ACS Combinatorial Science

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Molecular periodic system of classification for combinatorial chemistry

Journal: ACS Combinatorial Science

Manuscript ID: Draft

Manuscript Type: Additions and Corrections

Date Submitted by the Author: n/a

Complete List of Authors: Soave, Marcello; home, none

ACS Paragon Plus Environment Page 1 of 7 ACS Combinatorial Science

1 2 3 Molecular periodic system of classification for combinatorial chemistry 4 5 Written by Marcello Soave, translated from italian by Nino Giannola and others, english revision 6 by Cinzia Rasi. 7 8 This is a systematic method for empirical formulas classification. It aims at adding itself to CAS, 9 10 EINECS, RTECS, CE and PubChem classifications. To find all combinations with repetition of 11 n=118 elements, you use simple rules of a=1, 2, 3 … elements. The binomial coefficent is: 12 13 D + − n + a −1 n + a −1 = n+a− ,1 a = (n a 1)! =   =   14 C'n,a     P (n −1)!a! a n −1 15 a     16 17 Single atoms : a=1 results in C’ 118,1 =118!/117!1!=118 18 Diatomic mol.: a=2 results in C’ 118,2 =119!/117!2!=118x119/2=7.021 19 Triatomic mol.: a=3 results in C’ 118,3 =120!/117!3!=118x119x120/6=280.840 20 Tetraatomic mol.: a=4 results in C’ 118,4 =121!/117!4!=118x119x120x121/24=8.495.410 21 Pentatomic mol.: a=5 results in C’ 118,5 =122!/117!5!=118x119x120x121x122/120=207.288.004 22 with factorial n! = 2 x 3 x 4 x…x n, and for single atoms are stable atoms existing in nature and not 23 24 linked to other (for example, the noble gases, another example not exist monatomic nitrogen and 25 oxygen). You end up with 118 atoms because any classification must have an atomic limit (possibly 26 improvable). 27 28 Naturally, the theoretical numeration does not correspond to real molecules which are a minimum 29 part of created boxes. Undiscovered molecules could fill empty boxes. New discovered molecules 30 will have already their collocation and their identification number. The classification number is 31 118-a-b-c, where 118 is the arbitrary limit chosen of maximum atomic number used to make 32 combination (actually the Mendeleev table stops there), a is the total number of atoms of the 33 34 molecule, b is the serial number (arranged by atomic number) of the combination and c is the 35 molecule number with the same empirical formula (for example 2 for diamond and 3 for graphite, 36 both allotropic forms of Carbon 118-1-6-c, with c arranged by discovery date). The serial number b 37 is made by unique combination of 1, 2, 3, etc atoms of tables a=1, a=2, a=3, etc in the following 38 method. Now I want to explain in detail how to proceed with a diatomic molecule, that is a=2: we 39 start with the lowest atomic number (1 that is H) and we associate it with itself and this 40 has b=1 (this first molecule of diatomic hydrogen has code 118-2-1-1, that is with a=2, b=1 and 41 c=1, existing). Next we associate H with the following element (2 that is helium He) and we obtain 42 the code 118-2-2-1 (a=2, b=2 and c=1, that is the second diatomic molecule H-He or He-H, which 43 44 does not exist). We continue with the other elements until the last one (118 that is ununoctium Uuo 45 and so we arrive at b=118): the last diatomic molecule with hydrogen is H-Uuo or Uuo-H with code 46 118-2-118-1, which does not exist. Next we associate the element with the atomic number 2 with 47 other atoms (not with the atomic number 1 because the combination He-H is equal to H-He and 48 repetitions are not allowed) and we link it with itself (He-He), with the following (He-Li) and to all 49 others until He-Uuo (b=224): we got the diatomic molecule with helium He-Uuo or Uuo-He with 50 code 118-2-224-1, which does not exist. Next we restart with Li-Li (that is Li 2 dilithium, existing as 51 a gas, code 118-2-225-1) and so on. In this way until Uus-Uus (b=7019, not existing, code 118-2- 52 7019-1), Uus-Uuo (b=7020, not existing, code 118-2-7020-1) and finally Uuo-Uuo (b=7021, not 53 54 existing, code 118-2-7021-1). Every repetition is eliminated during the list construction (for 55 example He-Li 118-2-3-1 is equal to Li-He, keeping only the first). In the same way for a=3 56 (triatomic molecules), a=4 (tetraatomic molecules), etc. So we obtain ordinated lists without 57 repetitions. If this molecular combinatorial classification ordered by elemental atomic number will 58 be useful to chemists, an open internet database could be done, in which the code and the atom 59 combinations will be automatically generated by the system. Real and known molecules could be 60 ACS Paragon Plus Environment ACS Combinatorial Science Page 2 of 7

