 WorldScientificBook-9inx6in ws-book9x6 vi LinKnot and exhaustive derivation of KLs we have accepted the concept proposed by J.H. Conway and A. Caudron, supported and used in a form adapted for computer implementation. As a prerequisite for the use of the Conway notation, the complete list of basic polyhedra up to 20 crossings is given in the program LinKnot. The key idea is the “vertical” classification of KLs into well-defined categories– worlds, subworlds, classes, and families, according to new sets of recursively computed invariants. Patterns obtained from computing KL invariants imply the existence of more general KL family invariants that agree with all proposed conjectures. We strongly believe that the concept of family invariants will be placed on a firm theoretical founda- tion in the future. New KL tables, organized according to KL fami- lies, are given in Appendix A that can be downloaded from the address http://www.mi.sanu.ac.yu/vismath/Appendix.pdf. After a short graph-theoretical introduction, we consider different no- tations for KLs: Gauss, Dowker, and Conway notation, along with their advantages and disadvantages. All basic KL invariants such as the min- imum crossing number, minimum writhe, linking number, unknotting or unlinking number, cutting number, and KL properties such as chirality, periodicity, unlinking gap, and braid family representatives of KLs are dis- cussed in Chapter 1. In Chapter 2 we address two important problems: recognition and gen- eration of KLs. As recognition criteria we consider KL colorings, KL groups, and more powerful tools such as polynomial KL invariants. Again, we try to show that polynomial KL invariants can be recovered from the Conway notation and recursively computed for KL families. Chapter 3 contains a short excursion into the history of knot theory and places an emphasis on the beauty, universality, and diversity of knot theory through various non-standard applications such as mirror curves, fullerenes, self-referential systems, and KL automata. We wish to thank Wolfram Research and ICT for supporting our project, Professors Mitsuyuki Ochiai and Noriko Imafuji for their cooperation in the development of the program LinKnot and joint distribution of LinKnot and Knot2000 (K2K), Dror Bar Natan for joining program LinKnot with Mathematica package KnotTheory, and Professors Donald Crowe, Louis Kauffman, Jay Kappraff, Charles Livingston, Jozef Przytycki, and Thomas Gittings for their advice and suggestions.
Recommended publications
  • Complete Invariant Graphs of Alternating Knots
    Complete invariant graphs of alternating knots Christian Soulié First submission: April 2004 (revision 1) Abstract : Chord diagrams and related enlacement graphs of alternating knots are enhanced to obtain complete invariant graphs including chirality detection. Moreover, the equivalence by common enlacement graph is specified and the neighborhood graph is defined for general purpose and for special application to the knots. I - Introduction : Chord diagrams are enhanced to integrate the state sum of all flype moves and then produce an invariant graph for alternating knots. By adding local writhe attribute to these graphs, chiral types of knots are distinguished. The resulting chord-weighted graph is a complete invariant of alternating knots. Condensed chord diagrams and condensed enlacement graphs are introduced and a new type of graph of general purpose is defined : the neighborhood graph. The enlacement graph is enriched by local writhe and chord orientation. Hence this enhanced graph distinguishes mutant alternating knots. As invariant by flype it is also invariant for all alternating knots. The equivalence class of knots with the same enlacement graph is fully specified and extended mutation with flype of tangles is defined. On this way, two enhanced graphs are proposed as complete invariants of alternating knots. I - Introduction II - Definitions and condensed graphs II-1 Knots II-2 Sign of crossing points II-3 Chord diagrams II-4 Enlacement graphs II-5 Condensed graphs III - Realizability and construction III - 1 Realizability
    [Show full text]
  • Oriented Pair (S 3,S1); Two Knots Are Regarded As
    S-EQUIVALENCE OF KNOTS C. KEARTON Abstract. S-equivalence of classical knots is investigated, as well as its rela- tionship with mutation and the unknotting number. Furthermore, we identify the kernel of Bredon’s double suspension map, and give a geometric relation between slice and algebraically slice knots. Finally, we show that every knot is S-equivalent to a prime knot. 1. Introduction An oriented knot k is a smooth (or PL) oriented pair S3,S1; two knots are regarded as the same if there is an orientation preserving diffeomorphism sending one onto the other. An unoriented knot k is defined in the same way, but without regard to the orientation of S1. Every oriented knot is spanned by an oriented surface, a Seifert surface, and this gives rise to a matrix of linking numbers called a Seifert matrix. Any two Seifert matrices of the same knot are S-equivalent: the definition of S-equivalence is given in, for example, [14, 21, 11]. It is the equivalence relation generated by ambient surgery on a Seifert surface of the knot. In [19], two oriented knots are defined to be S-equivalent if their Seifert matrices are S- equivalent, and the following result is proved. Theorem 1. Two oriented knots are S-equivalent if and only if they are related by a sequence of doubled-delta moves shown in Figure 1. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .. .... .... .... .... .... .... .... .... .... ...
