Molecular Periodic System of Classification for Combinatorial Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Periodic System of Classification for Combinatorial Chemistry ACS Combinatorial Science This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Molecular periodic system of classification for combinatorial chemistry Journal: ACS Combinatorial Science Manuscript ID: Draft Manuscript Type: Additions and Corrections Date Submitted by the Author: n/a Complete List of Authors: Soave, Marcello; home, none ACS Paragon Plus Environment Page 1 of 7 ACS Combinatorial Science 1 2 3 Molecular periodic system of classification for combinatorial chemistry 4 5 Written by Marcello Soave, translated from italian by Nino Giannola and others, english revision 6 by Cinzia Rasi. 7 8 This is a systematic method for empirical formulas classification. It aims at adding itself to CAS, 9 10 EINECS, RTECS, CE and PubChem classifications. To find all combinations with repetition of 11 n=118 elements, you use simple rules of a=1, 2, 3 … elements. The binomial coefficent is: 12 13 D + − n + a −1 n + a −1 = n+a− ,1 a = (n a 1)! = = 14 C'n,a P (n −1)!a! a n −1 15 a 16 17 Single atoms : a=1 results in C’ 118,1 =118!/117!1!=118 18 Diatomic mol.: a=2 results in C’ 118,2 =119!/117!2!=118x119/2=7.021 19 Triatomic mol.: a=3 results in C’ 118,3 =120!/117!3!=118x119x120/6=280.840 20 Tetraatomic mol.: a=4 results in C’ 118,4 =121!/117!4!=118x119x120x121/24=8.495.410 21 Pentatomic mol.: a=5 results in C’ 118,5 =122!/117!5!=118x119x120x121x122/120=207.288.004 22 with factorial n! = 2 x 3 x 4 x…x n, and for single atoms are stable atoms existing in nature and not 23 24 linked to other (for example, the noble gases, another example not exist monatomic nitrogen and 25 oxygen). You end up with 118 atoms because any classification must have an atomic limit (possibly 26 improvable). 27 28 Naturally, the theoretical numeration does not correspond to real molecules which are a minimum 29 part of created boxes. Undiscovered molecules could fill empty boxes. New discovered molecules 30 will have already their collocation and their identification number. The classification number is 31 118-a-b-c, where 118 is the arbitrary limit chosen of maximum atomic number used to make 32 combination (actually the Mendeleev table stops there), a is the total number of atoms of the 33 34 molecule, b is the serial number (arranged by atomic number) of the combination and c is the 35 molecule number with the same empirical formula (for example 2 for diamond and 3 for graphite, 36 both allotropic forms of Carbon 118-1-6-c, with c arranged by discovery date). The serial number b 37 is made by unique combination of 1, 2, 3, etc atoms of tables a=1, a=2, a=3, etc in the following 38 method. Now I want to explain in detail how to proceed with a diatomic molecule, that is a=2: we 39 start with the lowest atomic number (1 that is hydrogen H) and we associate it with itself and this 40 has b=1 (this first molecule of diatomic hydrogen has code 118-2-1-1, that is with a=2, b=1 and 41 c=1, existing). Next we associate H with the following element (2 that is helium He) and we obtain 42 the code 118-2-2-1 (a=2, b=2 and c=1, that is the second diatomic molecule H-He or He-H, which 43 44 does not exist). We continue with the other elements until the last one (118 that is ununoctium Uuo 45 and so we arrive at b=118): the last diatomic molecule with hydrogen is H-Uuo or Uuo-H with code 46 118-2-118-1, which does not exist. Next we associate the element with the atomic number 2 with 47 other atoms (not with the atomic number 1 because the combination He-H is equal to H-He and 48 repetitions are not allowed) and we link it with itself (He-He), with the following (He-Li) and to all 49 others until He-Uuo (b=224): we got the diatomic molecule with helium He-Uuo or Uuo-He with 50 code 118-2-224-1, which does not exist. Next we restart with Li-Li (that is Li 2 dilithium, existing as 51 a gas, code 118-2-225-1) and so on. In this way until Uus-Uus (b=7019, not existing, code 118-2- 52 7019-1), Uus-Uuo (b=7020, not existing, code 118-2-7020-1) and finally Uuo-Uuo (b=7021, not 53 54 existing, code 118-2-7021-1). Every repetition is eliminated during the list construction (for 55 example He-Li 118-2-3-1 is equal to Li-He, keeping only the