Collagen in Wound Healing

Total Page:16

File Type:pdf, Size:1020Kb

Collagen in Wound Healing bioengineering Review Collagen in Wound Healing Shomita S. Mathew-Steiner, Sashwati Roy and Chandan K. Sen * Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; [email protected] (S.S.M.-S.); [email protected] (S.R.) * Correspondence: [email protected]; Tel.: +1-317-278-2735 Abstract: Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided. Keywords: extracellular matrix; collagen; signaling; inflammation; wound healing; collagen dressings; engineered collagen Citation: Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound 1. Introduction Healing. Bioengineering 2021, 8, 63. Sophisticated regulation by a number of key factors including the environment of the https://doi.org/10.3390/ wound which is rich in extracellular matrix (ECM) drives the process of wound healing [1,2]. bioengineering8050063 The complex macromolecules constituting the ECM include fibrous components (e.g., col- lagens and elastins) and glycoprotein components (e.g., fibronectin, proteoglycans and Academic Editor: Gunjan Agarwal laminins). Each of these molecules interact to drive the process of tissue function, growth and repair [3–5]. Wound repair is a complex process that is broadly categorized into the Received: 11 March 2021 following four phases which occur in a temporal sequence but are overlapping: hemostasis, Accepted: 1 May 2021 inflammation, proliferation (cellular infiltration, angiogenesis and re-epithelialization) and Published: 11 May 2021 maturation/remodeling (Figure1)[ 1]. Key steps of the wound healing process, such as hemostasis, inflammation and angiogenesis are responsive to the ECM, collagen and Publisher’s Note: MDPI stays neutral its compounds [1,6–13]. In response to injury, collagen induces platelet activation and with regard to jurisdictional claims in aggregation resulting in the deposition of a fibrin clot at the injury site. In the inflammatory published maps and institutional affil- stage of wound healing, immune cell activation drives the secretion of proinflammatory iations. cytokines which influence migration of fibroblasts, epithelial and endothelial cells. Fi- broblasts contribute to collagen deposition. Simultaneously, collagen degradation releases fragments that promote fibroblast proliferation and synthesis of growth factors that lead to angiogenesis and re-epithelialization. Finally, the remodeling of the ECM (balance of Copyright: © 2021 by the authors. new matrix synthesis and matrix metalloproteinase degradative activities) determines Licensee MDPI, Basel, Switzerland. the acquisition of tensile strength [14–16]. In this work we sought to briefly review the This article is an open access article significance of collagen in different biological processes relevant to wound healing. The distributed under the terms and current literature on the use of collagen-based products in wound care is summarized. conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Bioengineering 2021, 8, 63. https://doi.org/10.3390/bioengineering8050063 https://www.mdpi.com/journal/bioengineering BioengineeringBioengineering 20212021,, 88,, 63x FOR PEER REVIEW 22 of of 1516 Figure 1. Brief summary of wound healing phases. 2. Types of Collagens inin thethe SkinSkin andand WoundWound Collagens are the most abundant protein foundfound throughout the body.body. InIn thethe healinghealing wound, these these collagens collagens are are synthesized synthesized by by cell cellss such such as fibroblasts as fibroblasts and andmodified modified into com- into complexplex morphologies morphologies [17–21]. [17– The21]. type, The type,amount amount and organization and organization of collagen of collagen changes changes in the inhealing the healing wound wound and determines and determines the tensile the streng tensileth strength of the healed of the skin. healed Collagen skin. Collagen III is the IIIfirst is to the be first synthesized to be synthesized in the early in stages the early of wound stages ofhealing wound and healing is replaced and is by replaced collagen by I, collagen I, the dominant skin collagen. The initial random deposition of collagen during the dominant skin collagen. The initial random deposition of collagen during the granu- the granulation tissue formation is further enhanced by lysyl oxidase enzyme-induced lation tissue formation is further enhanced by lysyl oxidase enzyme-induced covalent covalent cross-linking. This process matures the collagen into complex structures that are cross-linking. This process matures the collagen into complex structures that are reori- reoriented for tensile strength restoration. Collagen remodeling continues for months after ented for tensile strength restoration. Collagen remodeling continues for months after wound closure and the tensile strength of the repaired tissue increases to about 80–85% of wound closure and the tensile strength of the repaired tissue increases to about 80–85% of normal tissue if all processes proceed without any perturbations [16]. normal tissue if all processes proceed without any perturbations [16]. In the skin, the fibrillar collagens types I, III and V are the most common, followed by In the skin, the fibrillar collagens types I, III and V are the most common, followed fibril-associated collagens type XII, XIV, XVI, and VI. The non-fibrillar collagens type IV, by fibril-associated collagens type XII, XIV, XVI, and VI. The non-fibrillar collagens type XVIII are found in the basement membrane of the skin [14,18,19,22,23]. IV, XVIII are found in the basement membrane of the skin [14,18,19,22,23]. 