1 2 3 included by users (like wikipedia): the system will automatically generate the corresponding 118-a- 4 b-c code. For this will be necessary at minumum the empirical formula and the date of discovering 5 (for the c number). When all the lines with real chemical molecule will be compiled, you can 6 publish a catalog with no blank lines (which are without chemical sense and not existing). 7 This classification does not include isotopes of elements; pure metals are considered as 8 monoatomic, metallic alloys diatomic, triatomic, etc.; salts diatomic, triatomic, etc. Here I list the 9 10 monoatomic molecules too, but only for noble gases and pure metals: the true classification starts 11 with diatomic molecules (molecular hydrogen and oxygen, salts, etc.) and becomes useful from 12 triatomic molecules. I have chosen arbitrary first 118 atoms of Mendeleev table, but if in future a 13 stable atom with an higher atomic number will be found, you can build a new classification using 14 (for example) first 200 atoms of Mendeleev table. In this case the code will be 200-a-b-c, but b 15 changes with the same molecule descripted by 118-a-b-c code (a and c will be equal). 16 This classification could be useful to IUPAC for solving some types of problems about exact 17 molecular classification, adding an unique code for every molecule. Naturally this classification 18 does not help IUPAC to settle the controverses about the correct classification of molecules, by 19 20 assegning an unical code to each molecule (or to a group of molecules with the same brute 21 formula). 22 In this paper, but just for noble gases and pure metals, monoatomic molecules are indicated as well: 23 actually the classification starts from diatomic molecules (H 2, O 2, salts, ecc.) and became useful 24 from triatomic molecules. For an explicit classification, considering the first 118 terms of the 25 periodic table, the code could be defined as 118-a-b-c (but later in time you can use an 120-a-b-c). 26 Furthermore the combinations generated by this classification could be added in an informatic 27 program simulating the chemical bonds so as to find, by computational way, a confirmation about 28 the known molecules and, maybe, to find out new molecules. This would allow to improve 29 30 molecular models, applying them to all possible cases. 31 Of course if there are molecules that despite having the same atoms have different spatial forms, if 32 they are considered many by chemicals, this classification codes will give them equal to 118-a-b 33 and c for several, if not have a single code 118-a-b-c. If you happen to have been discovered 34 simultaneously different molecules with the same code and different 118-a-b-c, then (but only if 35 they are identical year, month, day, hour and minute of the discovery) can be inserted to trick n 36 seconds unlike discovery (but contemporary findings on the second I doubt there will be, there will 37 always be a difference however small that will give the number c). 38 For example, if we want to insert the different molecules whose molecular formula C H O , insert 39 24 40 4 40 the catalog Fluka molecules Chenodeoxycholic acid, Deoxycholic acid, (-)-Di[(1R)-menthyl] 41 fumarate, Ursodeoxycholic acid, plus other salvaged from other catalogs around the world in the 42 codes 118-68-b-c . In addition to the name you will also insert the date of discovery, and the system 43 will automatically enter the molecules in date order and then assign the number c. For this it is clear 44 that for each group 118-a-b is good to be sure that you have entered all the molecules existing on 45 that date before publishing the codes for. When you discover a new molecule will not have to 46 change the above code c. For this reason, before giving the number c to me there should be OK 47 binding of IUPAC. 48 This means that the insertion of the rows valid user code will add a 118-a-b-c-T (which stands for 49 50 "temporary"), then when a row is completely filled it is supposed, to go to the IUPAC which 51 controls and bibliography which gives the go-ahead for the attribution of code 118-a-b-c-D (which 52 stands for "definitive"). This "definitive" would remain even with the discovery of a new molecule, 53 because being ordered by date of discovery would end up at the bottom, not changing the numbers c 54 for reordering. If the IUPAC mistaken attribution of a -D, you could send code types -D2, -D3, etc. 55 for any corrections. 56 NB: Please note that any substance certainly also not yet discovered will already have its place and 57 will receive his identification number in this not serial classification system. 58