first). In the same way for a=3 56 (triatomic molecules), a=4 (tetraatomic molecules), etc. So we obtain ordinated lists without 57 repetitions. If this molecular combinatorial classification ordered by elemental atomic number will 58 be useful to chemists, an open internet database could be done, in which the code and the atom 59 combinations will be automatically generated by the system. Real and known molecules could be 60 ACS Paragon Plus Environment ACS Combinatorial Science Page 2 of 7 1 2 3 included by users (like wikipedia): the system will automatically generate the corresponding 118-a- 4 b-c code. For this will be necessary at minumum the empirical formula and the date of discovering 5 (for the c number). When all the lines with real chemical molecule will be compiled, you can 6 publish a catalog with no blank lines (which are without chemical sense and not existing). 7 This classification does not include isotopes of elements; pure metals are considered as 8 monoatomic, metallic alloys diatomic, triatomic, etc.; salts diatomic, triatomic, etc. Here I list the 9 10 monoatomic molecules too, but only for noble gases and pure metals: the true classification starts 11 with diatomic molecules (molecular hydrogen and oxygen, salts, etc.) and becomes useful from 12 triatomic molecules. I have chosen arbitrary first 118 atoms of Mendeleev table, but if in future a 13 stable atom with an higher atomic number will be found, you can build a new classification using 14 (for example) first 200 atoms of Mendeleev table. In this case the code will be 200-a-b-c, but b 15 changes with the same molecule descripted by 118-a-b-c code (a and c will be equal). 16 This classification could be useful to IUPAC for solving some types of problems about exact 17 molecular classification, adding an unique code for every molecule. Naturally this classification 18 does not help IUPAC to settle the controverses about the correct classification of molecules, by 19 20 assegning an unical code to each molecule (or to a group of molecules with the same brute 21 formula). 22 In this paper, but just for noble gases and pure metals, monoatomic molecules are indicated as well: 23 actually the classification starts from diatomic molecules (H 2, O 2, salts, ecc.) and became useful 24 from triatomic molecules. For an explicit classification, considering the first 118 terms of the 25 periodic table, the code could be defined as 118-a-b-c (but later in time you can use an 120-a-b-c). 26 Furthermore the combinations generated by this classification could be added in an informatic 27 program simulating the chemical bonds so as to find, by computational way, a confirmation about 28 the known molecules and, maybe, to find out new molecules. This would allow to improve 29 30 molecular models, applying them to all possible cases. 31 Of course if there are molecules that despite having the same atoms have different spatial forms, if 32 they are considered many by chemicals, this classification codes will give them equal to 118-a-b 33 and c for several, if not have a single code 118-a-b-c. If you happen to have been discovered 34 simultaneously different molecules with the same code and different 118-a-b-c, then (but only if 35 they are identical year, month, day, hour and minute of the discovery) can be inserted to trick n 36 seconds unlike discovery (but contemporary findings on the second I doubt there will be, there will 37 always be a difference however small that will give the number c). 38 For example, if we want to insert the different molecules whose molecular formula C H O , insert 39 24 40 4 40 the catalog Fluka molecules Chenodeoxycholic acid, Deoxycholic acid, (-)-Di[(1R)-menthyl] 41 fumarate, Ursodeoxycholic acid, plus other salvaged from other catalogs around the world in the 42 codes 118-68-b-c . In addition to the name you will also insert the date of discovery, and the system 43 will automatically enter the molecules in date order and then assign the number c. For this it is clear 44 that for each group 118-a-b is good to be sure that you have entered all the molecules existing on 45 that date before publishing the codes for. When you discover a new molecule will not have to 46 change the above code c. For this reason, before giving the number c to me there should be OK 47 binding of IUPAC.
