Microbial Domains in the Ocean: a Lesson from the Archaea

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Domains in the Ocean: a Lesson from the Archaea or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval Oceanography portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in A S ea of M I C R obe S > SeCTIon V. EX amPleS of DIveRSITY > CHAPTER 10. MICRobIal CommUNITIES Oceanography > A . WaTER ColUmn Microbial Domains in the Ocean: journal of The 20, NumberOceanography 2, a quarterly , Volume A Lesson from the Archaea BY EDWARD F. DELonG NEW VIEWS of Sea MICRobeS (Bacteria, Archaea, and Eukarya), it is “fishing expeditions” pioneered by Norm Microbial life thrives in virtually every only recently that a clear picture of “who Pace and Stephen Giovannoni, and later habitat imaginable in the ocean, from the lives where” in the ocean has emerged. others, in the early 1990s, proved to be scalding temperatures found at hydro- From the standpoint of oceanogra- reasonably productive enterprises. A S ociety. ociety. thermal vents, to frigid environments in phy, why should we care about microbial strong motivation for these microbial C and under polar sea ice, to high-pressure The 2007 by opyright Oceanography habitats in the ocean’s deepest trenches. Our understanding of microbial life in many of these ocean habitats, especially in plankton, has advanced remarkably Our understanding of microbial life in over the past 30 years or so. The recogni- many of these ocean habitats, especially S tion of the ubiquity and distribution of in plankton, has advanced remarkably rights All reserved.ociety. S photoautotrophic cyanobacteria such ociety. as Synechococcus and Prochlorococcus over the past 30 years or so. S end all correspondence to: [email protected] or Th e [email protected] Oceanography to: correspondence all end (Johnson and Sieburth, 1979; Waterbury et al., 1979; Chisholm et al., 1988), the P isolation of pressure-requiring piezo- article use for research. and this copy in teaching to granted is ermission philic bacteria (Yayanos et al., 1979), the diversity or microbial taxonomic dis- surveys was the general recognition that discovery of Pelagibacter (Giovannoni tributions and abundance? As a fledg- microbial activities drive most of the et al., 1990), and recognition of the high ling Assistant Scientist at the Woods major biogeochemical cycles in the sea. abundance of marine phage (Bergh et Hole Oceanographic Institution in Furthermore, it was suspected that many al., 1989) represent just a few recent the late 1980s, I remember my chagrin dominant planktonic microbial groups milestones in microbial oceanography. while pondering critical reviewer com- might be undetected because of their Even at a level as fundamental as the dis- ments on my (failed) grant proposals recalcitrance to cultivation. Given the S tribution of life’s three major domains that aimed to survey marine microbial “great plate count anomaly” (e.g., the ociety, diversity, which read something like this: observation that cultivable planktonic P O Box 1931, EDWARD F. DELonG (delong@ “DeLong is out on a fishing expedition, microbes accounted for only a small mit.edu) is Professor, Department of without any hypothesis.” At the time, percentage of total direct epifluores- R ockville, MD 20849-1931, R Biological Engineering and Department some of us wondered: If you don’t really cence microscopic counts [Staley and reproduction, systemmatic epublication, of Civil and Environmental Engineering, know what lives in the ocean, might Konopka, 1985]), it seemed quite pos- Massachusetts Institute of Technology, not a little fishing be a good idea? As it sible that dominant planktonic micro- Cambridge, MA, USA. turned out, the early oceanic microbial bial groups, some responsible for critical US A. 124 Oceanography Vol. 20, No. 2 biogeochemical cycling processes, likely of marine microbial life and led to the to most other life forms. The existence remained unknown. This presumption discovery of a new microbial taxo- of novel archaeal types was first hinted turned out to be more or less correct. nomic group in the sea, the planktonic at during cultivation-independent A fundamental advance that acceler- Crenarchaea. The pattern of initial ribosomal RNA surveys in open-ocean ated relatively unbiased microbial cen- discovery using these techniques, and and coastal marine waters. Initial work sus taking was the invention by Norm subsequent in-depth biological and eco- used