59 60 ACS Paragon Plus Environment Page 3 of 7 ACS Combinatorial Science

1 2 3 Legend: X= It can not exist or has not yet been found in this form 4 5 Monoatomic molecules or ions or pure metals or pure crystals or amorphous forms as well (a=1) 6 7 Numbering Classification Molecule (empirical formula and allotropes) 8 9 theoretical of stability (b) 10 + 11 1 Unstable H Hydrogen ion (118 -1-1-1) n° CAS tends to unite to give 12 protonated species or H 2 13 2 Stable He Monatomic helium (118 -1-2-1) n° CAS 7440 -59 -7 14 3 Stable Li Metallic lithium (118 -1-3-1) n° CAS 7439 -93 -2 15 4 Stable Be Metallic (118-1-4-1) n° CAS 7440-41-7 16 5 Stable B, Pure amorphous boron (118-1-5-1) s. 1909, Crystalline boron 17 18 βR (118-1-5-2) s. 1957, Crystalline boron αR (118-1-5-3) s. 19 1958, Crystalline boron βT (118-1-5-4) s. 1960, Crystalline 20 boron αT (118-1-5-5) s. 1973, Crystalline boron γ (118-1-5-6) s. 21 2009, n° CAS 7440-42-8 22 6 Stable C Amorphous carbon with traces of graphite crystals (118 -1-6-1) 23 s. XXIII sec aC, Diamond (118-1-6-2) s. IV sec aC , Graphite 24 (118-1-6-3) s. XVIII sec n° CAS 7782-42-5, Carbidederived 25 carbon (118-1-6-4) s. 1918, Pure amorphous carbon (118-1-6-5) 26 27 s. 1950, Not pure carbon fiber composite (118-1-6-6) s. 1958, 28 Glassy carbon (118-1-6-7) s. 1960, Atomic carbon (118-1-6-8) s. 29 1965, Lonsdaleite (118-1-6-9) s. 1967, Carbon nanotube (118-1- 30 6-10) s. 1985, Carbon nanofoam (118-1-6-11) s. 1997, Graphene 31 (118-1-6-11) s. 2004, n° CAS 7440-44-0 32 7 X N 33 8 X O 34 9 Unstable F Fluorine (118-1-9-1) n° CAS 7782-41-4 rare and radioactive 35 36 10 Stable Ne Neon atom (118 -1-10 -1) n° CAS 7440 -01 -9 37 11 Stable Na Pure metallic s odi um (118 -1-11 -1) n° CAS 7440 -23 -5 38 12 Stable Mg Pure magnesium metal (118-1-12-1) n° CAS 7439-95-4 39 13 Stable Al Pure metallic aluminum (118-1-13-1) n° CAS 7429-90-5 40 14 Stable Si Pure silicon metalloid (118-1-14-1) n° CAS 7440-21-3 41 15 Stable P Monatomic amorphous red phosphorus (118-1-15-1) n° CAS 42 7723-14-0, Phosphorus purple monatomic αmetallic (118-1-15- 43 44 2) s. 1865 and Phosphorus black monatomic βmetallic (118-1- 45 15-3) s. 1965 (toxic and explosive) 46 16 Stable S Pure notmetal sulfur (118-1-16-1) n° CAS 7704-34-9 47 17 Stable Cl Halogen pure gaseous chlorine (118-1-17-1) n° CAS 7782-50- 48 5 49 18 Stable Ar Argon atom (118-1-18-1) n° CAS 7440–37–1 50 19 Unstable K Pure potassium metal (118-1-19-1) n° CAS 7440-09-7 tends to 51 oxidize in K O 52 2 53 20 Unstable Ca Pure calciu m metal (118 -1-20 -1) n° CAS 7440 -70 -2 tends to 54 oxidize in CaO 55 21 Stable Sc Pure sca ndium metal (118 -1-21 -1) n° CAS 7440 -20 -2 56 artificiale 57 22 Stable Ti Pure titanium metal (118 -1-22 -1) n° CAS 7440 -32 -6 58 23 Stable V Pure vanadium metal (118 -1-23 -1) n° CAS 7440 -62 -2 59 60 ACS Paragon Plus Environment ACS Combinatorial Science Page 4 of 7

