Supplementary Material
Total Page:16
File Type:pdf, Size:1020Kb
Supplementary Material Adrian Heil, Christel M. Marian∗ Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraÿe 1, 40225 Düsseldorf, Germany ∗ [email protected] S2 N O NH O S N+ O- Pyridine Nitromethane Pyrrole Furan Thiophene Cyclopentadiene O N+ -O O s-trans Butadiene Acrolein Nitrobenzene Styrene Benzene Naphthalene •+ N O - • +O C- H H O O H2C Cl S Carbon monoxide Water Nitrogen dioxide Chloromethyl Thioformaldehyde Ethylene N N O O N N O O O H2N O s-trans Glyoxal Formaldehyde Acetone Acetaldehyde Formamide s-tetrazine S C O C Thioketene Fulvene o-Xylene Benzocyclobutene Ketene p-Xylylene S HN O N O H Dibenzothiophene o-Xylylene Thymine Figure S1. Molecules used in the tting set S3 S S HO O S S OH• p-Benzosemiquinone Phenanthrene Fluorene Tetrathiafulvalene Hydroxyl •HC all-trans-1,3,5,7-octatetraene Styrene o-Xylylene Ethylenyl NH2 O H N F N N N H Be Dibenzofuran Perylene Adenine Fluorobenzene Beryllium monohydride F F F F F FF F :N O Tetracene 1,2,4,5-Tetrafluorobenzene 1,2,3,4-Tetrafluorobenzene Nitric oxide S H N S •+ S N - F O O Terthiophene Carbazole 1,5-Hexadiene-3-yne Ethylfluoride Nitrogen dioxide O• Acenaphthylene Acenaphthene 2,3-Benzofluorene Phenoxyl Cl S F Cl S F Pentacene Azulene Bithiophene Dichlorodifluoromethane C• Ovalene Hexacene Phenyl Figure S2. Molecules with doublet states used for assessment S4 O C O S C S S C O O S O Carbon dioxide Carbon disulfide Carbonyl sulfide sulfur dioxide Ethylene Propene F Isobutene cis-2-butene trans-2-butene Trimethylethylene Tetramethylethylene Fluoroethylene F F F F F F F Cl F F F FF F F F F 1,1-difluoroethylene cis-1,2-difluoroethylene trans-1,2-difluoroethylene Trifluoroethylene Tetrafluoroethylene Chlorotrifluoroethylene F F Cl F Chloroethylene Acetylene Propyne 1-butyne 3,3,3-trifluoropropyne 1,3-butadiene C trans-1,3-pentadiene cis-2-trans-4-hexadiene 1,3-cyclohexadiene 1,5-hexadiene 1,4-cyclohexadiene Propadiene F F F F F F F F F F F F FF Benzene Fluorobenzene o-difluorobenzene 1,3,5-trifluorobenzene 1,2,3,4-Tetrafluorobenzene 1,2,4,5-Tetrafluorobenzene F F F F F F O S NH F F N F F F N Pentafluorobenzene Hexafluorobenzene Furan Thiophene Pyrrole Azomethane S N O N N N N+ N O- Cl Cl Azo-tert-butane Nitromethane Thiophosgene 1,3-cyclopentadiene Pyridine Pyrazine O N+ S N O NN O -O HN S N N NH2 Pyrimidine s-Triazine Acetone Acetamide Nitrobenzene Dithiosuccinimide Figure S3. Molecules with singlet and/ or triplet states used for assessment S5 Table S1. Basis sets used in the tting of the doublet states Molecule Basis set Benzocyclobutene SV(P)a s-trans Butadiene cation TZVPb Methylidine QZVPPc Chloromethyl def2-TZVPDd Dibenzothiophene SV(P)a Ethylene TZVPPb Fulvene SV(P)a Ketene TZVPb Thioketene def2-TZVPDd Formaldehyde aug-cc-pVTZe Water TZVPPb Naphthalene cation SV(P)a Nitrogen dioxide aug-cc-pVTZe o-Benzoquinone SV(P)a o-Xylene SV(P)a o-Xylylene cation SV(P)a p-Xylylene SV(P)a Thymine SV(P)a a Ref. [1], b Ref. [2], c Ref. [3], d Ref. [4],e Ref. [5] Table S2: Vertical excitation energies and molecular states with singlet, doublet and triplet multiplicities used for parameter optimization. Note that the molecule name corresponds to the geometry used in doublet case, o-Xylylene+ refers to electronic absorption of the cation, o-Xylene refers to photoelectron spectroscopy from the neutral molecule, therefore the neutral ground state geometry was used. All energies are given in eV. The energies of Lyskov's parameterization are given as reference for closed shell system State Type Experiment DFTMRCI-R DFT/MRCI-A DFT/MRCI-A tight Pyridine C5H5N 1 ∗ a b 1 B2 n ! π 4:44 ; 4:45 4.86 4.84 4.84 1 ∗ a c 1 B1 n ! π 4:99 ; 4:99 5.13 5.11 5.09 1 ∗ a a c d 2 A1 π ! π 6:38 ; 6:30 ; 6:38 ; 6:32 6.31 6.26 6.22 Nitromethane H3C − NO2 21A0 π ! π∗ 6:25e; 6:23e; 6:23f 6.34 6.32 6.34 13A" n ! π∗ 3:80f 3.79 3.75 3.72 Pyrrole C4H4NH 3 g h i 1 B1 π ! Ry 4:21 ; 4:21 ; 4:2 4.21 4.20 4.16 Furan C4H4O 1 ∗ g h j 1 B1 π ! π 6:04 ; 6:06 ; 6:04 6.09 6.06 6.06 1 ∗ h j 3 A1 π ! π 7:82 ; 7:8 7.90 7.90 7.92 3 ∗ i h 1 B1 π ! π 4:0 ; 3:99 3.94 3.92 3.89 3 ∗ i h 1 A1 π ! π 5:2 ; 5:22 5.15 5.14 5.10 Thiophene C4H4S 1 ∗ h g k 2 A1 π ! π 5:48 ; 5:43 ;5:52 5.48 5.47 5.46 3 ∗ i g h 1 B1 π ! π 3:7 ; 3:74 ; 3:75 3.77 3.64 3.65 3 ∗ h i k 1 A1 π ! π 4:62 ; 4:6 ; 4:7 4.58 4.46 4.47 Cyclopentadiene C5H5 1 ∗ g l m 1 B2 π ! π 5:22 ; 5:26 ; 5:33 5.29 5.25 5.24 3 ∗ g l 1 B2 π ! π 3:15 ; 3:10 3.16 3.13 3.11 Continued on next page S6 s-trans Butadiene C4H6 1 ∗ g h o 1 Bu π ! π 5:91 ; 5:9 ; 5:92 5.75 5.71 5.70 1 ∗ p 2 Ag π ! π 6:27 6.32 6.31 6.28 3 ∗ g o n 1 Bu π ! π 3:24 ; 3:22 ; 3:2 3.18 3.15 3.13 3 ∗ g o n 1 Ag