3. Processing of Collagen in the Skin and Wound 3.1.3. Processing Biosynthesis of andCollagen Cross-Linking in the Skin and Wound 3.1. BiosynthesisIn the healing and wound, Cross-Linking cells such as fibroblasts (resident, and myeloid cell converted fibroblasts)In the healing [24] are thewound, main cells source such of as newly fibroblasts synthesized (resident, collagen. and Themyeloid biosynthesis cell converted activi- tiesfibroblasts) of fibril-forming [24] are the collagens main source are the of most newly extensively synthesized studied collagen. among The allbiosynthesis the collagens ac- andtivities involve of fibril-forming multiple complex collagens steps are the requiring most extensively the temporal studied and spatialamong coordinationall the collagens of severaland involve biochemical multiple events complex [21,25 steps]. Following requiring transcription, the temporal the and nascent/pre-pro-collagen spatial coordination of isseveral post-translationally biochemical events modified [21,25]. in theFollowing endoplasmic transcription, reticulum the into nascent/pre-pro-collagen pro-collagen with the removalis post-translationally of the signal modified peptide on in thethe N-terminus.endoplasmic Hydroxylationreticulum into pro-collagen and glycosylation with the of aminoremoval acid of residuesthe signal results peptide in theon formationthe N-terminus. of the triple-helicalHydroxylation structure and glycosylation characteristic of ofamino collagens. acid residues Supported results by chaperonein the formation proteins, of the the triple-helical pro-collagen structure triple-helical characteristic structure of is stabilizedcollagens. forSupported further processing by chaperone and maturationproteins, th ine thepro-collagen Golgi apparatus triple-helical and assembled structure into is secretorystabilized vesiclesfor further that processing are extruded and into maturation the extracellular in the Golgi space apparatus where the and pro-collagen assembled is enzymaticallyinto secretory vesicles modified that into are tropocollagen. extruded into Thethe finalextracellular collagen space fibril where assembly the occurspro-colla- by covalentgen is enzymatically cross-linking. modified The mechanical into tropocolla propertiesgen. The (elasticity final collagen and reversible fibril assembly deformation) occurs ofby fibrillarcovalent collagens cross-linking. are dependent The mechanical on this cross-linkingproperties (elasticity process. and Some reversible of these defor- cross- linksmation) include: of fibrillar (1) disulfide collagens bonds; are dependent (2) reducible on andthis maturecross-linking cross-links process. produced Some of via these the Bioengineering 2021, 8, 63 3 of 15 lysyl oxidase pathway; (3) transglutaminase cross-links; and (4) advanced glycation end (AGE) product-mediated cross-links,
Recommended publications
  • Energy Healing
    57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 61 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. CHAPTER 3 Energy Healing Our remedies oft in ourselves do lie. —WILLIAM SHAKESPEARE LEARNING OBJECTIVES 1. Describe the types of energy. 2. Explain the universal energy field (UEF). 3. Explain the human energy field (HEF). 4. Describe the seven auric layers. 5. Describe the seven chakras. 6. Define the concept of energy healing. 7. Describe various types of energy healing. INTRODUCTION For centuries, traditional healers worldwide have practiced methods of energy healing, viewing the body as a complex energy system with energy flowing through or over its surface (Rakel, 2007). Until recently, the Western world largely ignored the Eastern interpretation of humans as energy beings. However, times have changed dramatically and an exciting and promising new branch of academic inquiry and clinical research is opening in the area of energy healing (Oschman, 2000; Trivieri & Anderson, 2002). Scientists and energy therapists around the world have made discoveries that will forever alter our picture of human energetics. The National Institutes of Health (NIH) is conducting research in areas such as energy healing and prayer, and major U.S. academic institutions are conducting large clinical trials in these areas. Approaches in exploring the concepts of life force and healing energy that previously appeared to compete or conflict have now been found to support each other. Conner and Koithan (2006) note 61 57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 62 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. 62 CHAPTER 3 • ENERGY HEALING that “with increased recognition and federal funding for energetic healing, there is a growing body of research that supports the use of energetic healing interventions with patients” (p.