1 2 3 107 Unstable Bh Bohrium (118-1-107-1) n° CAS 54037-14-8 radioactive and 4 artificial 5 108 Unstable Hs Hassium (118-1-108-1) n° CAS 54037-57-9 radioactive and 6 artificial 7 109 Unstable Mt Meitnerium (118-1-109-1) n° CAS 54038-01-6 radioactive 8 9 and artificial 10 110 Unstable Ds Darmstadtium (118-1-110-1) n° CAS 54083-77-1 radioactive 11 and artificial 12 111 Unstable Rg Roentgenium (118-1-111-1) n° CAS 54386-24-2 radioactive 13 and artificial 14 112 Unstable Cn Copernicium (118-1-112-1) n° CAS 54084-26-3 radioactive 15 and artificial 16 17 113 Unstable Uut Ununtrium (118-1-113-1) n° CAS 54084-70-7 radioactive 18 and artificial 19 114 Unstable Fl Flerovium (118-1-114-1) n° CAS 54085-16-4 radioactive and 20 artificial 21 115 Stable Uup Ununpentium (118-1-115-1) n°CAS 54085-64-2 artificial 22 116 Unstable Lv Livermori um (118 -1-116 -1) n° CAS 54100 -71 -9 artificial 23 117 Uns table Uus Ununsepti um (118 -1-117 -1) n° CAS 54101 -14 -3 artificial 24 118 Unstable Uuo Ununocti um (118 -1-118 -1) n° CAS 54144 -19 -3 radioactive 25 26 and artificial 27 28 Diatomic molecules or ions or salts diatomic diatomic or bimetallic alloys (a=2) 29 30 Numbering Classification Molecule (empirical formula and various isomers) 31 theoretical of stability 32 (b) 33 34 1 Stable H-H H 2 Diatomic molecular hydrogen (118 -2-1-1) n° CAS 1333 - 35 74-0 + 36 2 Unstable H-He HeH Hydride ion helium (118 -2-2-1) 37 3 Stable H-Li LiH (118-2-3-1) n° CAS 7580-67-8 38 4 Unstable H-Be BeH Beryllium monohydride (118-2-4-1) n° CAS 13597- 39 97-2 40 5 Unstable H-B BH 2+ Boron ion monohydride (118-2-5-1) 41 6 Unstable H-C CH Methine radical (118-2-6-1) ? e CH + Methine ion (118- 42 43 2-6-2) ? functional group 44 7 Unstable H-N NH Nitrogen monohydride (118-2-7-1) functional group + 45 8 Unstable H-O OH (118 -2-8-1) ?, OH Cation hydroxide 46 (118-2-8-2) ? e OH - Anion hydroxide (118-2-8-3) ? functional 47 group 48 9 Stable H-F HF Hydrofluoric acid (118-2-9-1) n° CAS 7664-39-3 49 10 X H-Ne 50 51 11 Stable H-Na NaH (118 -2-11 -1) n° CAS 7646 -69 -7 52 12 X H-Mg 53 13 X H-Al 54 14 X H-Si 55 15 X H-P 56 16 X H-S 57 17 Stable H-Cl HCl Hydrochloric acid (118 -2-17 -1) n° CAS 7647 -01 -0 58 59 18 X H-Ar 60 ACS Paragon Plus Environment Page 5 of 7 ACS Combinatorial Science