    [Show full text]
  • Mutant Knots and Intersection Graphs 1 Introduction
    Mutant knots and intersection graphs S. V. CHMUTOV S. K. LANDO We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. Conversely, if we have a weight system depending only on the intersection graphs of chord diagrams, then the composition of such a weight system with the Kontsevich invariant determines a knot invariant that does not distinguish mutant knots. Thus, an equivalence between finite order invariants not distinguishing mutants and weight systems depending on intersections graphs only is established. We discuss relationship between our results and certain Lie algebra weight systems. 57M15; 57M25 1 Introduction Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of knots in 3-space; their definitions can be found, for example, in [6] or [14], and we recall them briefly in Section 2. All knots are assumed to be oriented. Two knots are said to be mutant if they differ by a rotation of a tangle with four endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular to the paper. If necessary, the orientation inside the tangle may be replaced by the opposite one. Here is a famous example of mutant knots, the Conway (11n34) knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2 (see [1]). C = KT = Note that the change of the orientation of a knot can be achieved by a mutation in the complement to a trivial tangle.
    [Show full text]
  • Hyperbolic Structures from Link Diagrams
    Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite Louisiana State University/University of Tennessee Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 1/23 Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H.
    [Show full text]
  • Some Generalizations of Satoh's Tube
    SOME GENERALIZATIONS OF SATOH'S TUBE MAP BLAKE K. WINTER Abstract. Satoh has defined a map from virtual knots to ribbon surfaces embedded in S4. Herein, we generalize this map to virtual m-links, and use this to construct generalizations of welded and extended welded knots to higher dimensions. This also allows us to construct two new geometric pictures of virtual m-links, including 1-links. 1. Introduction In [13], Satoh defined a map from virtual link diagrams to ribbon surfaces knotted in S4 or R4. This map, which he called T ube, preserves the knot group and the knot quandle (although not the longitude). Furthermore, Satoh showed that if K =∼ K0 as virtual knots, T ube(K) is isotopic to T ube(K0). In fact, we can make a stronger statement: if K and K0 are equivalent under what Satoh called w- equivalence, then T ube(K) is isotopic to T ube(K0) via a stable equivalence of ribbon links without band slides. For virtual links, w-equivalence is the same as welded equivalence, explained below. In addition to virtual links, Satoh also defined virtual arc diagrams and defined the T ube map on such diagrams. On the other hand, in [15, 14], the notion of virtual knots was extended to arbitrary dimensions, building on the geometric description of virtual knots given by Kuperberg, [7]. It is therefore natural to ask whether Satoh's idea for the T ube map can be generalized into higher dimensions, as well as inquiring into a generalization of the virtual arc diagrams to higher dimensions.
    [Show full text]
  • A Symmetry Motivated Link Table
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2018 doi:10.20944/preprints201808.0265.v1 Peer-reviewed version available at Symmetry 2018, 10, 604; doi:10.3390/sym10110604 Article A Symmetry Motivated Link Table Shawn Witte1, Michelle Flanner2 and Mariel Vazquez1,2 1 UC Davis Mathematics 2 UC Davis Microbiology and Molecular Genetics * Correspondence: [email protected] Abstract: Proper identification of oriented knots and 2-component links requires a precise link 1 nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a 2 nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing 3 a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible 4 symmetry types for each topology. The study revisits the methods previously used to disambiguate 5 chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo 6 simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two 7 prime 2-component links with up to nine crossings. Guided by geometrical data, linking number and 8 the symmetry groups of 2-component links, a canonical link diagram for each link type is proposed. 9 2 2 2 2 2 2 All diagrams but six were unambiguously chosen (815, 95, 934, 935, 939, and 941). We include complete 10 tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also 11 prove a result on the behavior of the writhe under local lattice moves.
    [Show full text]
  • Tait's Flyping Conjecture for 4-Regular Graphs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Combinatorial Theory, Series B 95 (2005) 318–332 www.elsevier.com/locate/jctb Tait’s flyping conjecture for 4-regular graphs Jörg Sawollek Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany Received 8 July 1998 Available online 19 July 2005 Abstract Tait’s flyping conjecture, stating that two reduced, alternating, prime link diagrams can be connected by a finite sequence of flypes, is extended to reduced, alternating, prime diagrams of 4-regular graphs in S3. The proof of this version of the flyping conjecture is based on the fact that the equivalence classes with respect to ambient isotopy and rigid vertex isotopy of graph embeddings are identical on the class of diagrams considered. © 2005 Elsevier Inc. All rights reserved. Keywords: Knotted graph; Alternating diagram; Flyping conjecture 0. Introduction Very early in the history of knot theory attention has been paid to alternating diagrams of knots and links. At the end of the 19th century Tait [21] stated several famous conjectures on alternating link diagrams that could not be verified for about a century. The conjectures concerning minimal crossing numbers of reduced, alternating link diagrams [15, Theorems A, B] have been proved independently by Thistlethwaite [22], Murasugi [15], and Kauffman [6]. Tait’s flyping conjecture, claiming that two reduced, alternating, prime diagrams of a given link can be connected by a finite sequence of so-called flypes (see [4, p. 311] for Tait’s original terminology), has been shown by Menasco and Thistlethwaite [14], and for a special case, namely, for well-connected diagrams, also by Schrijver [20].
    [Show full text]
  • An Introduction to Knot Theory and the Knot Group
    AN INTRODUCTION TO KNOT THEORY AND THE KNOT GROUP LARSEN LINOV Abstract. This paper for the University of Chicago Math REU is an expos- itory introduction to knot theory. In the first section, definitions are given for knots and for fundamental concepts and examples in knot theory, and motivation is given for the second section. The second section applies the fun- damental group from algebraic topology to knots as a means to approach the basic problem of knot theory, and several important examples are given as well as a general method of computation for knot diagrams. This paper assumes knowledge in basic algebraic and general topology as well as group theory. Contents 1. Knots and Links 1 1.1. Examples of Knots 2 1.2. Links 3 1.3. Knot Invariants 4 2. Knot Groups and the Wirtinger Presentation 5 2.1. Preliminary Examples 5 2.2. The Wirtinger Presentation 6 2.3. Knot Groups for Torus Knots 9 Acknowledgements 10 References 10 1. Knots and Links We open with a definition: Definition 1.1. A knot is an embedding of the circle S1 in R3. The intuitive meaning behind a knot can be directly discerned from its name, as can the motivation for the concept. A mathematical knot is just like a knot of string in the real world, except that it has no thickness, is fixed in space, and most importantly forms a closed loop, without any loose ends. For mathematical con- venience, R3 in the definition is often replaced with its one-point compactification S3. Of course, knots in the real world are not fixed in space, and there is no interesting difference between, say, two knots that differ only by a translation.
    [Show full text]
  • Categorified Invariants and the Braid Group
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 7, July 2015, Pages 2801–2814 S 0002-9939(2015)12482-3 Article electronically published on February 26, 2015 CATEGORIFIED INVARIANTS AND THE BRAID GROUP JOHN A. BALDWIN AND J. ELISENDA GRIGSBY (Communicated by Daniel Ruberman) Abstract. We investigate two “categorified” braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer ho- mology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial. 1. Introduction Recall that the n-strand braid group Bn admits the presentation σiσj = σj σi if |i − j|≥2, Bn = σ1,...,σn−1 , σiσj σi = σjσiσj if |i − j| =1 where σi corresponds to a positive half twist between the ith and (i + 1)st strands. Given a word w in the generators σ1,...,σn−1 and their inverses, we will denote by σ(w) the corresponding braid in Bn. Also, we will write σ ∼ σ if σ and σ are conjugate elements of Bn. As with any group described in terms of generators and relations, it is natural to look for combinatorial solutions to the word and conjugacy problems for the braid group: (1) Word problem: Given words w, w as above, is σ(w)=σ(w)? (2) Conjugacy problem: Given words w, w as above, is σ(w) ∼ σ(w)? The fastest known algorithms for solving Problems (1) and (2) exploit the Gar- side structure(s) of the braid group (cf.
    [Show full text]
  • Hyperbolic Structures from Link Diagrams
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible.
    [Show full text]
  • Knots with Unknotting Number 1 and Essential Conway Spheres 1
    Algebraic & Geometric Topology 6 (2006) 2051–2116 2051 arXiv version: fonts, pagination and layout may vary from AGT published version Knots with unknotting number 1 and essential Conway spheres CMCAGORDON JOHN LUECKE For a knot K in S3 , let T(K) be the characteristic toric sub-orbifold of the orbifold (S3; K) as defined by Bonahon–Siebenmann. If K has unknotting number one, we show that an unknotting arc for K can always be found which is disjoint from T(K), unless either K is an EM–knot (of Eudave-Munoz)˜ or (S3; K) contains an EM– tangle after cutting along T(K). As a consequence, we describe exactly which large algebraic knots (ie, algebraic in the sense of Conway and containing an essential Conway sphere) have unknotting number one and give a practical procedure for deciding this (as well as determining an unknotting crossing). Among the knots up to 11 crossings in Conway’s table which are obviously large algebraic by virtue of their description in the Conway notation, we determine which have unknotting number one. Combined with the work of Ozsvath–Szab´ o,´ this determines the knots with 10 or fewer crossings that have unknotting number one. We show that an alternating, large algebraic knot with unknotting number one can always be unknotted in an alternating diagram. As part of the above work, we determine the hyperbolic knots in a solid torus which admit a non-integral, toroidal Dehn surgery. Finally, we show that having unknotting number one is invariant under mutation. 57N10; 57M25 1 Introduction Montesinos showed [24] that if a knot K has unknotting number 1 then its double branched cover M can be obtained by a half-integral Dehn surgery on some knot K∗ in S3 .
    [Show full text]
  • Absolutely Exotic Compact 4-Manifolds
    ABSOLUTELY EXOTIC COMPACT 4-MANIFOLDS 1 2 SELMAN AKBULUT AND DANIEL RUBERMAN Abstract. We show how to construct absolutely exotic smooth struc- tures on compact 4-manifolds with boundary, including contractible manifolds. In particular, we prove that any compact smooth 4-manifold W with boundary that admits a relatively exotic structure contains a pair of codimension-zero submanifolds homotopy equivalent to W that are absolutely exotic copies of each other. In this context, absolute means that the exotic structure is not relative to a particular parame- terization of the boundary. Our examples are constructed by modifying a relatively exotic manifold by adding an invertible homology cobor- dism along its boundary. Applying this technique to corks (contractible manifolds with a diffeomorphism of the boundary that does not extend to a diffeomorphism of the interior) gives examples of absolutely exotic smooth structures on contractible 4-manifolds. 1. Introduction One goal of 4-dimensional topology is to find exotic smooth structures on the simplest of closed 4-manifolds, such as S4 and CP2. Amongst mani- folds with boundary, there are very simple exotic structures coming from the phenomenon of corks, which are relatively exotic contractible mani- arXiv:1410.1461v3 [math.GT] 11 Dec 2014 folds discovered by the first-named author [2]. More specifically, a cork is a compact smooth contractible manifold W together with a diffeomor- phism f : ∂W → ∂W which does not extend to a self-diffeomorphism of W , although it does extend to a self-homeomorphism F : W → W . This gives an exotic smooth structure on W relative to its boundary, namely the pullback smooth structure by F.
    [Show full text]