    [Show full text]
  • Purinergic Signalling in Skin
    PURINERGIC SIGNALLING IN SKIN AINA VH GREIG MA FRCS Autonomic Neuroscience Institute Royal Free and University College School of Medicine Rowland Hill Street Hampstead London NW3 2PF in the Department of Anatomy and Developmental Biology University College London Gower Street London WCIE 6BT 2002 Thesis Submitted for the Degree of Doctor of Philosophy University of London ProQuest Number: U643205 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643205 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Purinergic receptors, which bind ATP, are expressed on human cutaneous kératinocytes. Previous work in rat epidermis suggested functional roles of purinergic receptors in the regulation of proliferation, differentiation and apoptosis, for example P2X5 receptors were expressed on kératinocytes undergoing proliferation and differentiation, while P2X? receptors were associated with apoptosis. In this thesis, the aim was to investigate the expression of purinergic receptors in human normal and pathological skin, where the balance between these processes is changed. A study was made of the expression of purinergic receptor subtypes in human adult and fetal skin.
    [Show full text]
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • Repair, Regeneration, and Fibrosis Gregory C
    91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth.
    [Show full text]
  • Wound Care: the Basics
    Wound Care: The Basics Suzann Williams-Rosenthal, RN, MSN, WOC, GNP Norma Branham, RN, MSN, WOC, GNP University of Virginia May, 2010 What Type of Wound is it? How long has it been there? Acute-generally heal in a couple weeks, but can become chronic: Surgical Trauma Chronic -do not heal by normal repair process-takes weeks to months: Vascular-venous stasis, arterial ulcers Pressure ulcers Diabetic foot ulcers (neuropathic) Chronic Wounds Pressure Ulcer Staging Where is it? Where is it located? Use anatomical location-heel, ankle, sacrum, coccyx, etc. Measurements-in centimeters Length X Width X Depth • Length = greatest length (head to toe) • Width = greatest width (side to side) • Depth = measure by marking the depth with a Q- Tip and then hold to a ruler Wound Characteristics: Describe by percentage of each type of tissue: Granulation tissue: • red, cobblestone appearance (healing, filling in) Necrotic: • Slough-yellow, tan dead tissue (devitalized) • Eschar-black/brown necrotic tissue, can be hard or soft Evaluating additional tissue damage: Undermining Separation of tissue from the surface under the edge of the wound • Describe by clock face with patients head at 12 (“undermining is 1 cm from 12 to 4 o’clock”) Tunneling Channel that runs from the wound edge through to other tissue • “tunneling at 9 o’clock, measuring 3 cm long” Wound Drainage and Odor Exudate Fluid from wound • Document the amount, type and odor • Light, moderate, heavy • Drainage can be clear, sanguineous (bloody), serosanguineous (blood-tinged),
    [Show full text]
  • SOCH111 History of Healing Last Modified: 17-Jun-2021
    SUBJECT OUTLINE Subject Name: Subject Code: History of Healing SOCH111 SECTION 1 – GENERAL INFORMATION Award/s: Total Course Credit Points: Level: Bachelor of Health Science (Naturopathy) 128 1st Year Bachelor of Health Science (Myotherapy) 96 1st Year Bachelor of Health Science (Nutritional and Dietetic Medicine) 96 1st Year Bachelor of Complementary Medicine 48 1st Year Diploma of Health Science 32 1st Year Duration: 1 Semester Subject is: Core Subject Credit Points: 4 Student Workload: No. timetabled hours per week: No. personal study hours per week: Total hours per week: 6 4 10 Delivery Mode*: ☐ On campus ☒ Online / Digital ☐ Blended ☐ Intensive Weekly Session^ Format/s - 2 sessions per week: ☒ eLearning modules: Lectures: Interactive adaptive online learning modules Tutorials: can include asynchronous tutor moderated discussion forum and activities, learning journal activities or other web-based resources *All modes are supported by the online learning management system which will include subject documents such as handouts, readings and assessment guides. ^A ‘session’ is made up of 3 hours of timetabled / online study time per week unless otherwise specified. Each subject has a set number of sessions as outlined above. Study Pattern: ☒ Full Time ☒ Part Time Pre-requisites: Nil Co-requisites: Nil SECTION 2 – ACADEMIC DETAILS Subject Rationale This subject provides the student with an understanding of the history and philosophy underpinning traditional and other whole medical systems from early human existence to the present day in diverse cultures worldwide. Social, Australian College of Natural Medicine Pty Ltd trading as Endeavour College of Natural Health, FIAFitnation (National CRICOS #00231G, RTO #31489) SOCH111 History of Healing Last modified: 17-Jun-2021 Version: 27.0 Page 1 of 10 cultural and political developments are considered in the evolution of healing and medicine, as well as the parallel developments in anatomy, physiology and other sciences.