1 2 3 7017 X Lv-Uus 4 7018 X Lv-Uuo 5 7019 X Uus-Uus 6 7020 X Uus-Uuo 7 8 7021 X Uuo -Uuo 9 10 Triatomic molecules (a=3) 11 12 Numbering Classification Molecule (empirical formula and various isomers) 13 theoretical of stability 14 (b) 15 1 Unstable H-H-H H + Cation tri hy drogen (118 -3-1-1) n° CAS 28132 -48 -1 16 3 17 2 X H-H-He 18 3 X H-H-Li 19 4 Stable H-H-Be BeH 2 Beryllium dihydride (118-3-4-1) n° CAS 7787-52-2 20 5 Stable H-H-B BH 2 Boron dihydride (118-3-5-1) n° CAS 14452-64-3 2- 21 6 Unstable H-H-C CH 2 Carbon anion dihydride (118-3-6-1) ? e CH 2 22 (118-3-6-2) ? functional group 23 7 Unstable H-H-N H N- Azanur (118-3-7-1) ? n° CAS 17655-31-1 e NH + 24 2 2 25 Cation nitrogen dihydride (118-3-7-2) ? 26 8 Stable H-H-O H 2O Water (118-3-8-1) n° CAS 7732-18-5 27 9 X H-H-F 28 10 X H-H-Ne 29 11 X H-H-Na 30 12 Stable H-H-Mg MgH 2 Magnesium hydride (118-3-12-1) n° CAS 7693- 31 27-8 32 33 13 X H-H-Al 34 14 Stable H-H-Si SiH 2 Silicon dihydride (118-3-14-1) + 35 15 Unstable H-H-P PH 2 Cation Phosphorus dihydride (118-3-15-1) 36 16 Stable H-H-S H 2S (118 -3-16 -1) n° CAS 7783 -06 -4 37 17 X H-H-Cl 38 18 X H-H-Ar 39 40 19 X H-H-K 41 20 Stable H-H-Ca CaH 2 (118-3-20-1) n° CAS 7789-78-8 42 21 X H-H-Sc 43 22 Stable H-H-Ti TiH 2 Titanium dihydride (118-3-22-1) n° CAS 7704-98-5 44 23 Stable H-H-V VH 2 Vanadi um di hydride (118 -3-23 -1) 45 24 Stable H-H-Cr CrH 2 Chromium di hydride (118 -3-24 -1) alloy of variable 46 composition 47 48 25 Stable H-H-Mn MnH 2 Manganese di hydride (118 -3-25 -1) 49 26 Stable H-H-Fe FeH 2 Iron dihydride (118-3-26-1) n° CAS 33485-98-2 50 27 Stable H-H-Co CoH 2 Cobalt dihydride (118-3-27-1) 51 28 X H-H-Ni 52 29 X H-H-Cu 53 30 Stable H-H-Zn ZnH 2 Zinc di hydride (118 -3-30 -1) n° CAS 14018 -82 -7 54 31 Unstable H-H-Ga GaH Galli um di hydride (118 -3-31 -1) 55 2 56 32 Stable H-H-Ge GeH 2 Germani um di hydride (118 -3-32 -1) 57 33 X H-H-As 58 34 Stable H-H-Se SeH 2 (188-3-34-1) n° CAS 7783-07-5 59 35 X H-H-Br 60 ACS Paragon Plus Environment ACS Combinatorial Science Page 6 of 7