π ! π 4:92 ; 4:91 ; 4:95 4.99 4.98 4.97 s-trans Butadiene cation + C4H6 2 ∗ ah 1 Au π ! π 2:32 - 2.68 2.65 2 ∗ ah 2 Au π ! π 4:20 - 4.49 4.50 Acrolein C3H4O 11A" n ! π∗ 3:76q; 3:75r; 3:71s 3.58 3.57 3.56 13A" n ! π∗ 3:08s; 3:05t 3.33 Nitrobenzene C6H5NO2 1 ∗ u v 2 A1 π ! π 5:17 ; 5:11 4.78 4.75 4.74 Styrene H5C6CH = CH2 21A0 π ! π∗ 4:43w; 4:43x 4.53 4.51 4.52 13A0 π ! π∗ 3:40w 3.19 3.16 3.18 Benzene C6H6 1 ∗ y z A 1 B3u π ! π 4:80 ; 4:90 ; 4:89 5.00 4.98 4.96 1 ∗ y z 1 B2u π ! π 6:25 ; 6:03 6.12 6.07 6.04 1 ∗ y;A z 2 B3u π ! π 6:95 ; 6:87 6.92 6.91 6.92 3 ∗ y A 1 B2u π ! π 3:90 ; 3:89 4.13 4.10 4.10 3 ∗ y A 2 B3u π ! π 5:59 ; 5:69 5.49 5.44 5.42 Naphthalene C10H8 1 ∗ B C 1 B3u π ! π 4:0 ; 3:97 4.18 4.17 4.52 1 ∗ B C 1 B2u π ! π 4:45 ; 4:45 4.55 4.52 4.52 1 ∗ B C 2 B3u π ! π 5:89 ; 5:89 5.76 5.74 5.77 1 ∗ C 2 B2u π ! π 6:14 6.09 6.07 6.09 Naphthalene cation + C10H8 2 ∗ ad 1 B3g π ! π 1:84 - 2.00 1.99 2 ∗ ad 1 B2g π ! π 2:69 - 2.75 2.73 2 ∗ ad 2 B2g π ! π 3:25 - 3.39 3.38 Carbon monoxide CO 21A n ! π∗ 8:39D 8.16 8.13 Water H2O 1 E F 1 B2 n ! Ry 7:5 ; 7:4 7.99 7.98 7.98 2 ∗ aa 1 A1 σ ! n 2:11 - 1.96 1.94 2 ∗ aa 1 B1 n ! n 5:93 - 6.02 6.01 Nitrogen dioxide NO2 2 ∗ ab 1 B2 n ! n 2:81 − 2:85 - 2.73 2.73 2 ∗ ab 1 B1 n ! n 3:1 - 3.27 3.24 Chloromethyl CH2Cl 2 ac 1 A1 π ! Ry 4:99 - 4.66 4.65 1 ∗ ac 2 B2 π ! π 6:20 - 6.45 6.47 2 ac 3 B2 π ! Ry 6:59 6.83 6.85 Thioformaldehyde H2C = S 1 ∗ G 1 A2 n ! π 2:03 2.22 2.18 2.15 3 ∗ G 1 A2 n ! π 1:80 1.95 1.91 1.89 Continued on next page S7 Ethylene H2C = CH2 1 H I 1 B1u π ! Ry 7:11 ; 7:11 7.20 7.19 7.17 2 ∗ ai 1 B1g σ ! π 2:3 - 2.31 2.30 2 ∗ ai 1 Ag σ ! π 4:2 - 4.26 4.27 2 ∗ ai 1 B3u σ ! π 5:3 - 5.28 5.25 2 ∗ ai 1 B2u σ ! π 8:6 - 8.42 8.42 3 ∗ J 1 B2u π ! π 4:36 4.36 4.32 4.28 Ethylene dimer 2x[H2C = CH2] 1 ∗ ∗ 3 2 A ππ ! π π 2xE(1 B2u) 8.71 8.64 8.67 3 ∗ ∗ 3 3 A ππ ! π π 2xE(1 B2u) 8.71 8.64 8.67 s-trans Glyoxal HOC − COH 1 ∗ K 1 Au n ! π 2:8 2.71 2.68 2.67 1 ∗ K 1 Bg n ! π 4:2 3.97 3.96 3.94 3 ∗ K 1 Au n ! π 2:5 2.37 2.35 2.34 Formaldehyde H2C = O 1 ∗ L M 1 A2 n ! π 3:79 ; 3:94 3.83 3.81 3.79 1 N O P 1 B1 n ! Ry 7:09 ; 7:09 ; 7:10 7.11 7.13 7.14 1 N O P 2 B1 n ! Ry 7:97 ; 7:98 ; 7:98 7.93 7.93 7.94 2 ∗ ae 1 B2 π ! π 3:22 - 3.32 3.30 2 ∗ ae 1 A1 n ! π 4:97 - 5.01 5.00 3 ∗ L M 1 A2 n ! π 3:50 ; 3:50 3.49 3.47 3.44 Formaldehyde dimer 2x[H2C = O] 1 ∗ ∗ 3 2 A nn ! π