    [Show full text]
  • Evidence for the Nonmuscle Nature of The" Myofibroblast" of Granulation Tissue and Hypertropic Scar. an Immunofluorescence Study
    American Journal of Pathology, Vol. 130, No. 2, February 1988 Copyright i American Association of Pathologists Evidencefor the Nonmuscle Nature ofthe "Myofibroblast" ofGranulation Tissue and Hypertropic Scar An Immunofluorescence Study ROBERT J. EDDY, BSc, JANE A. PETRO, MD, From the Department ofAnatomy, the Department ofSurgery, and JAMES J. TOMASEK, PhD Division ofPlastic and Reconstructive Surgery, and the Department of Orthopaedic Surgery, New York Medical College, Valhalla, New York Contraction is an important phenomenon in wound cell-matrix attachment in smooth muscle and non- repair and hypertrophic scarring. Studies indicate that muscle cells, respectively. Myofibroblasts can be iden- wound contraction involves a specialized cell known as tified by their intense staining of actin bundles with the myofibroblast, which has morphologic character- either anti-actin antibody or NBD-phallacidin. Myofi- istics of both smooth muscle and fibroblastic cells. In broblasts in all tissues stained for nonmuscle but not order to better characterize the myofibroblast, the au- smooth muscle myosin. In addition, nonmuscle myo- thors have examined its cytoskeleton and surrounding sin was localized as intracellular fibrils, which suggests extracellular matrix (ECM) in human burn granula- their similarity to stress fibers in cultured fibroblasts. tion tissue, human hypertrophic scar, and rat granula- The ECM around myofibroblasts stains intensely for tion tissue by indirect immunofluorescence. Primary fibronectin but lacks laminin, which suggests that a antibodies used in this study were directed against 1) true basal lamina is not present. The immunocytoche- smooth muscle myosin and 2) nonmuscle myosin, mical findings suggest that the myofibroblast is a spe- components ofthe cytoskeleton in smooth muscle and cialized nonmuscle type of cell, not a smooth muscle nonmuscle cells, respectively, and 3) laminin and 4) cell.
    [Show full text]
  • Tissue Examination to Monitor Antiangiogenic Therapy: a Phase I Clinical Trial with Endostatin1
    3366 Vol. 7, 3366–3374, November 2001 Clinical Cancer Research Tissue Examination to Monitor Antiangiogenic Therapy: A Phase I Clinical Trial with Endostatin1 Christoph Mundhenke, James P. Thomas, INTRODUCTION George Wilding, Fred T. Lee, Fred Kelzc, Neoplasms depend on the formation of new of blood Rick Chappell, Rosemary Neider, vessels (angiogenesis) for continued growth and metastatic Linda A. Sebree, and Andreas Friedl2 spread. Without angiogenesis, tumors remain small and do not threaten the life of the host (1). In normal resting tissues, Comprehensive Cancer Center [C. M., J. P. T., G. W., F. T. L., F. K., R. C., R. N., A. F.], Department of Pathology and Laboratory where blood vessel growth is minimal, angiogenesis is con- Medicine [L. A. S., A. F.], and Department of Biostatistics [R. C.], trolled by a balance of angiogenic stimulators and inhibitors. University of Wisconsin Madison, Wisconsin 53792; and Department This balance is perturbed in tumors to favor angiogenesis of Obstetrics and Gynecology, University of Kiel, 24105 Germany either by overproduction of angiogenesis inducers or by lack [C. M.] of inhibitors (2). Recently, several naturally occurring angiogenesis inhibi- ABSTRACT tors have been identified. The most potent inhibitor appears to Purpose: The purpose of this study was to determine the be endostatin, the COOH-terminal proteolytic fragment of the effect of the angiogenesis inhibitor endostatin on blood ves- basement membrane component collagen XVIII (3). In a xeno- sels in tumors and wound sites. transplantation model, endostatin administration leads to pro- Experimental Design: In a Phase I dose escalation study, nounced tumor regression, suggesting that the peptide induces cancer patients were treated with daily infusions of human regression of existing blood vessels in addition to preventing the recombinant endostatin.