the polymerase chain reaction Pace and collaborators of cultivation- logical characterization, is now a recur- (PCR) to amplify ribosomal RNA genes independent, molecular-phylogenetic survey approaches (Olsen et al., 1986). This strategy uses common molecular sequences found in every cell (e.g., ribo- ...it is only recently that a clear picture of somal RNA sequence) that can serve “who lives where” in the ocean has emerged. as a sort barcode to identify and track microbes by “reading” DNA sequences extracted directly from the environ- ment, without the need for cultivation. ring theme in marine microbial ecology. from mixed microbial populations. In Such cultivation-independent surveys While this story represents only one 1992, Jed Fuhrman of the University taught us that large amounts of micro- example, it illustrates how characteriza- of Southern California first reported bial diversity found in natural habitats tion of dominant microbial inhabitants the existence of a new type of archaeal had totally slipped beneath the radar of in the sea can lead to new insights into ribosomal RNA sequence from deep- cultivation-based approaches. Indeed, global biogeochemical processes. As water planktonic microbes in the Pacific some of the most abundant microbial well, the important interplay and syn- Ocean (Fuhrman et al., 1992). At about groups on our planet have been discov- ergy between cultivation-dependent and the same time, I independently discov- ered using such molecular-based surveys, cultivation-independent approaches for ered and reported on the distribution and had not been evident from cul- characterizing marine microbes in the and abundance of two different coastal ture-based studies. Characterizing these wild is quite evident (see also the article archaeal groups, one related to the deep- microorganisms is critical for gaining a by Giovannoni et al., this issue). water archaea (planktonic Crenarchaea) deeper and truer understanding of native and another, new group (planktonic microbial inhabitants and their funda- OCeanIC ARCHaea? Euryarchaea) that were phylogenetic mental environmental activities (see The Archaea are a curious phyloge- neighbors to halophiles and methano- below). Together, both cultivation-based netic domain (formerly kingdom) gens (DeLong, 1992). I was also able to and cultivation-independent approaches, comprised of an odd assortment of demonstrate quantitatively that marine which now extend to environmental cultured microbes that fall into three archaea contribute significantly to genomic sequencing surveys, are yielding major groupings: extreme halophiles, marine microbial plankton biomass. significant contributions to our under- methanogens, and extreme thermo- The surprise then was that any standing of microbial taxa and activities philes and thermoacidophiles (Woese, archaea could be found in cold, aero- in the deep blue sea. 1987). Why such an odd assortment of bic habitats of coastal and open-ocean The impact of cultivation- salt-loving, or anaerobic, or heat-lov- waters—and, to top it off, they were independent surveys of microbes in the ing microbes should form such a coher- abundant. No cultivated, character- environment has been well reviewed ent phylogenetic grouping is still not ized archaea were known to grow at the (Rappé and Giovannoni, 2003). The that well understood. The dogma until combined salinity, temperature, and following story is one tale of how this 1992 was that archaea inhabit mainly oxygen concentration found in tem- approach altered our understanding “extreme” environments, inhospitable perate oceanic waters, shallow or deep. Oceanography June 2007 125 of the total picoplankton cell counts from water depths of 80–3000 m. At the Hawaii Ocean Time-series (HOT) sta- tion ALOHA, Dave Karl and collabora- tors showed that Crenarchaea comprised as much as 30% of the total microbial counts in deep waters below the euphotic zone (Karner et al., 2001). In aggregate, these and other data suggest that pelagic Crenarchaea comprise a significant pro- portion of overall planktonic microbial biomass throughout the world’s ocean. BIoloGY and EColoGY of PlanKTonIC MARIne CRenaRCHaea Creative application of biochemical, geochemical, and genomic techniques have provided considerable data on the planktonic Crenarchaea. These stud- Figure 1. Epifluorescence micrograph ofCenarchaeum symbiosum, a symbiotic marine crenarchaeon (green cells) closely related to planktonic archaea. The green fluorescence is derived from fluorescein- ies, combined with isolation in pure labeled, rRNA-targeted probes used for in situ nucleic acid hybridization to identify archaeal cells. culture of a marine crenarchaeon (see below), now provide some specific clues regarding the biogeochemical and eco- logical importance of this abundant Following on the heels of these first oce- planktonic Crenarchaea were found to marine microbial group. anic sightings, archaeal groups began contribute as much as 20% to the total Lipid analyses of cold