Recommended publications
  • The Exomol Atlas of Molecular Opacities
    atoms Article The ExoMol Atlas of Molecular Opacities Jonathan Tennyson * ID and Sergei N. Yurchenko ID Department of Physics and Astronomy, University College London, London WC1E 6BT, UK Received: 25 February 2018; Accepted: 4 May 2018; Published: date Abstract: The ExoMol project is dedicated to providing molecular line lists for exoplanet and other hot atmospheres. The ExoMol procedure uses a mixture of ab initio calculations and available laboratory data. The actual line lists are generated using variational nuclear motion calculations. These line lists form the input for opacity models for cool stars and brown dwarfs as well as for radiative transport models involving exoplanets. This paper is a collection of molecular opacities for 52 molecules (130 isotopologues) at two reference temperatures, 300 K and 2000 K, using line lists from the ExoMol database. So far, ExoMol line lists have been generated for about 30 key molecular species. Other line lists are taken from external sources or from our work predating the ExoMol project. An overview of the line lists generated by ExoMol thus far is presented and used to evaluate further molecular data needs. Other line lists are also considered. The requirement for completeness within a line list is emphasized and needs for further line lists discussed. Keywords: exoplanets; brown stars; cool stars; opacity; molecular spectra; ExoMol 1. Introduction Molecular opacities dictate the atmospheric properties and evolution of a whole range of cool stars and all brown dwarfs. They are also important for the radiative transport properties of exoplanets. Even for a relatively simple molecule, the opacity function is generally complicated as it varies strongly with both wavelength and temperature.
    [Show full text]
  • Arxiv:2102.04229V4 [Physics.Chem-Ph] 16 Jun 2021 Models Tailored to Reproducing a Specific System Or Phys- Its Output
    Learning the exchange-correlation functional from nature with fully differentiable density functional theory 1, 1, 2, M. F. Kasim ∗ and S. M. Vinko † 1Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 2Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK (Dated: June 17, 2021) Improving the predictive capability of molecular properties in ab initio simulations is essential for advanced material discovery. Despite recent progress making use of machine learning, utilizing deep neural networks to improve quantum chemistry modelling remains severely limited by the scarcity and heterogeneity of appropriate experimental data. Here we show how training a neural network to replace the exchange-correlation functional within a fully-differentiable three-dimensional Kohn-Sham density functional theory (DFT) framework can greatly improve simulation accuracy. Using only eight experimental data points on diatomic molecules, our trained exchange-correlation networks enable improved prediction accuracy of atomization energies across a collection of 104 molecules containing new bonds and atoms that are not present in the training dataset. Fast and accurate predictive models of atomic and als, the accuracy of which largely depends on the qual- molecular properties are key in advancing novel material ity of the employed xc functional. Work along these discovery. With the rapid development of machine learn- lines in the one-dimensional case show promise [5, 9], ing (ML) techniques, considerable effort has been dedi- but are severely limited by the lack of availability of cated to accelerating predictive simulations, enabling the experimental data for one-dimensional systems. An al- efficient exploration of configuration space.
    [Show full text]
  • The Exomol Atlas of Molecular Opacities
    atoms Article The ExoMol Atlas of Molecular Opacities Jonathan Tennyson * ID and Sergei N. Yurchenko ID Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; [email protected] * Correspondence: [email protected] Received: 25 February 2018; Accepted: 4 May 2018; Published: 10 May 2018 Abstract: The ExoMol project is dedicated to providing molecular line lists for exoplanet and other hot atmospheres. The ExoMol procedure uses a mixture of ab initio calculations and available laboratory data. The actual line lists are generated using variational nuclear motion calculations. These line lists form the input for opacity models for cool stars and brown dwarfs as well as for radiative transport models involving exoplanets. This paper is a collection of molecular opacities for 52 molecules (130 isotopologues) at two reference temperatures, 300 K and 2000 K, using line lists from the ExoMol database. So far, ExoMol line lists have been generated for about 30 key molecular species. Other line lists are taken from external sources or from our work predating the ExoMol project. An overview of the line lists generated by ExoMol thus far is presented and used to evaluate further molecular data needs. Other line lists are also considered. The requirement for completeness within a line list is emphasized and needs for further line lists discussed. Keywords: exoplanets; brown stars; cool stars; opacity; molecular spectra; ExoMol 1. Introduction Molecular opacities dictate the atmospheric properties and evolution of a whole range of cool stars and all brown dwarfs. They are also important for the radiative transport properties of exoplanets.