    [Show full text]
  • The Treatment of Impaired Wound Healing in Diabetes: Looking Among Old Drugs
    pharmaceuticals Review The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs Simona Federica Spampinato 1 , Grazia Ilaria Caruso 1,2, Rocco De Pasquale 3, Maria Angela Sortino 1,* and Sara Merlo 1 1 Department of Biomedical and Biotechnological Sciences, Section of Pharmacology University of Catania, 95123 Catania, Italy; [email protected] (S.F.S.); [email protected] (G.I.C.); [email protected] (S.M.) 2 Ph.D. Program in Biotechnologies, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy 3 Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-4781192 Received: 16 March 2020; Accepted: 29 March 2020; Published: 1 April 2020 Abstract: Chronic wounds often occur in patients with diabetes mellitus due to the impairment of wound healing. This has negative consequences for both the patient and the medical system and considering the growing prevalence of diabetes, it will be a significant medical, social, and economic burden in the near future. Hence, the need for therapeutic alternatives to the current available treatments that, although various, do not guarantee a rapid and definite reparative process, appears necessary. We here analyzed current treatments for wound healing, but mainly focused the attention on few classes of drugs that are already in the market with different indications, but that have shown in preclinical and few clinical trials the potentiality to be used in the treatment of impaired wound healing. In particular, repurposing of the antiglycemic agents dipeptidylpeptidase 4 (DPP4) inhibitors and metformin, but also, statins and phenyotin have been analyzed.
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis Via Trigger Effects on Granulation Tissue Growth and Vascularization
    International Journal of Molecular Sciences Article Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization Natalya Alexandrushkina 1,2,* , Peter Nimiritsky 1,2 , Roman Eremichev 1, Vladimir Popov 2 , Mikhail Arbatskiy 2, Natalia Danilova 1, Pavel Malkov 1,2, Zhanna Akopyan 1,2, Vsevolod Tkachuk 1,2 and Pavel Makarevich 1,2 1 Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; [email protected] (P.N.); [email protected] (R.E.); [email protected] (N.D.); [email protected] (P.M.); [email protected] (Z.A.); [email protected] (V.T.); [email protected] (P.M.) 2 Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; [email protected] (V.P.); [email protected] (M.A.) * Correspondence: [email protected] Received: 3 June 2020; Accepted: 1 August 2020; Published: 4 August 2020 Abstract: We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3–7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels.
    [Show full text]
  • Original Article Huiyang Shengji Extract Improved Wound Healing by Regulating Macrophage Phenotype Transition
    Int J Clin Exp Med 2018;11(11):11690-11705 www.ijcem.com /ISSN:1940-5901/IJCEM0075570 Original Article Huiyang Shengji Extract improved wound healing by regulating macrophage phenotype transition Xiujuan He, Yan Lin, Yujiao Meng, Yan Xue, Xuyang Han, Ping Li Beijing Institute of TCM, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China Received March 7, 2018; Accepted July 14, 2018; Epub November 15, 2018; Published November 30, 2018 Abstract: Dysfunction of macrophage phenotype transition is a primary reason for wound healing failure caused by persistent inflammation. Huiyang Shengji Extract (HSE) is a Traditional Chinese Medicine prescription for treating chronic wounds. Little is known about the underlying molecular mechanism of HSE. This study aim to investigate the effect of HSE on macrophage phenotype transition in chronic skin wound of mice and macrophages in vitro. Balb/c mice were randomly divided into four groups: control (normal wound-NS treated), model (delayed wound-NS treat- ed), HSE-treated groups, and bFGF-treated groups. The immunosuppressive mice were operated by full-thickness excision. Macrophage phenotype markers on the wound were analyzed by immunohistochemistry, real-time PCR, and Western blot. The in vitro cytotoxicity and phagocytosis of macrophages was assessed by CCK-8 and neutral red assays. Macrophage 1/2 (M1/M2) markers were analyzed using ELISA, flow cytometry, and real-time PCR. The results showed delayed wound healing in immunosuppressed mice. HSE promoted macrophage recruitment to the wounded tissue, decreased the expression of iNOS and IL-6, and increased the level of CD206, VEGF, and TGF-β during granulation tissue formation.
    [Show full text]