Recommended publications
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Limits of Life on Earth Some Archaea and Bacteria
    Limits of life on Earth Thermophiles Temperatures up to ~55C are common, but T > 55C is Some archaea and bacteria (extremophiles) can live in associated usually with geothermal features (hot springs, environments that we would consider inhospitable to volcanic activity etc) life (heat, cold, acidity, high pressure etc) Thermophiles are organisms that can successfully live Distinguish between growth and survival: many organisms can survive intervals of harsh conditions but could not at high temperatures live permanently in such conditions (e.g. seeds, spores) Best studied extremophiles: may be relevant to the Interest: origin of life. Very hot environments tolerable for life do not seem to exist elsewhere in the Solar System • analogs for extraterrestrial environments • `extreme’ conditions may have been more common on the early Earth - origin of life? • some unusual environments (e.g. subterranean) are very widespread Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Grand Prismatic Spring, Yellowstone National Park Hydrothermal vents: high pressure in the deep ocean allows liquid water Colors on the edge of the at T >> 100C spring are caused by different colonies of thermophilic Vents emit superheated water (300C or cyanobacteria and algae more) that is rich in minerals Hottest water is lifeless, but `cooler’ ~50 species of such thermophiles - mostly archae with some margins support array of thermophiles: cyanobacteria and anaerobic photosynthetic bacteria oxidize sulphur, manganese, grow on methane + carbon monoxide etc… Sulfolobus: optimum T ~ 80C, minimum 60C, maximum 90C, also prefer a moderately acidic pH. Live by oxidizing sulfur Known examples can grow (i.e. multiply) at temperatures which is abundant near hot springs.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • The Unicellular and Colonial Organisms Prokaryotic And
    The Unicellular and Colonial Organisms Prokaryotic and Eukaryotic Cells As you know, the building blocks of life are cells. Prokaryotic cells are those cells that do NOT have a nucleus. They mostly include bacteria and archaea. These cells do not have membrane-bound organelles. Eukaryotic cells are those that have a true nucleus. That would include plant, animal, algae, and fungal cells. As you can see, to the left, eukaryotic cells are typically larger than prokaryotic cells. Today in lab, we will look at examples of both prokaryotic and eukaryotic unicellular organisms that are commonly found in pond water. When examining pond water under a microscope… The unpigmented, moving microbes will usually be protozoans. Greenish or golden-brown organisms will typically be algae. Microorganisms that are blue-green will be cyanobacteria. As you can see below, living things are divided into 3 domains based upon shared characteristics. Domain Eukarya is further divided into 4 Kingdoms. Domain Kingdom Cell type Organization Nutrition Organisms Absorb, Unicellular-small; Prokaryotic Photsyn., Archaeacteria Archaea Archaebacteria Lacking peptidoglycan Chemosyn. Unicellular-small; Absorb, Bacteria, Prokaryotic Peptidoglycan in cell Photsyn., Bacteria Eubacteria Cyanobacteria wall Chemosyn. Ingestion, Eukaryotic Unicellular or colonial Protozoa, Algae Protista Photosynthesis Fungi, yeast, Fungi Eukaryotic Multicellular Absorption Eukarya molds Plantae Eukaryotic Multicellular Photosynthesis Plants Animalia Eukaryotic Multicellular Ingestion Animals Prokaryotic Organisms – the archaea, non-photosynthetic bacteria, and cyanobacteria Archaea - Microorganisms that resemble bacteria, but are different from them in certain aspects. Archaea cell walls do not include the macromolecule peptidoglycan, which is always found in the cell walls of bacteria. Archaea usually live in extreme, often very hot or salty environments, such as hot mineral springs or deep-sea hydrothermal vents.