    [Show full text]
  • Performance of a Nonempirical Exchange Functional from the Density Matrix Expansion: Comparative Study with Different Correlation
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017 Performance of a nonempirical exchange functional from the density matrix expansion: Comparative study with different correlation February 2, 2017 Yuxiang Mo, Guocai Tian, and Jianmin Tao Supplemental Material CONTENTS Table S1: Standard enthalpies of formation (G2/97, 148 species) Table S2: Standard enthalpies of formation (G3/99, 75 species) Table S3: Atomization Energies (W4-08, 99 species) Table S4: Electron affinities (G3/99) Table S5: Proton affinities (G3/99) Table S6: Bond lengths (T-96R) Table S7: Harmonic vibrational frequencies (T-82F) Table S8: Hydrogen-bonded complexes 1 o Table S1: 148 G2 standard enthalpies of formation f H298 (ZPE-corrected) of the TMTPSS functional evaluated self-consistently using the modified Gaussian 09 with the 6-311++G(3df, 3pd) basis set. Experimental values are from Ref. [S1]. All values are in kcal/mol. Molecule Name Expt. TMTPSS AlCl3 Aluminum trichloride -139.7 -135.3 AlF3 Aluminum trifluoride -289.0 -272.6 BCl3 Boron trichloride -96.3 -95.9 BF3 Boron trifluoride -271.4 -261.9 BeH Beryllium monohydride 81.7 72.0 CCl4 Tetrachloromethane -22.9 -26.4 CF4 Tetrafluoromethane -223.0 -224.2 CH Methylidyne radical 142.5 139.1 CH2Cl2 Dichloromethane -22.8 -26.7 CH2F2 Difluoromethane -107.7 -112.0 CH2O2 Formic acid -90.5 -90.4 CH2O Formaldehyde -26.0 -28.7 CH2 Singlet carbene 102.8 102.6 CH2 Triplet carbene 93.7 87.7 CH3Cl Chloromethane -19.6 -23.5 CH3 Methyl radical 35.0 30.0 CH3O
    [Show full text]
  • New Accurate Reference Energies for the G2/97 Test Set Robin Haunschild and Wim Klopper
    New accurate reference energies for the G2/97 test set Robin Haunschild and Wim Klopper Citation: The Journal of Chemical Physics 136, 164102 (2012); doi: 10.1063/1.4704796 View online: http://dx.doi.org/10.1063/1.4704796 View Table of Contents: http://aip.scitation.org/toc/jcp/136/16 Published by the American Institute of Physics Articles you may be interested in Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation The Journal of Chemical Physics 106, 1063 (1998); 10.1063/1.473182 Density-functional thermochemistry. III. The role of exact exchange The Journal of Chemical Physics 98, 5648 (1998); 10.1063/1.464913 The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set The Journal of Chemical Physics 122, 234102 (2005); 10.1063/1.1926272 Gaussian-2 theory for molecular energies of first- and second-row compounds The Journal of Chemical Physics 94, 7221 (1998); 10.1063/1.460205 A new mixing of Hartree–Fock and local density-functional theories The Journal of Chemical Physics 98, 1372 (1998); 10.1063/1.464304 Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method The Journal of Chemical Physics 146, 044107 (2017); 10.1063/1.4974177 THE JOURNAL OF CHEMICAL PHYSICS 136, 164102 (2012) New accurate reference energies for the G2/97 test set Robin Haunschild and Wim Kloppera) Karlsruhe Institute of Technology, Institute of Physical Chemistry, Theoretical Chemistry Group, KIT Campus South, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany (Received 13 January 2012; accepted 4 April 2012; published online 23 April 2012) A recently proposed computational protocol is employed to obtain highly accurate atomization ener- gies for the full G2/97 test set, which consists of 148 diverse molecules.
    [Show full text]
  • Supplementary Material