1 2 3 Sample summary table for diatomic molecules and triatomic stable (as seen there are compounds 4 which do not have CAS number but receiving the same their own code): 5 6 Code Molecule 7 118-2-1-1 H Diatomic molecular hydrogen n° CAS 1333-74-0 8 2 9 118-2-3-1 LiH Lithium hydride n° CAS 7580-67-8 10 118-2-9-1 HF Hydrofluoric acid n° CAS 7664-39-3 11 118-2-11-1 NaH Sodium hydride n° CAS 7646-69-7 12 118-2-17-1 HCl Hydrochloric acid n° CAS 7647-01-0 13 118 -2-35 -1 HBr Hydrobromic acid n° CAS 10035 -10 -6 14 118 -2-53 -1 HI Hyd rogen iodide n° CAS 10034 -85 -2 15 118-2-236-1 Li Dilitium 16 2 17 118-2-246-1 AlLi Lithium aluminium like the 8090 18 118-2-268-1 LiBr Lithium bromide n° CAS 7550-35-8 19 118-2-286-1 LiI Lithium iodide n° CAS 10377-51-2 20 118-2-352-1 Be 2 Diatomic molecular beryllium n° CAS 7440-41-7 21 118 -2-377 -1 CuBe Beryllium bronze 22 118 -2-476 -1 B Diatomic molecular b oron n° CAS 7440 -42 -8 23 2 24 118-2-581-1 C2 Diatomic molecular carbon n° CAS 7440-44-0 25 118-2-601-1 FeC 100% pure cast iron 26 118-2-601-2 FeC 100% pure steel 27 118-2-694-1 N2 Diatomic molecular nitrogen n° CAS 7727-37-9 28 118 -2-806 -1 O2 Diatomic molecular oxygen n° CAS 7782 -44 -7 29 118 -2-1142 -1 NaCl Salt n° CAS 7647 -14 -5 30 118 -2-1178 -1 NaI Sodium iodide n° CAS 7681 -82 -5 31 32 118-2-1245-1 AlMg Aluminum magnesium called Peraluman 33 118-2-1352-1 AlSi Aluminum silicon called Silumin 34 118-2-1363-1 AlMn Aluminum manganese 35 118-2-1367-1 CuAl Aluminum bronze 36 118 -2-1367 -2 AlCu Pure duralumin called Avional 37 118 -2-1368 -1 AlZn Aluminum zinc called Ergal 38 39 118-2-1417-1 AuAl Purple gold 40 118-2-1769-1 Cl 2 Diatomic molecular chlorine n° CAS 7782-50-5 41 118-2-1771-1 KCl Potassium chloride n° CAS 7447-40-7 42 118-2-2006-1 KI Potassium iodide n° CAS 7681-11-0 43 118-2-2704-1 AuFe Iron blue gold 44 118 -2-2796 -1 AuCo Black gold 45 118 -2-2837 -1 CuNi Nichel bronze 46 47 118-2-2887-1 AuNi Nichel white gold 48 118-2-2948-1 CuSn Pure bronze 49 118-2-2977-1 AuCu Red gold 50 118-2-4400-1 AgI Silver iodide n° CAS 7783-96-2 51 118 -2-4426 -1 AuAg French white gold 52 118 -2-4567 -1 AuIn Indium blue gold 53 118 -3-4-1 BeH n° CA S 7787 -52 -2 54 2 55 118-3-5-1 BH 2 Boron dihydride n° CAS 14452-64-3 56 118-3-8-1 H2O Water n° CAS 7732-18-5 57 118-3-12-1 MgH 2 Magnesium dihydride n° CAS 7693-27-8 58 118-3-14-1 SiH 2 Silicon dihydride 59 118 -3-16 -1 H2S Hydrogen sulfide n° CAS 7783 -06 -4 60 ACS Paragon Plus Environment Page 7 of 7 ACS Combinatorial Science

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment