Knot for Knovices Tudor Ciurca∗, Kenny Lauy, Alex Cahillz, Derek Leungx Imperial College London 17 June 2019 Abstract This is a survey of some key results and constructions in knot theory, and is completed as part of the M2R group project. After developing some basic notions about knots and links, we will step into basic knot arithmetic and operations, exploring fundamental theorems such as Rei- demeister Theorem and Schubert's Theorem. Next, it would be a natural manner to step into the world of invariants. We will introduce various integer-valued and polynomial invariants, before wrapping up this chap- ter with Vassiliev's masterpiece of family of invariants. After that, we will explore Khovanov homology, which is the categorification of Jones' polynomial. It is indeed a powerful invariant, as we will see it solves the unknot recognition problem. Finally, we will switch our focus to the knot group and its Wirtinger presentation to end. ∗Email:
[email protected] yEmail:
[email protected], kc
[email protected] zEmail:
[email protected] xEmail:
[email protected] 1 Contents 1 Introduction 3 1.1 What is a knot? . .3 1.2 When are two knots the same? . .4 1.3 Making finite and discrete models . .5 1.4 Projections . .8 1.5 Links . .9 1.6 Diagrams . 11 2 Reidemeister's Theorem and Seifert surfaces 13 2.1 Reidemeister's Theorem . 13 2.2 Basic knot arithmetic . 14 2.3 Seifert surfaces . 15 2.4 Schubert's Theorem . 18 3 Integer-valued and polynomial invariants 21 3.1 An overview .