    Supplementary Material Adrian Heil, Christel M. Marian∗ Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraÿe 1, 40225 Düsseldorf, Germany ∗ [email protected] S2 N O NH O S N+ O- Pyridine Nitromethane Pyrrole Furan Thiophene Cyclopentadiene O N+ -O O s-trans Butadiene Acrolein Nitrobenzene Styrene Benzene Naphthalene •+ N O - • +O C- H H O O H2C Cl S Carbon monoxide Water Nitrogen dioxide Chloromethyl Thioformaldehyde Ethylene N N O O N N O O O H2N O s-trans Glyoxal Formaldehyde Acetone Acetaldehyde Formamide s-tetrazine S C O C Thioketene Fulvene o-Xylene Benzocyclobutene Ketene p-Xylylene S HN O N O H Dibenzothiophene o-Xylylene Thymine Figure S1. Molecules used in the tting set S3 S S HO O S S OH• p-Benzosemiquinone Phenanthrene Fluorene Tetrathiafulvalene Hydroxyl •HC all-trans-1,3,5,7-octatetraene Styrene o-Xylylene Ethylenyl NH2 O H N F N N N H Be Dibenzofuran Perylene Adenine Fluorobenzene Beryllium monohydride F F F F F FF F :N O Tetracene 1,2,4,5-Tetrafluorobenzene 1,2,3,4-Tetrafluorobenzene Nitric oxide S H N S •+ S N - F O O Terthiophene Carbazole 1,5-Hexadiene-3-yne Ethylfluoride Nitrogen dioxide O• Acenaphthylene Acenaphthene 2,3-Benzofluorene Phenoxyl Cl S F Cl S F Pentacene Azulene Bithiophene Dichlorodifluoromethane C• Ovalene Hexacene Phenyl Figure S2. Molecules with doublet states used for assessment S4 O C O S C S S C O O S O Carbon dioxide Carbon disulfide Carbonyl sulfide sulfur dioxide Ethylene Propene F Isobutene cis-2-butene trans-2-butene Trimethylethylene
    [Show full text]
  • Physical Property Data 11.1 Contents • Iii Ethylene Component Databank
    Part Number: Aspen Physical Property System 11.1 September 2001 Copyright (c) 1981-2001 by Aspen Technology, Inc. All rights reserved. Aspen Plus®, Aspen Properties®, Aspen Engineering Suite , AspenTech®, ModelManager , the aspen leaf logo and Plantelligence are trademarks or registered trademarks of Aspen Technology, Inc., Cambridge, MA. BATCHFRAC and RATEFRAC are trademarks of Koch Engineering Company, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies. This manual is intended as a guide to using AspenTech’s software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of the software and the application of the results obtained. Although AspenTech has tested the software and reviewed the documentation, the sole warranty for the software may be found in the applicable license agreement between AspenTech and the user. ASPENTECH MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENTATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Corporate Aspen Technology, Inc. Ten Canal Park Cambridge, MA 02141-2201 USA Phone: (1) (617) 949-1021 Toll Free: (1) (888) 996-7001 Fax: (1) (617) 949-1724 URL: http://www.aspentech.com Division Design, Simulation and Optimization Systems Aspen Technology, Inc. Ten Canal
    [Show full text]
  • Basis V3.5’ with Element Dependent Atomic Confinement Radii: Large(L) and Medium (M)
    TABLE I: numerical basis set specification for A) TNP, B) DNP revised, and C) DNP 'Basis v3.5' with element dependent atomic confinement radii: large(l) and medium (m). A) (p) s p d s p d f H 1.51 4.11 1.72 9.90 5.85 Li -0.58 -0.51 -2.19 3.96 -1.15 -1.51 5.41 4.15 Be -2.00 -0.69 -3.86 6.22 -2.60 3.57 2.83 4.80 B -0.65 -3.00 7.99 -2.34 -0.72 4.37 5.29 C -0.51 -0.50 5.57 -3.28 -3.25 8.25 3.95 N -2.94 -3.00 9.01 1.86 2.03 2.81 10.00 O -4.11 -3.97 3.05 2.62 1.49 10.00 9.98 F -4.54 -2.90 5.83 3.26 2.85 9.99 10.00 Na -0.54 -0.80 -0.77 5.97 -1.26 -3.05 7.09 9.99 Mg -0.65 -0.89 -0.98 3.94 -5.82 -2.21 7.89 6.66 Al -2.08 -3.38 5.54 4.45 6.76 8.63 7.37 Si -1.96 -3.32 5.47 -3.42 4.77 5.15 7.64 P -2.63 -3.88 6.20 -4.37 -1.02 9.99 8.95 S -2.36 -2.92 -4.39 2.74 2.63 2.51 9.12 Cl -4.00 -3.05 -2.25 5.27 4.05 5.27 9.99 B) (p) s p d C) s p d rc(l) [pm] rc(m) [pm] H 1.30 4.00 1.30 4.00 310 300 Li -0.50 -1.00 -1.50 4.00 -1.00 -1.00 4.00 510 440 Be -1.00 -1.00 -2.00 5.00 -1.00 -1.00 4.00 440 390 B -1.00 -2.00 6.00 -1.00 -1.00 4.00 410 340 C -2.00 -2.00 6.00 -2.00 -2.00 5.00 370 330 N -2.00 -2.00 7.00 -2.00 -2.00 7.00 340 320 O -2.00 -2.00 6.00 -2.00 -2.00 7.00 330 320 F -2.00 -2.00 6.00 -2.00 -2.00 7.00 320 320 Na -0.50 -1.00 -1.50 6.00 -1.00 -1.00 4.00 520 450 Mg -0.50 -1.00 -2.00 6.00 -1.00 -1.00 4.00 490 430 Al -2.00 -3.00 6.00 -2.00 -2.00 4.00 480 420 Si -2.00 -3.00 6.00 -2.00 -2.00 6.00 460 400 P -2.00 -3.00 6.00 -2.00 -2.00 6.00 420 370 S -2.00 -3.00 -4.50 -2.00 -2.00 -2.00 400 360 Cl -2.00 -3.00 -2.50 -2.00 -2.00 6.00 380 340 1 TABLE II: Appendix B: Database of experimental enthalpies of formation with experimental uncer- tainty for 577 molecular and 15 atomic species.