π 2xE(1 A2) 7.09 7.03 7.08 1 ∗ ∗ 1 5 A nn ! π π 2xE(1 A2) 7.80 7.73 7.83 3 ∗ ∗ 3 1 A nn ! π π 2xE(1 A2) 7.09 7.02 7.08 3 ∗ ∗ 3 1 4 A nn ! π π E(1 A1) + E(1 A2) 7.44 7.37 7.45 3 ∗ ∗ 3 1 5 A nn ! π π E(1 A2) + E(1 A2) 7.44 7.37 7.45 Acetone C3H6O 1 ∗ L Q 1 A2 n ! π 4:38 ; 4:37 4.26 4.27 4.24 1 L Q R 1 B2 n ! Ry 6:36 ; 6:35 ; 6:36 6.47 6.51 6.53 3 ∗ L Q 1 A2 n ! π 4:18 ; 4:16 3.97 3.97 3.94 Acetaldehyde C2H4O 11A" n ! π∗ 4:27L 4.09 4.07 4.05 13A" n ! π∗ 3:97L; 3:91R 3.78 3.76 3.74 Formamide HCONH2 11A" n ! π∗ 5:65S 5.38 5.38 5.37 13A" n ! π∗ 5:30T 5.14 5.13 5.11 s-Tetrazine C2H2N4 1 ∗ U X W 1 B1u n ! π 2:35 ; 2:25 ; 2:34 2.36 2.32 2.32 1 ∗ U V 1 Au n ! π 3:60 ; 3:42 3.62 3.59 3.59 1 ∗ U W 1 B3u π ! π 4:92 ; 5:0 5.11 5.09 5.07 3 ∗ U;X Y 1 B1u n ! π 1:69 ; 1:70 1.85 1.81 1.80 3 ∗ X 1 Au n ! π 2:95 3.37 3.34 3.33 Thioketene H2CCS 2 ∗ af 1 B1 n ! π 2:43 - 2.50 2.50 2 ∗ af 2 B2 π ! π 3:25 - 3.37 3.34 2 ∗ af 1 A1 n ! π 5:66 - 5.84 5.86 Continued on next page S8 Fulvene C5H4 = CH2 2 ∗ ag 1 B2 π ! π 1:18 - 1.03 1.03 2 ∗ ag 1 B1 σ ! π 3:74 - 3.53 3.53 2 ∗ ag 3 B2 π ! π 4:44 - 4.29 4.28 o-Xylene C6H4(CH3)2 2 ∗ aj 1 A2 π ! π 0:52 - 0.26 0.26 2 ∗ aj 1 A1 σ ! π 2:44 - 2.80 2.77 2 ∗ aj 2 B1 σ ! π 2:64 - 2.95 2.96 2 ∗ aj 1 B2 π ! π 3:10 - 2.93 2.94 Benzocyclobutene C8H8 2 ∗ aj 1 A2 π ! π 0:58 - 0.31 0.31 2 ∗ aj 1 A1 σ ! π 2:12 - 2.30 2.31 2 ∗ aj 1 B2 σ ! π 2:76 - 2.62 2.63 2 ∗ aj 2 B1 π ! π 3:08 - 2.87 2.84 Ketene H2CCO 2 ∗ ak 1 B1 n ! π 4:21 - 4.23 4.21 2 ∗ ak 2 B2 π ! π 4:97 - 5.24 4.97 2 ∗ ak 3 B1 n ! π 6:45 - 6.39 6.45 2 ∗ ak 1 A1 n ! π 7:07 - 6.77 6.77 p-Xylylene C6H4(CH2)2 2 ∗ al 1 B2g π ! π 1:83 - 1.86 1.86 Dibenzothiophene C12H8S 2 ∗ am 1 A2 π ! π 0:41 - 0.22 0.22 2 ∗ am 2 A2 π ! π 1:33 - 1.30 1.30 2 ∗ am 3 B2 π ! π 2:03 - 1.88 1.88 2 ∗ am 4 B2 π ! π 2:72 - 2.67 2.66 2 ∗ am 1 A1 n/σ ! π 3:45 - 3.42 3.43 + o-Xylylene cation C6H4(CH2)2 2 ∗ aj 1 B2 π ! π 1:44 - 1.74 1.72 2 ∗ aj 2 A2 π ! π 2:36 - 2.53 2.52 2 ∗ aj 2 B2 π ! π 2:82 - 2.90 2.91 Thymine C5H6N2O2 12A0 n/σ ! π∗ 0:95an - 0.63 0.64 22A" π ! π∗ 1:26an - 1.24 1.25 22A0 n/σ ! π∗ 1:70an - 1.42 1.44 32A" π ! π∗ 3:08an - 3.17 3.18 Methylidyne radical CH• 2 2 2 1 2 ap A ∆ (1σ) (2σ) (3σ) (1πx) 2:88 - 2.42 2.41 2 2 2 1 2 ap A ∆ (1σ) (2σ) (3σ) (1πy) 2:88 - 2.75 2.73 2 + 2 2 1 2 2 2 1 2 ap C Σ (1σ) (2σ) (3σ) (1πx) ,(1σ) (2σ) (3σ) (1πy) 3:94 - 3.64 3.65 a Ref.