    [Show full text]
  • Archaeal Distribution and Abundance in Water Masses of the Arctic Ocean, Pacific Sector
    Vol. 69: 101–112, 2013 AQUATIC MICROBIAL ECOLOGY Published online April 30 doi: 10.3354/ame01624 Aquat Microb Ecol FREEREE ACCESSCCESS Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector Chie Amano-Sato1, Shohei Akiyama1, Masao Uchida2, Koji Shimada3, Motoo Utsumi1,* 1University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan 2National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki 305-8506, Japan 3Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan ABSTRACT: Marine planktonic Archaea have been recently recognized as an ecologically impor- tant component of marine prokaryotic biomass in the world’s oceans. Their abundance and meta- bolism are closely connected with marine geochemical cycling. We evaluated the distribution of planktonic Archaea in the Pacific sector of the Arctic Ocean using fluorescence in situ hybridiza- tion (FISH) with catalyzed reporter deposition (CARD-FISH) and performed statistical analyses using data for archaeal abundance and geochemical variables. The relative abundance of Thaum - archaeota generally increased with depth, and euryarchaeal abundance was the lowest of all planktonic prokaryotes. Multiple regression analysis showed that the thaumarchaeal relative abundance was negatively correlated with ammonium and dissolved oxygen concentrations and chlorophyll fluorescence. Canonical correspondence analysis showed that archaeal distributions differed with oceanographic water masses; in particular, Thaumarchaeota were abundant from the halocline layer to deep water, where salinity was higher and most nutrients were depleted. However, at several stations on the East Siberian Sea side of the study area and along the North- wind Ridge, Thaumarchaeota and Bacteria were proportionally very abundant at the bottom in association with higher nutrient conditions.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]
  • Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
    Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota
    [Show full text]
  • The Phylogenetic Composition and Structure of Soil Microbial Communities Shifts in Response to Elevated Carbon Dioxide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Minnesota Digital Conservancy The ISME Journal (2012) 6, 259–272 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide Zhili He1, Yvette Piceno2, Ye Deng1, Meiying Xu1,3, Zhenmei Lu1,4, Todd DeSantis2, Gary Andersen2, Sarah E Hobbie5, Peter B Reich6 and Jizhong Zhou1,2 1Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA; 2Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China; 4College of Life Sciences, Zhejiang University, Hangzhou, China; 5Department of Ecology, Evolution, and Behavior, St Paul, MN, USA and 6Department of Forest Resources, University of Minnesota, St Paul, MN, USA One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2.
    [Show full text]
  • Wide Diversity of Crenarchaeota Temperature Organisms8•9
    SCIENTIFIC CORRESPONDENCE a high-temperature ancestry for the low­ Wide diversity of Crenarchaeota temperature organisms8•9. This correlation also suggests that the ability to grow at SrR - The traditional perception of the sediment and marsh samples (5-32 °C) col­ low temperatures has arisen within the diversity of the bacteria-like Archaea based lected from Lakes Griffy and Lemon near Crenarchaeota in at least three separate on cultivation studies has been that the Bloomington, Indiana, and used it as tem­ instances. kingdom Euryarchaeota is a physiologically plate in the polymerase chain reaction The occurrence of diverse low-temper­ variable group including halophiles, (PCR) to amplify small-subunit rRNA ature Crenarchaeota in marine and terres­ thermophiles and methanogens, whereas genes (rDNA), as previously described4• trial environments is unexpected, and the kingdom Crenarchaeota is more homo­ We used an Archaea-specific forward shows that members of this kingdom of genous, consisting exclusively of sulphur­ primer (4Pa, see figure legend) and a uni­ the phylogenetic domain Archaea are dependent, extreme thermophiles 1• This versal reverse primer with a polylinker tail phenotypically more varied than was pre­ has led to the notion that the Crenarchaeo­ (1492RPL) for initial amplification to en­ viously thought. Because neither these ta are not widespread, but are restricted to rich for archaeal rRNA genes, and then organisms nor their close, high-tempera­ specialized habitats. Using sequence-based used forward primers specific to marine ture relatives have been cultivated, we techniques that sidestep the cultivation crenarchaeal sequences2•5 (89F), or to all have no information about their meta­ of organisms, crenarchaeal small-subunit known Crenarchaeota (542F), in conjunc­ bolic properties.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]