    [Show full text]
  • Performance of a Nonempirical Density Functional on Molecules and Hydrogen-Bonded Complexes
    Performance of a Nonempirical Density Functional on Molecules and Hydrogen-Bonded Complexes November 21, 2016 Yuxiang Mo, Guocai Tian, Roberto Car, Viktor N. Staroverov, Gustavo E. Scuseria, and Jianmin Tao Supplementary Material CONTENTS Table S1: Standard enthalpies of formation (G2/97, 148 species) Table S2: Standard enthalpies of formation (G3/99, 75 species) Table S3: Atomization Energies (W4-08, 99 species) Table S4: Electron affinities (G3/99) Table S5: Proton affinities (G3/99) Table S6: Bond lengths (T-96R) Table S7: Harmonic vibrational frequencies (T-82F) Table S8: Reaction barrier heights (BH76) Table S9: Hydrogen-bonded complexes 1 o Table S1: 148 G2 standard enthalpies of formation f H298 (ZPE-corrected) of the TM functional evaluated self-consistently using the modified Gaussian 09 with the 6-311++G(3df, 3pd) basis set. Experimental values are from Ref. [S1]. All values are in kcal/mol. Molecule Name Expt. TM AlCl3 Aluminum trichloride -139.7 -138.4 AlF3 Aluminum trifluoride -289.0 -274.0 BCl3 Boron trichloride -96.3 -102.9 BF3 Boron trifluoride -271.4 -266.9 BeH Beryllium monohydride 81.7 74.9 CCl4 Tetrachloromethane -22.9 -36.1 CF4 Tetrafluoromethane -223.0 -232.7 CH Methylidyne radical 142.5 141.5 CH2Cl2 Dichloromethane -22.8 -26.3 CH2F2 Difluoromethane -107.7 -110.5 CH2O2 Formic acid -90.5 -91.7 CH2O Formaldehyde -26.0 -26.4 CH2 Singlet carbene 102.8 108.3 CH2 Triplet carbene 93.7 90.8 CH3Cl Chloromethane -19.6 -18.3 CH3 Methyl radical 35.0 36.3 CH3O Hydroxymethyl radical -4.1 -3.6 CH3O Methoxy radical 4.1 1.3 CH3S
    [Show full text]
  • Aspen Plus7 10 STEADY STATE SIMULATION
    Aspen Plus7 10 STEADY STATE SIMULATION Version Physical Property Data AspenTech7 REFERENCE MANUAL COPYRIGHT 1981—1999 Aspen Technology, Inc. ALL RIGHTS RESERVED The flowsheet graphics and plot components of Aspen Plus were developed by MY-Tech, Inc. Aspen Aerotran, Aspen Pinch, ADVENT®, Aspen B-JAC, Aspen Custom Modeler, Aspen Dynamics, Aspen Hetran, Aspen Plus®, AspenTech®, B-JAC®, BioProcess Simulator (BPS), DynaPlus, ModelManager, Plantelligence, the Plantelligence logo, Polymers Plus®, Properties Plus®, SPEEDUP®, and the aspen leaf logo are either registered trademarks, or trademarks of Aspen Technology, Inc., in the United States and/or other countries. BATCHFRAC and RATEFRAC are trademarks of Koch Engineering Company, Inc. Activator is a trademark of Software Security, Inc. Rainbow SentinelSuperPro is a trademark of Rainbow Technologies, Inc. Élan License Manager is a trademark of Élan Computer Group, Inc., Mountain View, California, USA. Microsoft Windows, Windows NT, Windows 95 and Windows 98 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other brand and product names are trademarks or registered trademarks of their respective companies. The License Manager portion of this product is based on: Élan License Manager © 1989-1997 Élan Computer Group, Inc. All rights reserved Use of Aspen Plus and This Manual This manual is intended as a guide to using Aspen Plus process modeling software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of Aspen Plus and the application of the results obtained.
    [Show full text]